JP3518371B2 - Structure coupled vibration damping device - Google Patents

Structure coupled vibration damping device

Info

Publication number
JP3518371B2
JP3518371B2 JP30910798A JP30910798A JP3518371B2 JP 3518371 B2 JP3518371 B2 JP 3518371B2 JP 30910798 A JP30910798 A JP 30910798A JP 30910798 A JP30910798 A JP 30910798A JP 3518371 B2 JP3518371 B2 JP 3518371B2
Authority
JP
Japan
Prior art keywords
cable
vibration
vibration damping
damping device
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30910798A
Other languages
Japanese (ja)
Other versions
JP2000136651A (en
Inventor
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP30910798A priority Critical patent/JP3518371B2/en
Publication of JP2000136651A publication Critical patent/JP2000136651A/en
Application granted granted Critical
Publication of JP3518371B2 publication Critical patent/JP3518371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高層若しくは塔状
等の固有周期の異なる独立して隣接する構造物同士を、
ダンパと弾性体とで連結して、相互の水平方向振動を減
衰するようにした連結制振装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure such as a high-rise building or a tower-like structure which is adjacent to each other and has different natural periods.
The present invention relates to an improvement of a coupled vibration damping device which is coupled with a damper and an elastic body to damp mutual horizontal vibrations.

【0002】[0002]

【従来の技術】従来より、独立して相隣接する構造物同
士を、バネまたはダンパで連結して、相互干渉させるこ
とにより両構造物に及ぶ地震力を軽減するようにした連
結制振に関する技術が、例えば特公昭54−1391号
公報等で公知になっており、ダンパのみを介装した連結
制振装置は既に実用化に至っている。
2. Description of the Related Art Conventionally, a technique relating to coupled vibration control in which structures that are adjacent to each other independently are coupled by springs or dampers and interfere with each other to reduce the seismic force applied to both structures. However, for example, it is known in Japanese Patent Publication No. 54-1391 and the like, and a linked vibration damping device having only a damper has already been put to practical use.

【0003】図9は、固有周期の異なる相隣接した2つ
の構造物51と52同士を、減衰係数Csのダンパ53
で連結している状態を、質点系でモデル化した概念図で
ある。同図においてバネk51と質点m51は構造物5
1の剛性と質量とを示し、バネk52と質点m52は構
造物52の剛性と質量とを示す。このモデルでは振動方
程式は(1)式に示すように表せ、この(1)式に基づ
いてダンパ特性、すなわち減衰係数を変化させた場合の
振動伝達関数を図10に示す。
FIG. 9 shows a structure in which two structures 51 and 52 adjacent to each other having different natural periods are connected to each other by a damper 53 having a damping coefficient Cs.
It is a conceptual diagram which modeled the state connected by. In the figure, the spring k51 and the mass point m51 are the structures 5
1 shows the rigidity and mass, and the spring k52 and the mass point m52 show the rigidity and mass of the structure 52. In this model, the vibration equation can be expressed as shown in the equation (1), and the vibration transfer function when the damper characteristic, that is, the damping coefficient is changed based on the equation (1) is shown in FIG.

【0004】[0004]

【数1】 [Equation 1]

【0005】図10は横軸に振動数、縦軸に振動伝達率
(x51/y)、(x52/y)をとって、質点m51の伝
達関数fx51 と、質点52の伝達関数fx52 とを示した
ものである。ここで、同図においてfx510、fx520は、
前記したfx51 、fx52 の減衰係数を0にした場合で、
ダンパが無くおのおの切り離され自由振動している状態
の質点m51とm52の伝達関数を示し、fx ∞は前記
減衰係数を無限大にした場合で、質点m51とm52が
剛連結し一質点系となって振動している状態の伝達関数
を示している。
FIG. 10 shows the transfer function fx51 of the mass point m51 and the transfer function fx52 of the mass point 52, where the horizontal axis is the frequency and the vertical axis is the vibration transmissibility (x51 / y), (x52 / y). It is a thing. Here, in the figure, fx510 and fx520 are
When the attenuation coefficient of fx51 and fx52 is set to 0,
The transfer function of the mass points m51 and m52 in the state of free vibration without a damper is shown. Fx ∞ is the case where the damping coefficient is infinite, and the mass points m51 and m52 are rigidly connected to form a one-mass system. Shows a transfer function in a vibrating state.

【0006】ここで、図9に示すようなダンパのみで連
結されている二質点系の振動伝達関数については、各質
点の伝達関数が、ある特定の振動数で、連結ダンパの減
衰係数Csに関係なく、同じ振動伝達率の点を通過する
という、定点定理が存在することが一般的に知られてい
る。この定点定理とは、図10において、いかなるダン
パを使用しても伝達関数fx51 は、fx510とfx ∞とが
交わる点p51を通過し、また同様にいかなるダンパを使
用しても伝達関数fx52 は、fx520とfx ∞とが交わる
点p52を通過すること意味する定理である。このため、
通常、最も小さな振動伝達率を取りたい場合は、前記交
点p51およびp52が最大値、すなわちピークとなるよう
に減衰係数を決定し、この減衰係数のダンパを設計し、
図10に示す振動伝達関数fx51opt、fx52optとなるよ
うに制振条件を与えていた。逆にいえば、いかなるダン
パを使用してもp51、p52以下の振動伝達率を設定する
ことは不可能である。すなわち、ダンパのみを介装する
方法では、ダンパ以外の要因である質点質量とバネの弾
性係数で決定する振動伝達率の限界点が存在し、それが
制振効果の限界となっている。
Here, regarding the vibration transfer function of a two-mass system which is connected only by a damper as shown in FIG. 9, the transfer function of each mass is at a certain specific frequency and becomes the damping coefficient Cs of the connected damper. It is generally known that there is a fixed point theorem that passes through a point with the same vibration transmissibility regardless of the point. This fixed point theorem means that, in FIG. 10, the transfer function fx51 passes through the point p51 where fx510 and fx∞ intersect, and the transfer function fx52 becomes This is a theorem which means passing through a point p52 where fx520 and fx∞ intersect. For this reason,
Generally, when it is desired to obtain the smallest vibration transmissibility, the damping coefficient is determined so that the intersection points p51 and p52 become the maximum value, that is, the peak, and the damper of this damping coefficient is designed,
The damping condition is given so that the vibration transfer functions fx51opt and fx52opt shown in FIG. 10 are obtained. Conversely, it is impossible to set the vibration transmissibility below p51 and p52 by using any damper. That is, in the method of interposing only the damper, there is a limit point of the vibration transmissibility determined by the mass of the mass and the elastic coefficient of the spring, which are factors other than the damper, and that is the limit of the vibration damping effect.

【0007】ところで、当該制振装置における制振性能
の向上に関して、ダンパに追加して並列に弾性体を介装
し、この弾性係数を調整することにより振動伝達率の低
減化が図れることがわかっており、本発明者等はその大
幅な制振効果の向上をシミュレーションにより確認し
た。
In order to improve the vibration damping performance of the vibration damping device, it has been found that the vibration transmissibility can be reduced by adding an elastic body in parallel to the damper and adjusting the elastic coefficient. Therefore, the present inventors confirmed by simulation that the vibration damping effect was significantly improved.

【0008】その一例として、図11に示すような外塔
1の内部に内塔3が独立して地盤上に立脚し、前記外塔
1と内塔3の間に制振装置5を介装した高層煙突7のケ
ースで説明する。
As an example, an inner tower 3 is independently erected on the ground inside an outer tower 1 as shown in FIG. 11, and a vibration damping device 5 is interposed between the outer tower 1 and the inner tower 3. The case of the high-rise chimney 7 will be described.

【0009】前記外塔1は高さ方向に高くなるにしたが
い、その直径が小さくなっている円筒であり、その内側
には独立して立脚した円筒である内塔3が、外塔1とそ
の中心軸が一致した状態で立設しており、また外塔1と
内塔3との間にはダンパ5aと弾性体5dとからなる制
振装置5が介装されている。
The outer tower 1 is a cylinder whose diameter decreases as the height rises in the height direction, and the inner tower 3 which is an independently standing cylinder is provided inside the outer tower 1 and the outer tower 1. It is erected so that the central axes thereof coincide with each other, and a damping device 5 including a damper 5a and an elastic body 5d is interposed between the outer tower 1 and the inner tower 3.

【0010】図12は前記した高層煙突7を質点系でモ
デル化した概念図である。
FIG. 12 is a conceptual diagram in which the above-mentioned high-rise stack 7 is modeled by a mass system.

【0011】外塔1は質点m1を地上に設置したバネk
1で支持、また内塔3は質点m3を地上に設置したバネ
k3で支持し、質点m1と質点m3の間に減衰係数がc
0のダンパ5aと、弾性係数がk0の弾性体5dとを並
列に介装することで、モデル化されている。尚、前記し
た質点の質量、弾性係数等の各種係数は、当該高層煙突
7の形状、構造から以下に示す数値を使用し、また振動
方程式は(2)式で表され、合わせてシミュレーション
で使用した。 m1=50000TON m3=10000TON k1=100TON/cm k3=5TON/cm
The outer tower 1 is a spring k having a mass point m1 installed on the ground.
1, the inner tower 3 supports the mass point m3 by the spring k3 installed on the ground, and the damping coefficient is c between the mass points m1 and m3.
It is modeled by interposing a damper 5a of 0 and an elastic body 5d of which elastic coefficient is k0 in parallel. In addition, the various numerical values such as the mass of the mass point and the elastic coefficient described above are used according to the shape and structure of the high-rise chimney 7, and the vibration equation is expressed by the equation (2), which is also used in the simulation. did. m1 = 50000TON m3 = 10000TON k1 = 100TON / cm k3 = 5TON / cm

【0012】[0012]

【数2】 [Equation 2]

【0013】まず、弾性体5dが介装されておらず、ダ
ンパ5aのみで制振した場合の制振性の検討結果から説
明する。図13(a)は横軸に振動数、縦軸に振動伝達
率(x1/y )、(x3/y )をとって、質点m1すなわち
外塔の伝達関数fx1と、質点3すなわち内塔の伝達関数
fx3を示したものである。fx10 とfx30 は、前記した
fx1とfx3のダンパの減衰係数c0 を0にした場合、す
なわちダンパが無く、おのおの切り離され自由振動して
いる状態の質点m1およびm3の伝達関数をそれぞれ示
し、fx ∞は減衰係数c0 を無限大にした場合、すなわ
ち質点m1とm3とが剛連結し一質点系となって振動し
ている状態の伝達関数を示している。
First, a description will be given of the result of examination of the damping property when the elastic body 5d is not interposed and only the damper 5a is used for damping. In FIG. 13 (a), the horizontal axis represents the frequency and the vertical axis represents the vibration transmissibility (x1 / y) and (x3 / y), and the mass point m1 or the transfer function fx1 of the outer tower and the mass point 3 or the inner tower The transfer function fx3 is shown. fx10 and fx30 represent the transfer functions of the mass points m1 and m3, respectively, when the damping coefficient c0 of the above-mentioned dampers of fx1 and fx3 is set to 0, that is, there is no damper and each is free-vibrating, and fx ∞ Indicates a transfer function when the damping coefficient c0 is set to infinity, that is, when the mass points m1 and m3 are rigidly connected and vibrate to form a single mass point system.

【0014】図13(a)において、fx10 とfx ∞と
が交わる点をp1、またfx30 とfx ∞とが交わる点を
p3とする。また、制振特性を最適化した、すなわち振
動伝達率の最大値がp1、p3となるように、ダンパの
減衰係数c0 を調整した場合の振動伝達関数fx1opt 、
fx3opt を、図13(b)に示す。図13(a)のp
1,p3がほぼピークとなるように調整されているが、
定点定理よりp1、p3の値を下げることは不可能であ
ることがわかる。
In FIG. 13A, the point where fx10 and fx ∞ intersect is p1, and the point where fx30 and fx ∞ intersect is p3. Further, the vibration transfer function fx1opt when the damping characteristic is optimized, that is, when the damping coefficient c0 of the damper is adjusted so that the maximum values of the vibration transmissibility are p1 and p3,
fx3opt is shown in FIG. P in FIG. 13 (a)
Although it is adjusted so that 1 and p3 are almost peaks,
From the fixed point theorem, it is impossible to reduce the values of p1 and p3.

【0015】これに対し、質点m1、m3間に弾性体k
0 を介装した場合の振動伝達関数を図14に示す。図1
4(a)のfx10 、fx30 はその減衰係数c0 を0にし
た場合で、ダンパは無いが、質点m1、m3の各々は弾
性体で連結されているため、その弾性体で動きが拘束さ
れている状態のm1とm3の伝達関数を示し、fx ∞は
減衰係数c0 を無限大にした場合で、質点m1とm3が
剛連結し一質点系となっている振動している状態の伝達
関数を示している。ここで制振特性を最適化するバネの
弾性定数k0 は、この交点p11、p31の伝達率の大
きさを等しくする条件で与えられ、当該条件と前記振動
方程式(2)より、以下の(3)式で与えられ、当該モ
デルの場合はk0 は以下となる。
On the other hand, the elastic body k is placed between the mass points m1 and m3.
FIG. 14 shows the vibration transfer function when 0 is interposed. Figure 1
In fx10 and fx30 of 4 (a), when the damping coefficient c0 is set to 0, there is no damper, but since the mass points m1 and m3 are connected by the elastic body, the movement is restricted by the elastic body. Shows the transfer function of m1 and m3 in the state where fx ∞ is the case where the damping coefficient c0 is set to infinity, and the transfer function in the vibrating state in which the mass points m1 and m3 are rigidly connected to form a one-mass system Shows. Here, the elastic constant k0 of the spring for optimizing the damping characteristic is given on the condition that the magnitudes of the transmissibility of the intersection points p11 and p31 are equal, and from the condition and the vibration equation (2), the following (3 ), And in the case of the model, k0 is as follows.

【0016】[0016]

【数3】 [Equation 3]

【0017】次に、制振特性を最適化するダンパの減衰
係数は、振動伝達関数fx (ω)が交点p11、p31
にて、それぞれの振動伝達率の極値をとるという条件で
与えられるため、これら交点p11、p31における振
動数ωp11 、ωp31 で、
Next, regarding the damping coefficient of the damper for optimizing the damping characteristic, the vibration transfer function fx (ω) intersects at the intersection points p11 and p31.
At the intersections p11 and p31, the vibration frequencies ωp11 and ωp31 are

【数4】 となるように減衰係数c0 を決定し、当該モデルの場合
は以下となる。 c0 =5TON ・sec/cm
[Equation 4] The damping coefficient c0 is determined so that the following is obtained in the case of the model. c0 = 5TON ・ sec / cm

【0018】ダンパの減衰係数c0 最適化後のダンパと
弾性体とを並設した制振装置の振動伝達関数を図14
(b)に示す。今回の場合は、主に外塔の制振性能を向
上することが要求されており、図13(b)のp1と図
14(b)のp11の対比により、該外塔である質点m
1の制振性が大幅に向上し、ダンパのみの制振装置の場
合の2倍の制振特性を有していることがわかる。
FIG. 14 shows the vibration transfer function of the vibration damping device in which the damper and the elastic body are arranged in parallel after the damping coefficient c0 of the damper is optimized.
It shows in (b). In this case, it is mainly required to improve the vibration control performance of the outer tower, and by comparing p1 in FIG. 13 (b) with p11 in FIG. 14 (b), the mass point m
It can be seen that the vibration damping property of No. 1 is significantly improved, and the vibration damping characteristic is twice as high as that of the vibration damping device having only the damper.

【0019】ここで、前記最適条件において、大地震を
想定し人工地震を入力した時の応答変位を示す。シミュ
レート方法は、振動方程式(2)の右辺の地動変位項に
人工地震の変位を入力しx1とx3を算出した。制振性能が
要求される外塔1の変位応答を図15(a)に示すが、
良好な制振性を示しているのがわかる。
Here, under the optimum conditions, the response displacement when a large earthquake is assumed and an artificial earthquake is input will be shown. In the simulation method, x1 and x3 were calculated by inputting the displacement of the artificial earthquake into the ground motion displacement term on the right side of the vibration equation (2). The displacement response of the outer tower 1, which requires damping performance, is shown in FIG. 15 (a).
It can be seen that it exhibits good vibration damping properties.

【0020】尚、このシミュレーションでは、外塔1の
制振性を重視しているため、図15(b)に示すように
大きくは改善されていない。
In this simulation, since the damping property of the outer tower 1 is emphasized, it is not greatly improved as shown in FIG. 15 (b).

【0021】以上のように、ダンパと弾性体を並設した
連結制振装置により、制振特性を著く向上することが可
能である。
As described above, it is possible to remarkably improve the damping characteristic by the coupled damping device in which the damper and the elastic body are arranged in parallel.

【0022】[0022]

【発明が解決しようとする課題】ところで、図16は前
記人工地震を入力した際の、外塔1と内塔3との間の相
対変位の変化を示すが、その最大振幅量は±90cmに
達している。すなわち、連結制振装置を高層煙突に適用
する際には、2m近い伸縮能力があると同時に、弾性係
数が10TON/cmという巨大な弾性体が必要となる。し
かしながら、このような弾性体をコイルスプリングで構
成すると巨大なバネとなり、その製作技術の面のみなら
ず、当該バネを構造物体間に収めること自体が不可能で
ある。
By the way, FIG. 16 shows the change in relative displacement between the outer tower 1 and the inner tower 3 when the artificial earthquake is input. The maximum amplitude amount is ± 90 cm. Has reached That is, when the coupled vibration damping device is applied to a high-rise stack, a huge elastic body having an elastic coefficient of 10 TON / cm is required at the same time as it has an expansion and contraction capability of nearly 2 m. However, if such an elastic body is composed of a coil spring, it becomes a huge spring, and it is impossible not only in terms of its manufacturing technique but also to fit the spring between structural objects.

【0023】つまり、現状では最適な弾性係数と伸縮能
力を有したコイルスプリングを煙突の頂部近傍の内塔と
外塔との間に設置可能にコンパクトに製作することがで
きず、また製作できたとしてもその支持構造が問題とな
る。
That is, at present, a coil spring having an optimum elastic coefficient and an expansion / contraction capability cannot be installed compactly so that it can be installed between the inner tower and the outer tower near the top of the chimney, and it could be manufactured. Even so, its support structure becomes a problem.

【0024】本発明は上記問題点に鑑みてなされたもの
で、その目的は、制振対象の構造物間に弾性係数と伸縮
長を最適にして弾性体を介装可能な構造物の連結制振装
置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to connect and control a structure in which an elastic body can be interposed by optimizing an elastic coefficient and an expansion / contraction length between structures to be damped. It is to provide a shaking device.

【0025】[0025]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、本発明のうち、請求項1記載の発明で
は、隣接している固有周期の異なる独立した構造物間
に、ダンパと弾性体とを並列させて連結した構造物の連
結制振装置において、前記弾性体にケーブルを使用し、
該ケーブルはその一端を一方の構造物に固定するととも
に、該固定部から水平に案内され、その途中を他方の構
造物に設けられた方向転換軸に掛け回し、その他端を前
記一端の固定部位と方向転換軸との間に生じる水平方向
相対変位を吸収して伸縮可能な位置に固定したことを特
徴とする。
As a means for solving the above-mentioned problems, in the invention according to claim 1 of the present invention, a damper is provided between adjacent independent structures having different natural periods. In a vibration damping device for a structure in which an elastic body is connected in parallel, a cable is used for the elastic body,
The cable has one end fixed to one of the structures, is horizontally guided from the fixing portion , and is hung around a direction-changing shaft provided on the other structure at the other end, and the other end is fixed at the one end. It is characterized in that it is fixed at a position where it can be expanded and contracted by absorbing the relative displacement in the horizontal direction that occurs between the direction changing shaft and the direction changing shaft.

【0026】上記構成に係る連結制振装置によれば、水
平方向の長い伸縮量が要求される弾性体として、ケーブ
ルを使用し、隣接する構造物間に生じる水平方向の相対
変位を、一方の構造物に固定した一端部と他方の構造物
に設けた方向転換軸とによりケーブルに伝えて、このケ
ーブルの全長で吸収する。ケーブルは方向転換軸によ
り、その引き回し方向を自由に転換できるから、十分な
設置スペースを有する方向に向けて転換して配置でき
る。したがって、最適な弾性係数と十分な伸縮量とを有
する弾性体を、ダンパに並設させるのと等価に設けるこ
とができ、弾性体とダンパとを並設した構造物の連結制
振装置を実用化することが可能となり、高層、若しくは
塔状の構造物の強風や地震などによる横揺れを大幅に軽
減することができるようになる。
According to the coupled vibration damping device having the above structure, the cable is used as the elastic body which requires a long horizontal expansion / contraction amount, and the horizontal relative displacement generated between the adjacent structures is It is transmitted to the cable by one end fixed to the structure and the direction changing shaft provided on the other structure, and absorbed by the entire length of the cable. Since the cable can freely change its routing direction by the direction changing shaft, it can be arranged and changed in the direction having a sufficient installation space. Therefore, an elastic body having an optimum elastic coefficient and a sufficient amount of expansion and contraction can be provided equivalently to the damper being installed side by side, and a coupled vibration damping device for a structure in which the elastic body and the damper are installed side by side is put into practical use. It becomes possible to significantly reduce the rolling of high-rise or tower-shaped structures due to strong winds or earthquakes.

【0027】請求項2記載の発明では、請求項1におい
て、前記ケーブルの端部または途中の任意の箇所にケー
ブルのバネ定数調整用のバネを介装したことを特徴とす
る。
According to a second aspect of the present invention, in the first aspect, a spring for adjusting the spring constant of the cable is provided at an end of the cable or at an arbitrary position on the way.

【0028】上記構成によれば、前記バネを直結するこ
とによりケーブルの弾性係数を微調整することができ、
連結制振装置の要である弾性体の弾性係数とダンパの減
衰係数を最適値に調整することが容易となり、当該連結
制振法の能力を最大限に引き出すことが可能となる。こ
の結果、高層、若しくは塔状の構造物の強風や地震など
による横揺れを大幅に軽減することができる。
According to the above construction, the elastic coefficient of the cable can be finely adjusted by directly connecting the spring,
It becomes easy to adjust the elastic coefficient of the elastic body and the damping coefficient of the damper, which are the core of the linked vibration damping device, to optimum values, and it is possible to maximize the performance of the linked vibration damping method. As a result, rolling of a high-rise or tower-shaped structure due to a strong wind or an earthquake can be significantly reduced.

【0029】更に、請求項3記載の発明では、前記請求
項1または2において前記ケーブルとダンパを複数組並
設したことを特徴とする。
Further, the invention of claim 3 is characterized in that a plurality of sets of the cable and the damper are arranged in parallel in the invention of claim 1 or 2.

【0030】上記構成によれば、構造物の高さ方向に複
数の振動の腹が存在する場合に、その腹の位置に合わせ
て本発明である制振装置を複数組設置することにより、
腹の振幅を著く低減でき、複雑な高次振動モードにも対
応することができる。
According to the above structure, when a plurality of antinodes of vibration exist in the height direction of the structure, a plurality of vibration damping devices according to the present invention are installed in accordance with the positions of the antinodes.
The amplitude of the antinode can be significantly reduced, and it is possible to cope with complicated higher-order vibration modes.

【0031】[0031]

【発明の実施の形態】以下、本発明の好ましい実施の形
態につき、添付図面を参照して詳細に説明する。
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

【0032】図1は、本発明の実施形態Iである連結制
振装置5を備えた高層煙突7の中心位置での鉛直断面図
である。前記高層煙突7は二重円筒構造であり、外塔1
と内塔3とからなり、制振装置5で連結されている。こ
の制振装置5は、ダンパ5aとケーブル5cとケーブル
方向転換軸5bとで構成される。
FIG. 1 is a vertical cross-sectional view of a high-rise stack 7 provided with a vibration damping device 5 according to a first embodiment of the present invention at a central position. The high-rise chimney 7 has a double cylindrical structure, and the outer tower 1
And the inner tower 3, which are connected by a vibration damping device 5. The vibration damping device 5 includes a damper 5a, a cable 5c, and a cable direction changing shaft 5b.

【0033】前記外塔1は高さ方向に高くなるにしたが
い、その直径が小さくなっている異径円筒であり、その
内側には独立して立脚した等径の円筒状の内塔3が立設
され、外塔1と内塔3とはその中心が一致されている。
前記外塔1と内塔3との間には、その頂部近傍に前記制
振装置5が介装されている。ダンパ5aは内塔3の外側
面と外塔1の内側面との間にこれらを連結して設けら
れ、ケーブル5cは内塔3と地盤9との間にプレストレ
スを与えられてた状態で張設されており、その一端は内
塔3の外側面の頂部に固定され、この固定部から径方向
外方に向けて水平に案内され、外塔1の内側面に付設さ
れた方向転換軸5bに掛け回された後、垂直下方向にそ
の向きを転換されて、他端が地盤9に固定されている。
図1のA−A線矢視の断面図を図2に示すが、前記制振
装置5は円周方向に90゜刻みに4組が複数で設置され
ており、方向転換軸5bは、外塔1の内側面に付設した
ブラケット5fによりローラー5eを回転自在に軸支す
る構成であり、ローラー5eの回転摺動抵抗を小さくす
ることにより、ケーブル5cを円滑に伸縮可能としてい
る。
The outer tower 1 is a cylinder having a different diameter whose diameter decreases as the height rises in the height direction, and a cylindrical inner tower 3 having an equal diameter independently standing upright inside the outer tower 1. The outer tower 1 and the inner tower 3 have the same center.
The vibration damping device 5 is interposed between the outer tower 1 and the inner tower 3 near the top thereof. The damper 5a is provided between the outer surface of the inner tower 3 and the inner surface of the outer tower 1 by connecting them, and the cable 5c is prestressed between the inner tower 3 and the ground 9. It is stretched, one end of which is fixed to the top of the outer surface of the inner tower 3, is horizontally guided radially outward from this fixed portion, and is attached to the inner surface of the outer tower 1 After being wound around 5b, its direction is changed vertically downward, and the other end is fixed to the ground 9.
A cross-sectional view taken along the line AA of FIG. 1 is shown in FIG. 2. The vibration damping device 5 is provided with a plurality of four sets at intervals of 90 ° in the circumferential direction, and the direction changing shaft 5b is external. The roller 5e is rotatably supported by a bracket 5f attached to the inner surface of the tower 1, and the cable 5c can be smoothly expanded and contracted by reducing the rotational sliding resistance of the roller 5e.

【0034】ただし、本実施例では、方向転換軸5bに
よるケーブル5cの転換方向は、鉛直下方向の長い空間
を利用して、鉛直下方向に引き回したが、別途スペース
があればその方向で良い。また、ダンパ5aは、所期の
減衰係数c0が設定できるものであれば良く、オイルダ
ンパ、エアーダンパ、摩擦ダンパ等が使用可能である。
In this embodiment, however, the cable 5c is diverted by the direction diverting shaft 5b in the vertically downward direction by utilizing a long space in the vertically downward direction, but if there is another space, that direction may be used. . Further, the damper 5a may be any one that can set a desired damping coefficient c0, and an oil damper, an air damper, a friction damper, or the like can be used.

【0035】次にその作用を図3により説明する。地震
等が発生した場合、外塔1,内塔3ともに水平方向に横
揺れし、これらは固有周期が異なるため水平方向の相対
変位が生じて、特に頂部での相対変位が大きくなる。こ
こで、便宜上、主に外塔1の頂部が右方向に変位し、内
塔3と外塔1の右側の間隔が広がる、すなわち内塔3の
ケーブル固定部と外塔1に付設した方向転換軸5bの間
隔が広がる場合を想定して説明する。
Next, the operation will be described with reference to FIG. When an earthquake or the like occurs, both the outer tower 1 and the inner tower 3 roll horizontally, and since these have different natural periods, horizontal relative displacement occurs, and particularly the relative displacement at the top becomes large. Here, for the sake of convenience, mainly the top of the outer tower 1 is displaced to the right, and the distance between the inner tower 3 and the right side of the outer tower 1 increases, that is, the cable fixing portion of the inner tower 3 and the direction change attached to the outer tower 1. Description will be given assuming that the distance between the shafts 5b increases.

【0036】右側のケーブル5cは当該間隔の変化分だ
け伸張する必要があるが、本実施例では鉛直下方向に十
分なスペースがあるため、方向転換軸5bにより鉛直下
方向にケーブル5cを案内することにより、主に鉛直下
方向のケーブル5cの伸張により、前記間隔変化分の伸
張を吸収している。また、前記右側のケーブル5cと内
塔の中心軸と線対称の位置にある左側のケーブル5c
は、上記とは逆に内塔のケーブル固定部と方向転換軸5
bの間隔が狭まる分短縮するが、主に鉛直下方向のケー
ブルの短縮により、前記間隔変化分の短縮を吸収してい
る。すなわち、隣接する構造物間に生じる水平方向の相
対変位を、ケーブルと方向転換軸とによりケーブルに伝
えるとともに、その方向転換軸で十分な設置スペースを
有する方向にケーブルを向けて配置することにより、前
記相対変位をケーブル全長の伸縮で吸収することが可能
となり、大伸縮能力を有したコイルスプリングと等価な
作用を示すわけである。
The cable 5c on the right side needs to be extended by the amount of change in the distance, but in this embodiment, since there is sufficient space in the vertically downward direction, the cable 5c is guided vertically downward by the direction changing shaft 5b. As a result, the extension of the distance change is absorbed mainly by the extension of the cable 5c in the vertically downward direction. In addition, the cable 5c on the right side and the cable 5c on the left side which are line-symmetrical to the central axis of the inner tower.
Contrary to the above, is the cable fixing part of the inner tower and the direction changing shaft 5
Although the distance of b is shortened by the narrowing, the shortening of the cable in the vertically downward direction absorbs the shortening of the distance. That is, the relative displacement in the horizontal direction occurring between adjacent structures is transmitted to the cable by the cable and the direction changing shaft, and by arranging the cable in a direction having a sufficient installation space on the direction changing shaft, The relative displacement can be absorbed by the expansion and contraction of the entire length of the cable, and an action equivalent to that of a coil spring having a large expansion and contraction capability is exhibited.

【0037】なお、本実施例ではケーブル5cの他端を
地盤9に固定したが、前述したケーブル5cの伸張・短
縮を吸収できるケーブル長さが確保できる場所であれば
どこでも良い。また、前記のケーブル長さが、煙突高さ
に対して長い場合には、図4に示す実施形態IIのよう
に方向転換軸11を複数組用いて、支障のないルートに
ケーブルを引き廻せば良い。
Although the other end of the cable 5c is fixed to the ground 9 in this embodiment, it may be located at any place as long as it can secure the cable length capable of absorbing the above-mentioned extension and contraction of the cable 5c. When the cable length is longer than the chimney height, a plurality of sets of direction changing shafts 11 may be used as in the embodiment II shown in FIG. good.

【0038】一方、前述した実施形態Iにおいてケーブ
ル5cを設置する際、プレストレスを与えて張設した
が、プレストレスが大きい場合には、方向転換軸5b、
およびケーブル5cに作用する最大引張力が巨大なもの
となり、設備コストが莫大になる。このため、プレスト
レスを極力小さくすることが望ましい。
On the other hand, when the cable 5c is installed in the above-described Embodiment I by prestressing it, the direction changing shaft 5b,
And the maximum tensile force acting on the cable 5c becomes enormous, and the equipment cost becomes enormous. Therefore, it is desirable to minimize the prestress.

【0039】図5にケーブル5cにプレストレスを設定
しない場合のケーブルの状況を示す。外塔1と内塔3の
水平方向の相対変位が変化し、内塔3と外塔1の右側の
間隔が広くなった場合を想定すると、左のケーブル5c
はプレストレスが無いため、内塔のケーブル固定部と外
塔1に付設した方向転換軸5bの間隔が狭くなった分ケ
ーブル5cが弛む。このため、左側のケーブル5cは張
力喪失状態となるが、右のケーブル5cには引張力が作
用し、弾性体として作用する。逆方向の変位の場合は、
右の張力が喪失し、左のケーブル5cに引張力が作用
し、弾性体として作用する。すなわち、常にどちらか一
方のケーブル5cには引張力が作用し、弾性体として作
用することになり、連結制振装置の基本的機能は発揮す
る。
FIG. 5 shows the condition of the cable when the cable 5c is not prestressed. Assuming that the relative displacement of the outer tower 1 and the inner tower 3 in the horizontal direction changes and the distance between the inner tower 3 and the outer tower 1 on the right side becomes wider, the left cable 5c
Since there is no pre-stress, the cable 5c becomes slack because the distance between the cable fixing portion of the inner tower and the direction changing shaft 5b attached to the outer tower 1 becomes narrower. Therefore, the cable 5c on the left side is in a tension loss state, but a tensile force acts on the cable 5c on the right side and acts as an elastic body. For displacement in the opposite direction,
The tension on the right is lost, and the tensile force acts on the cable 5c on the left to act as an elastic body. That is, the tensile force always acts on one of the cables 5c and acts as an elastic body, and the basic function of the coupled vibration damping device is exhibited.

【0040】ところが、張力喪失時は図5の左のケーブ
ル5cに示すような弛みが生じ、方向転換軸からケーブ
ル5cが外れる、または張力喪失状態から張力状態に切
り替わる際の衝撃荷重によりケーブル断線が生じる虞れ
がある。これについては、極若干の予張力を常にケーブ
ル5cに作用させ、弛みを吸収しておくことで対応で
き、具体的には図6に示す実施形態IIIの弛み吸収装
置30が考えられる。該弛み吸収装置装置30は、方向
転換軸30aと前記方向転換軸30aを軸支している旋
回運動するアーム30bとそのアームに駆動トルクを与
える駆動装置30cとからなり、ケーブル5cに常時弛
みが生じない程度の張力を付与するテンショナーであ
る。ちなみに、100〜200mクラスの円筒状構造物
の振動周期は1〜10秒程度になり(前記の図11に示
す煙突の場合の振動周期は、内塔の振動周期が10秒程
度、外塔が5秒程度)、十分張力フィードバック制御が
可能である。
However, when the tension is lost, slack occurs as shown in the left cable 5c of FIG. 5, the cable 5c is disengaged from the direction changing shaft, or the cable is broken due to an impact load when the tension loss state is switched to the tension state. May occur. This can be dealt with by causing a slight amount of pretension to always act on the cable 5c to absorb the slack, and specifically, the slack absorbing device 30 of the embodiment III shown in FIG. 6 can be considered. The slack absorbing device 30 is composed of a direction changing shaft 30a, an arm 30b which pivotally supports the direction changing shaft 30a, and a driving device 30c which gives a driving torque to the arm 30b. It is a tensioner that gives tension that does not occur. By the way, the vibration period of the cylindrical structure of 100 to 200 m class is about 1 to 10 seconds (the vibration cycle of the chimney shown in FIG. 11 is about 10 seconds for the inner tower and about 10 seconds for the outer tower). About 5 seconds), sufficient tension feedback control is possible.

【0041】連結制振法の制振能力を最大限に引き出す
には、弾性体すなわちケーブルの弾性係数を式(3)で
計算される値に調整する必要がある。通常はケーブルの
仕様はJIS などの規格によって定まっており、ケーブル
本数を増加する等の方法で弾性係数TON/cmを変化させら
れるため、大まかな調整は可能であるが、微調整は難し
い。これに対しては、図7に示す実施形態IVのように
ケーブル5cの端部、またはケーブル5cの途中に、コ
イルスプリングや板バネ等の調整用バネ15を直列連結
することにより、弾性定数の調整をすることが可能であ
る。また、前記バネ15はコンパクトではなくても、そ
の仕様が、数mの大伸縮が可能、かつ剛性が数十TON/cm
であれば、主にこのバネにより伸縮を吸収でき、ケーブ
ル5cは単なる変位をバネ15に伝達する伝達手段とし
て使っても良い。
In order to maximize the damping capability of the coupled damping method, it is necessary to adjust the elastic coefficient of the elastic body, that is, the cable to the value calculated by the equation (3). Normally, the specifications of cables are determined by JIS and other standards, and the elastic coefficient TON / cm can be changed by increasing the number of cables, so rough adjustment is possible, but fine adjustment is difficult. On the other hand, by connecting an adjusting spring 15 such as a coil spring or a leaf spring in series at the end of the cable 5c or in the middle of the cable 5c as in the embodiment IV shown in FIG. It is possible to make adjustments. Further, even if the spring 15 is not compact, the specification is that it can be expanded and contracted by several meters and the rigidity is several tens TON / cm.
If so, expansion and contraction can be mainly absorbed by this spring, and the cable 5c may be used as a transmission means for transmitting a simple displacement to the spring 15.

【0042】また、構造物によっては、振動モードが1
次ではなく、高次になっている場合がある。高次振動モ
ードを防止するには、その振動において最も振幅が大き
い、すなわち振動の腹の位置に合わせて本発明である制
振装置5を複数組設置すると、大きな制振効果が生じ
る。図8(a)に振動モードの代表例として、左図に1
次モードを、右図に2次のモードを、また図8(b)に
制振装置の設置位置を対応して示す。1次モードは構造
物の頂部に振動の腹が一つだけ存在し、2次モードは腹
が二つで、構造物の頂部と地盤9から構造物の高さの約
三分の一の位置に存在している。基本的には、腹の部分
に制振装置を設置すれば良く、一次モードに対しては、
図8(b)の左図に示すように構造物の頂部に制振装置
19を設置し、また2次モードに対しては構造物の頂部
に制振装置19を、および地盤9から構造物の高さの約
三分の一の位置に制振装置23を設置すると大きな制振
効果が得られる。これ以外の高次のモードについても、
同様に腹の位置に本発明である制振装置を複数設置すれ
ば良い。また、1次モードと3次モードが複合する等、
複数の振動モードが混在する場合は、振動状況を調査
し、その腹の位置に当該制振装置を設置すれば良い。
Further, depending on the structure, the vibration mode is 1
It may be higher than next. In order to prevent the higher-order vibration mode, when a plurality of vibration damping devices 5 according to the present invention are installed in accordance with the vibration having the largest amplitude, that is, the antinode of the vibration, a large vibration damping effect is produced. As a typical example of the vibration mode in FIG.
The next mode is shown in the right figure for the secondary mode, and in FIG. 8B, the installation position of the vibration damping device is shown. The first mode has only one antinode of vibration at the top of the structure, and the second mode has two antinodes, and the position is about one third of the height of the structure from the top of the structure and the ground 9. Exists in. Basically, a vibration damping device should be installed on the belly part, and for the primary mode,
As shown in the left diagram of FIG. 8B, the vibration damping device 19 is installed on the top of the structure, and for the secondary mode, the vibration damping device 19 is installed on the top of the structure, and from the ground 9 to the structure. If the vibration damping device 23 is installed at a position of about one third of the height of, the large vibration damping effect can be obtained. For other higher modes,
Similarly, a plurality of vibration damping devices according to the present invention may be installed at the antinode position. In addition, the first-order mode and the third-order mode are combined, etc.
When a plurality of vibration modes coexist, the vibration situation may be investigated and the vibration damping device may be installed at the antinode position.

【0043】以上、本発明である制振装置について、煙
突に適用した実施形態を説明してきたが、高層ビルにも
適用可能である。例えば、各々独立して立設した四角柱
状の中央架構と、その周囲を囲繞する外周架構の建物の
場合は、中央架構の四つの外側面と外周架構の四つの内
側面の間に、本発明である制振装置を各々介装すれば、
煙突の例と同様の効果が得られる。また、固有周期の異
なる独立して立脚した二つの建物で、その振動方向が一
方向の場合は、振動方向と平行に制振装置を少なくとも
1台以上介装すれば足りる。
The embodiment of the vibration damping device of the present invention applied to a chimney has been described above, but it is also applicable to a high-rise building. For example, in the case of a quadrangular column-shaped central frame which is independently erected and a peripheral frame structure surrounding the quadrangular frame, the present invention is provided between the four outer surfaces of the central frame and the four inner surfaces of the outer frame. If each vibration control device is installed,
The same effect as the chimney example is obtained. Further, in the case of two independently standing buildings having different natural periods and the vibration direction thereof is one direction, it suffices to install at least one vibration damping device in parallel with the vibration direction.

【0044】[0044]

【発明の効果】以上説明してきたように、本発明のう
ち、請求項1記載の発明では、隣接している固有周期の
異なる複数の構造物同士を、ダンパと弾性体とで連結し
た構造物の連結制振装置において、水平方向の長い伸縮
量が要求される弾性体としてケーブルを使用し、隣接す
る構造物間に生じる水平方向の相対変位を、一方の構造
物に固定した一端部と他方の構造物に設けた方向転換軸
とによりケーブルに伝えて、このケーブルの全長で吸収
するようにした。このため、ケーブルは方向転換軸によ
り、その引き回し方向を自由に転換できるから、十分な
設置スペースを有する方向に向けて転換して配置できる
ようになり、最適な弾性係数と十分な伸縮量とを有する
弾性体を、ダンパに並設させるのと等価に設けることが
でき、弾性体とダンパとを並設した構造物の連結制振装
置を実用化することが可能となる。この結果、高層、若
しくは塔状の構造物の強風や地震などによる横揺れを大
幅に軽減することができるようになる。また、該制振装
置はケーブルと方向転換軸という簡単な構成であり、各
々汎用製品で製作することが可能であり、安価に施工す
ることが可能である。
As described above, according to the first aspect of the present invention, a structure in which a plurality of adjacent structures having different natural periods are connected by a damper and an elastic body. In the linked vibration damping device of the above, a cable is used as an elastic body that requires a large amount of expansion and contraction in the horizontal direction, and the horizontal relative displacement that occurs between adjacent structures is fixed to one structure and the other end. It was transmitted to the cable by means of the direction change shaft provided in the structure, and absorbed by the entire length of this cable. Therefore, since the cable can freely change its routing direction by the direction changing shaft, it can be changed and arranged in the direction having a sufficient installation space, and the optimum elastic coefficient and the sufficient expansion / contraction amount can be obtained. The elastic body that is provided can be provided equivalently to the case where the elastic body and the damper are provided side by side, and it is possible to put into practical use a connected vibration damping device for a structure in which the elastic body and the damper are provided side by side. As a result, rolling of a high-rise or tower-shaped structure due to a strong wind or an earthquake can be significantly reduced. Further, the vibration damping device has a simple structure of a cable and a direction changing shaft, and each can be manufactured as a general-purpose product and can be constructed at low cost.

【0045】請求項2記載の発明では、請求項1におい
て、前記ケーブルの端部または途中の任意の箇所にケー
ブルのバネ定数調整用のバネを介装したので、前記バネ
を直結することによりケーブルの弾性係数を微調整する
ことが可能となる。したがい、連結制振装置の要である
弾性体の弾性係数とダンパの減衰係数を最適値に調整で
き、当該連結制振法の能力を最大限に引き出すことが可
能となる。この結果、高層、若しくは塔状の構造物の強
風や地震などによる横揺れを大幅に軽減することができ
る。
According to a second aspect of the present invention, in the first aspect, since a spring for adjusting the spring constant of the cable is provided at an end portion of the cable or at an arbitrary position in the middle, the cable is directly connected to the cable. It is possible to finely adjust the elastic coefficient of. Therefore, it is possible to adjust the elastic coefficient of the elastic body and the damping coefficient of the damper, which are essential points of the coupled vibration damping device, to optimum values, and it is possible to maximize the capability of the coupled vibration damping method. As a result, rolling of a high-rise or tower-shaped structure due to a strong wind or an earthquake can be significantly reduced.

【0046】請求項3記載の発明では、前記請求項1ま
たは2において前記ケーブルとダンパを複数組並設した
ので、構造物の高さ方向に振動の腹が複数箇所存在する
場合に、前記箇所の腹の振幅を低減でき、複雑な高次振
動モードにも対応することができる。
According to the third aspect of the invention, since a plurality of sets of the cable and the damper are arranged in parallel in the first or second aspect, when there are a plurality of antinodes of vibration in the height direction of the structure, the aforesaid points are provided. The amplitude of the antinode can be reduced, and it is possible to cope with complicated higher-order vibration modes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る制振装置の実施形態Iを示す、高
層煙突の中心位置での鉛直断面図である。
FIG. 1 is a vertical cross-sectional view showing an embodiment I of a vibration damping device according to the present invention at a center position of a high-rise stack.

【図2】図1における高層煙突のA−A線矢視の断面図
である。
2 is a cross-sectional view of the high-rise stack in FIG. 1 taken along the line AA.

【図3】図1に示す高層煙突の主に外塔が横揺れした状
態を示す鉛直断面図である。
FIG. 3 is a vertical cross-sectional view showing a state in which the outer tower of the high-rise stack shown in FIG. 1 mainly sways.

【図4】本発明に係る制振装置の実施形態IIを示す、
ケーブルの引き廻しの変形例の概念図である。
FIG. 4 shows Embodiment II of the vibration damping device according to the present invention,
It is a conceptual diagram of the modification of the cable routing.

【図5】ケーブルにプレストレスを設定しない場合に生
じるケーブルの弛み状況を示す鉛直断面図である。
FIG. 5 is a vertical cross-sectional view showing a slack state of the cable that occurs when the cable is not prestressed.

【図6】本発明に係る制振装置の実施形態IIIを示
す、ケーブル弛み吸収装置の概念図である。
FIG. 6 is a conceptual diagram of a cable slack absorber showing a vibration damping device according to a third embodiment of the present invention.

【図7】本発明に係る制振装置の実施形態IVを示す、
弾性係数調整方法を示す概念図である。
FIG. 7 shows Embodiment IV of the vibration damping device according to the present invention,
It is a conceptual diagram which shows the elastic coefficient adjustment method.

【図8】本発明に係る制振装置において、振動モードに
より制振装置の設置位置が変化することを示す概念図で
あって、(a)は振動モードの代表例を示す概念図であ
り、(b)は(a)の振動モードに対する制振装置の設
置位置を示す概念図である。
FIG. 8 is a conceptual diagram showing that the installation position of the vibration damping device changes depending on the vibration mode in the vibration damping device according to the present invention, and (a) is a conceptual diagram showing a typical example of the vibration mode; (B) is a conceptual diagram which shows the installation position of the damping device with respect to the vibration mode of (a).

【図9】従来の構造物体間にダンパを介装した制振装置
を、質点系でモデル化した概念図である。
FIG. 9 is a conceptual diagram in which a conventional damping device having a damper interposed between structural objects is modeled in a mass system.

【図10】図9に示すモデルの制振効果の限界を説明す
るための振動伝達関数のグラフである。
10 is a graph of a vibration transfer function for explaining the limit of the vibration damping effect of the model shown in FIG.

【図11】外塔と内塔の間にダンパと弾性体を介装した
高層煙突の鉛直断面図である。
FIG. 11 is a vertical sectional view of a high-rise stack in which a damper and an elastic body are interposed between an outer tower and an inner tower.

【図12】図11に示す高層煙突を質点系でモデル化し
た概念図である。
FIG. 12 is a conceptual diagram in which the high-rise stack shown in FIG. 11 is modeled by a mass system.

【図13】ダンパのみを介装した場合の制振効果の限界
を説明するグラフであって、(a)は振動伝達率の最大
値を示すグラフ、(b)は最適化した振動伝達関数を示
すグラフである。
13A and 13B are graphs for explaining the limit of the vibration damping effect when only the damper is interposed, where FIG. 13A is a graph showing the maximum value of the vibration transmissibility, and FIG. 13B is an optimized vibration transfer function. It is a graph shown.

【図14】バネとダンパを介装した場合の制振効果の向
上を説明するためのグラフであって、(a)は振動伝達
率の最大値を示すグラフ、(b)は最適化した振動伝達
関数を示すグラフである。
14A and 14B are graphs for explaining the improvement of the damping effect when a spring and a damper are interposed, in which FIG. 14A is a graph showing the maximum value of vibration transmissibility, and FIG. 14B is an optimized vibration. It is a graph which shows a transfer function.

【図15】バネの弾性係数とダンパの減衰係数を最適化
した制振装置に、人工地震を入力した時の構造物の応答
変位を示すグラフであって、(a)は外塔の変位応答、
(b)は内塔の変位応答を示すグラフである。
FIG. 15 is a graph showing a response displacement of a structure when an artificial earthquake is input to a vibration control device in which a spring elastic coefficient and a damper damping coefficient are optimized, and (a) is a displacement response of an outer tower. ,
(B) is a graph showing the displacement response of the inner tower.

【図16】図15に使用した人工地震入力時の、外塔1
と内塔3の間の相対変位の変化を示すグラフである。
16] The outer tower 1 at the time of inputting the artificial earthquake used in FIG.
3 is a graph showing changes in relative displacement between the inner tower 3 and the inner tower 3.

【符号の説明】[Explanation of symbols]

1 外塔 3 内塔 5 制振装置 5a ダンパ 5b 方向転換軸 5c ケーブル 7 外塔と内塔からなる高層煙突 9 地盤 1 outer tower 3 inner tower 5 Vibration control device 5a damper 5b Direction change axis 5c cable 7 High-rise chimney consisting of an outer tower and an inner tower 9 ground

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E04H 9/02 301 E04H 9/02 351 E04H 12/00 F16F 15/02 F16F 15/06 ─────────────────────────────────────────────────── ─── Continued Front Page (58) Fields surveyed (Int.Cl. 7 , DB name) E04H 9/02 301 E04H 9/02 351 E04H 12/00 F16F 15/02 F16F 15/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 隣接している固有周期の異なる独立した
構造物間に、ダンパと弾性体とを並列させて連結した構
造物の連結制振装置において、前記弾性体にケーブルを
使用し、該ケーブルはその一端を一方の構造物に固定す
るとともに、該固定部から水平に案内され、その途中を
他方の構造物に設けられた方向転換軸に掛け回し、その
他端を前記一端の固定部位と方向転換軸との間に生じる
水平方向相対変位を吸収して伸縮可能な位置に固定した
ことを特徴とする構造物の連結制振装置。
1. A structure vibration damping device in which a damper and an elastic body are connected in parallel between adjacent independent structures having different natural periods, wherein a cable is used as the elastic body, The cable has one end fixed to one of the structures, is horizontally guided from the fixing part , and is hung around a direction-changing shaft provided in the other structure at the other end, and the other end is fixed to the fixing part of the one end. A connected vibration damping device for a structure, characterized in that the structure is fixed at a position capable of expanding and contracting by absorbing horizontal relative displacement generated between the direction changing shaft.
【請求項2】 前記ケーブルの端部または途中の任意の
箇所にケーブルのバネ定数調整用のバネを介装したこと
を特徴とする請求項1記載の構造物の連結制振装置。
2. The structure vibration damping device according to claim 1, wherein a spring for adjusting a spring constant of the cable is provided at an end portion of the cable or at an arbitrary position on the way.
【請求項3】 前記ケーブルとダンパとを複数組並設し
たことを特徴とする請求項1または2記載の構造物の連
結制振装置。
3. The structure vibration damping device according to claim 1, wherein a plurality of sets of the cable and the damper are arranged in parallel.
JP30910798A 1998-10-29 1998-10-29 Structure coupled vibration damping device Expired - Fee Related JP3518371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30910798A JP3518371B2 (en) 1998-10-29 1998-10-29 Structure coupled vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30910798A JP3518371B2 (en) 1998-10-29 1998-10-29 Structure coupled vibration damping device

Publications (2)

Publication Number Publication Date
JP2000136651A JP2000136651A (en) 2000-05-16
JP3518371B2 true JP3518371B2 (en) 2004-04-12

Family

ID=17988980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30910798A Expired - Fee Related JP3518371B2 (en) 1998-10-29 1998-10-29 Structure coupled vibration damping device

Country Status (1)

Country Link
JP (1) JP3518371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672517A (en) * 2016-03-10 2016-06-15 苏州科技学院 Swing self-reset and self-standing type high-rise structure
CN110357007A (en) * 2019-06-04 2019-10-22 江苏三里港高空建筑防腐有限公司 A kind of chimney ceramics vitrified brick construction employment goods shipping platform

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044208B4 (en) * 2004-09-06 2006-08-17 Gerb Schwingungsisolierungen Gmbh & Co Kg Arrangement for stabilizing supporting structures
KR102091530B1 (en) * 2015-10-27 2020-03-20 현대일렉트릭앤에너지시스템(주) Transformer
JP2017122372A (en) * 2016-01-08 2017-07-13 株式会社Ihi Rope connection vibration control structure
JP6625460B2 (en) * 2016-03-18 2019-12-25 特許機器株式会社 Transformer overturn prevention device
CN108487061B (en) * 2018-06-17 2023-11-03 辽宁工业大学 Track auxiliary sliding block type anti-seismic expansion joint
KR102386263B1 (en) * 2019-12-23 2022-04-13 김남영 Seismic isolation structure using rope foundation
CN113847385B (en) * 2021-09-10 2023-08-15 中国电子科技集团公司第十一研究所 Nacelle shock absorber and shock absorbing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581461Y2 (en) 1993-01-18 1998-09-21 株式会社大林組 Cable structure with vibration suppression mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581461Y2 (en) 1993-01-18 1998-09-21 株式会社大林組 Cable structure with vibration suppression mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672517A (en) * 2016-03-10 2016-06-15 苏州科技学院 Swing self-reset and self-standing type high-rise structure
CN105672517B (en) * 2016-03-10 2018-02-13 苏州科技学院 One kind waves Self-resetting self-supporting tall and slender structure
CN110357007A (en) * 2019-06-04 2019-10-22 江苏三里港高空建筑防腐有限公司 A kind of chimney ceramics vitrified brick construction employment goods shipping platform

Also Published As

Publication number Publication date
JP2000136651A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
JP5570605B2 (en) Method and structure for dampening motion in a building
JP3518371B2 (en) Structure coupled vibration damping device
KR101470705B1 (en) Tuned Mass Damper for Structures
CA2524547A1 (en) Fork configuration dampers and method of using same
JPH01105879A (en) Vibration controller for building
CN104631322A (en) Passive spring-damping negative stiffness damper for inhaul cable vibration mitigation
KR101166258B1 (en) Vibration control device of construction structure
JP3732314B2 (en) Vibration control device
JP3828695B2 (en) Seismic control wall of a three-story house
JP3463115B2 (en) 3D seismic isolation method and seismic isolation device
JP3589553B2 (en) Damping unit and damper
JP2011099541A (en) Quake-absorbing mechanism
JP3736279B2 (en) Structural vibration control device
JP7068067B2 (en) Pendulum type vibration damping device
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JPS5930006Y2 (en) Vibration damping devices in bridges
Teramura et al. Development of vibration control system using U-shaped water tank
JP2627862B2 (en) Structure damping device
JP5251936B2 (en) Damping structure of structure
JPH082327Y2 (en) Vibration control device for structures
JP3803940B2 (en) Vibration control device for high-rise buildings with different building cycles in two orthogonal directions
JPH0686776B2 (en) Seismic isolation device
JP2903075B2 (en) Multi-degree-of-freedom dynamic vibration absorber
JP2003097642A (en) Vertical quake-absorbing equipment
JPH11247913A (en) Vibration damping device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees