JP3518067B2 - Semiconductor dynamic quantity sensor - Google Patents

Semiconductor dynamic quantity sensor

Info

Publication number
JP3518067B2
JP3518067B2 JP16903495A JP16903495A JP3518067B2 JP 3518067 B2 JP3518067 B2 JP 3518067B2 JP 16903495 A JP16903495 A JP 16903495A JP 16903495 A JP16903495 A JP 16903495A JP 3518067 B2 JP3518067 B2 JP 3518067B2
Authority
JP
Japan
Prior art keywords
strip
semiconductor substrate
semiconductor
wide
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16903495A
Other languages
Japanese (ja)
Other versions
JPH0923015A (en
Inventor
信之 加藤
竹内  幸裕
和弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP16903495A priority Critical patent/JP3518067B2/en
Publication of JPH0923015A publication Critical patent/JPH0923015A/en
Application granted granted Critical
Publication of JP3518067B2 publication Critical patent/JP3518067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板上に梁を
有し、加速度,振動,ヨーレート等を検出する半導体力
学量センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor mechanical quantity sensor having a beam on a semiconductor substrate and detecting acceleration, vibration, yaw rate and the like.

【0002】[0002]

【従来の技術】半導体ヨーレートセンサとして、従来例
(例えば、平成6年、マイクロマシン技術 研究開発成
果発表会予稿集、p55〜58)を図5に示す。又、図
6は図5におけるC−C断面図を示している。基板30
の上面には所定の間隔を隔てて梁構造をなす可動部31
が配置されるとともに、この可動部31の一部をなす可
動電極32に対し、固定電極33が対向配置されてい
る。より詳細には、アンカー部34から屈曲形成された
梁部35が延び、この梁部35に重り部36が支持さ
れ、重り部36から可動電極32が突出している。一
方、基板30の上面には可動電極32に対向するように
固定電極33が固定されている。又、重り部36の下方
における基板30の上面には下部電極37が対向するよ
うに配置されている。そして、固定電極33と可動電極
32間に所定の周波数で電圧を印加することにより、可
動部31を図中に示すX方向に振動させて、そこにYで
示した軸を中心とする回転角速度が作用すると、図6中
に示すZ方向にコリオリ力が生じる。それに伴って可動
部31と下部電極37間の空隙部38が変化する。その
変化を静電容量変化で検出することにより、角速度が検
出される。
2. Description of the Related Art As a semiconductor yaw rate sensor, a conventional example (for example, 1994, Micromachine Technology Research and Development Result Presentation Proceedings, p55-58) is shown in FIG. Further, FIG. 6 shows a sectional view taken along the line CC of FIG. Board 30
On the upper surface of the movable part 31 having a beam structure at a predetermined interval.
And the fixed electrode 33 is opposed to the movable electrode 32 forming a part of the movable portion 31. More specifically, a bent beam portion 35 extends from the anchor portion 34, a weight portion 36 is supported by the beam portion 35, and the movable electrode 32 projects from the weight portion 36. On the other hand, a fixed electrode 33 is fixed on the upper surface of the substrate 30 so as to face the movable electrode 32. A lower electrode 37 is arranged so as to face the upper surface of the substrate 30 below the weight portion 36. Then, by applying a voltage at a predetermined frequency between the fixed electrode 33 and the movable electrode 32, the movable portion 31 is vibrated in the X direction shown in the drawing, and the rotational angular velocity about the axis indicated by Y is there. Is applied, a Coriolis force is generated in the Z direction shown in FIG. Along with that, the gap 38 between the movable portion 31 and the lower electrode 37 changes. The angular velocity is detected by detecting the change by the change in capacitance.

【0003】[0003]

【発明が解決しようとする課題】しかし、このような構
成の半導体ヨーレートセンサにおいては、梁部35は屈
曲形成されており、そのために検出方向以外の変位によ
る他軸感度を生じてしまうことが問題となっている。そ
もそも、梁部35が直線的に延びている場合には他軸方
向の変位は生じていなかったが、梁部35が反る等の問
題があった。しかし、その原因である応力を解放するた
めに梁部35を屈曲形成したことによって、新たに他軸
方向の変位が生じてしまうことが問題となっている。
However, in the semiconductor yaw rate sensor having such a configuration, the beam portion 35 is formed in a bent shape, which causes a problem that another axis sensitivity is caused by a displacement other than the detection direction. Has become. In the first place, when the beam portion 35 extends linearly, the displacement in the other axis direction did not occur, but there was a problem such as the beam portion 35 warping. However, since the beam portion 35 is bent to release the stress that is the cause, there is a problem that a new displacement in the other axis direction occurs.

【0004】そこで、この発明の目的は、力学量検出方
向以外の方向に変位しにくくすることができる半導体力
学量センサを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor mechanical quantity sensor which is less likely to be displaced in a direction other than the mechanical quantity detection direction.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、半導体基板と、前記半導体基板の上方に所定の間隔
を隔てて配置され、コ字状に屈曲形成された梁部を介し
て所定の変位方向へ移動可能に保持された可動部を構成
する重り部とを備え半導体力学量センサであって、前
記梁部は、前記半導体基板と平行に配置され、前記変位
方向と直交する直交方向に延設された第1帯状部と、該
第1帯状部と平行配置されるとともに前記重り部に連結
された第2帯状部と、前記第1帯状部と前記第2帯状部
とを連結する幅広部とを有し、前記幅広部における前記
直交方向の幅は前記第1帯状部及び前記第2帯状部にお
ける前記変位方向の幅よりも広く設定されており、か
つ、前記幅広部における前記変位方向の長さは、前記第
1帯状部及び前記第2帯状部における前記直交方向の長
さよりも短く設定されている半導体力学量センサをその
要旨とする。
According to a first aspect of the present invention, there is provided a semiconductor substrate and a beam portion which is arranged above the semiconductor substrate with a predetermined space therebetween and which is bent and formed in a U-shape.
A movable part that is held so that it can move in a predetermined displacement direction.
To a semiconductor dynamic quantity sensor and a weight section, wherein the beam portion is disposed to be parallel with the semiconductor substrate, said displacement
A first strip-shaped portion extending in a direction orthogonal to the direction;
Arranged in parallel with the first strip portion and connected to the weight portion
Second strip-shaped portion, the first strip-shaped portion and the second strip-shaped portion
And a wide portion that connects the
The width in the orthogonal direction is the same as that of the first strip-shaped portion and the second strip-shaped portion.
It is set wider than the width in the displacement direction.
The length of the wide portion in the displacement direction is
Length in the orthogonal direction in the first strip and the second strip
The semiconductor dynamic quantity sensor set to be shorter than the above is the gist.

【0006】請求項2に記載の発明は、半導体基板と、
前記半導体基板の上方に所定の間隔を隔てて配置され、
コ字状に屈曲形成された梁部を介して移動可能に保持さ
れた可動部を構成する重り部とを備え、前記重り部が検
出方向へ変位することにより力学量を検出するようにし
た半導体力学量センサであって、前記梁部は、前記半導
体基板と平行に配置され、一端がアンカー部により前記
半導体基板に連結されるとともに前記検出方向と直交す
る直交方向に延設された第1帯状部と、該第1帯状部と
平行配置されるとともに一端が前記重り部に連結された
第2帯状部と、前記第1帯状部の他端と前記第2帯状部
の他端とを連結する幅広部とを有し、前記幅広部におけ
る前記直交方向の幅は前記第1帯状部及び前記第2帯状
部における前記検出方向の幅よりも広く設定されてお
り、かつ、前記幅広部における前記検出方向の長さは、
前記第1帯状部及び前記第2帯状部における前記直交方
向の長さよりも短く設定されている半導体力学量センサ
をその要旨とする。
The invention according to claim 2 is a semiconductor substrate,
Disposed above the semiconductor substrate at a predetermined interval,
It is movably held via a beam that is bent in a U shape.
And a weight part that constitutes a movable part that is
The mechanical quantity is detected by displacing in the outgoing direction.
A semiconductor dynamic quantity sensor, wherein the beam portion
It is arranged parallel to the body substrate, and one end is
It is connected to the semiconductor substrate and is orthogonal to the detection direction.
A first strip-shaped portion extending in the orthogonal direction, and the first strip-shaped portion
It was arranged in parallel and one end was connected to the weight part.
A second strip portion, the other end of the first strip portion, and the second strip portion
A wide portion that connects the other end of the
The width in the orthogonal direction is the first strip-shaped portion and the second strip-shaped portion.
It is set wider than the width of the
And the length of the wide portion in the detection direction is
The orthogonal direction in the first strip portion and the second strip portion
The gist is a semiconductor dynamical quantity sensor that is set shorter than the length in the horizontal direction .

【0007】請求項3に記載の発明は、請求項1または
請求項2に記載の発明において、前記幅広部は、エッチ
ング液侵入用の開口部を有する半導体力学量センサをそ
の要旨とする。
According to a third aspect of the invention, in the invention of the first or second aspect, the wide portion is etched.
The gist of the invention is a semiconductor dynamical quantity sensor having an opening for the penetration of the liquid for pouring.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【作用】請求項1に記載の発明によれば、力学量が作用
すると、梁部が変位し、この変位に基づいて力学量が検
出される。つまり、梁部の変位を電流や静電容量などの
変化として取り出す。
According to the invention described in claim 1, when the mechanical quantity acts, the beam portion is displaced, and the mechanical quantity is detected based on this displacement. That is, the displacement of the beam portion is extracted as a change in current, electrostatic capacitance, or the like.

【0012】ここで、梁部において変位方向に延びる幅
広部が、力学量検出方向以外の方向(他軸方向)でのバ
ネ定数を大きくするための領域となっているので、この
領域により力学量検出方向以外の方向の変位が抑えられ
る。
Here, the width of the beam portion extending in the displacement direction
Since the wide portion serves as an area for increasing the spring constant in a direction other than the mechanical quantity detection direction (another axis direction), displacement in the direction other than the mechanical quantity detection direction is suppressed by this area.

【0013】請求項に記載の発明によれば、力学量が
作用すると、梁部が変位し、この変位に基づいて力学量
が検出される。つまり、梁部の変位を電流や静電容量な
どの変化として取り出す。ここで、梁部において検出方
向に延びる幅広部が、力学量検出方向以外の方向(他軸
方向)でのバネ定数を大きくするための領域となってい
るので、この領域により力学量検出方向以外の方向の変
位が抑えられる。
According to the invention of claim 2 , the mechanical quantity is
When actuated, the beam part is displaced, and the mechanical quantity is based on this displacement.
Is detected. In other words, the displacement of the beam is not affected by current or capacitance.
Which change to take out. Here, how to detect the beam
The wide part that extends in the direction of the
Direction) is a region for increasing the spring constant.
Therefore, this region causes changes in directions other than the mechanical quantity detection direction.
The rank is suppressed.

【0014】請求項に記載の発明によれば、請求項1
または請求項2に記載の発明の作用に加え、幅が広くな
っても、梁部形成のためにその下に配置した犠牲層をエ
ッチングする、いわゆる犠牲エッチングの際に開口部を
通してエッチング液が侵入して犠牲層エッチングが容易
に行われる。
According to the invention described in claim 3, claim 1
Or in addition to the effects of the invention described in claim 2, it wider
However, the sacrificial layer placed underneath to form the beam is
The opening at the time of so-called sacrificial etching
Easy to etch the sacrificial layer through the etching solution
To be done.

【0015】[0015]

【0016】[0016]

【実施例】【Example】

(第1実施例)以下、この発明を半導体加速度センサに
具体化した第1実施例を図面に従って説明する。
(First Embodiment) A first embodiment in which the present invention is embodied in a semiconductor acceleration sensor will be described below with reference to the drawings.

【0017】図1は、本実施例の加速度センサの平面図
を示し、加速度の検出にトランジスタを利用したもので
ある。図2は図1におけるA−A断面図、図3は図1に
おけるB−B断面図である。
FIG. 1 is a plan view of the acceleration sensor of this embodiment, in which a transistor is used to detect acceleration. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG.

【0018】図2に示すように、半導体基板としてのP
型シリコン基板1の主表面上には絶縁膜2が全面に形成
され、その上には四角形状の絶縁膜3が4箇所にわたり
形成されている。絶縁膜2及び絶縁膜3はSiO2 ,S
3 4 等よりなる。絶縁膜3には両持ち梁構造の可動
部4が架設されている。可動部4は、厚さが2μm程度
の膜厚が均一なポリシリコン薄膜よりなり、絶縁膜2の
上方に所定の間隔を隔てて配置されている。この可動部
4は、その下の犠牲層をエッチングすることにより形成
したものであり、犠牲層の膜厚分だけエアギャップ(空
隙)15が形成される。
As shown in FIG. 2, P as a semiconductor substrate
An insulating film 2 is formed on the entire main surface of the type silicon substrate 1, and a rectangular insulating film 3 is formed at four positions on the insulating film 2. The insulating films 2 and 3 are made of SiO 2 , S
i 3 N 4 etc. A movable part 4 having a double-supported beam structure is provided on the insulating film 3. The movable portion 4 is made of a polysilicon thin film having a uniform thickness of about 2 μm, and is arranged above the insulating film 2 with a predetermined space. The movable portion 4 is formed by etching the sacrificial layer therebelow, and an air gap (gap) 15 is formed by the thickness of the sacrificial layer.

【0019】可動部4は、4つのアンカー部5と4本の
梁部6と重り部7と可動ゲート電極部8,9とからな
る。絶縁膜3の上に、この絶縁膜3と同一寸法のアンカ
ー部5が配置され、アンカー部5から帯状の梁部6が延
び、この梁部6により四角形状の重り部7が支持されて
いる。重り部7には相反する方向に可動ゲート電極部
8,9が突設されている。
The movable portion 4 is composed of four anchor portions 5, four beam portions 6, a weight portion 7 and movable gate electrode portions 8 and 9. An anchor portion 5 having the same size as the insulating film 3 is arranged on the insulating film 3, and a belt-shaped beam portion 6 extends from the anchor portion 5, and the beam portion 6 supports a square weight portion 7. . The weight portion 7 is provided with movable gate electrode portions 8 and 9 protruding in opposite directions.

【0020】梁部6はコ字状をなし、第1帯状部61と
第2帯状部62と第3帯状部63とからなる。第1帯状
部61は、図1中、X方向に延び、一端がアンカー部5
に固定されている。第2帯状部62は、同じくX方向に
延び、一端が重り部7に連結されている。第3帯状部6
3は、図1中、Y方向に延び、第1帯状部61の端部お
よび第2帯状部62の端部と連結されている。第1帯状
部61の幅W1と第2帯状部62の幅はW2は等しく
(W2=W1)、第3帯状部63の幅W3は、第1およ
び第2帯状部の幅W1,W2より大きくなっている。つ
まり、梁部6の一部領域である第3帯状部63が幅広と
なっている。
The beam portion 6 is U-shaped and is composed of a first strip portion 61, a second strip portion 62 and a third strip portion 63. The first strip-shaped portion 61 extends in the X direction in FIG.
It is fixed to. The second strip portion 62 also extends in the X direction and has one end connected to the weight portion 7. Third strip 6
3 extends in the Y direction in FIG. 1 and is connected to the end of the first strip 61 and the end of the second strip 62. The width W1 of the first strip portion 61 and the width of the second strip portion 62 are equal to W2 (W2 = W1), and the width W3 of the third strip portion 63 is larger than the widths W1 and W2 of the first and second strip portions. Has become. That is, the third strip portion 63, which is a partial region of the beam portion 6, is wide.

【0021】又、梁部6における第1帯状部61の長さ
L1と第2帯状部62の長さL2は等しく(L2=L
1)、第3帯状部63の長さL3は、第1および第2帯
状部の長さL1,L2より短くなっている。
The length L1 of the first strip portion 61 and the length L2 of the second strip portion 62 in the beam portion 6 are equal (L2 = L).
1), the length L3 of the third strip portion 63 is shorter than the lengths L1 and L2 of the first and second strip portions.

【0022】このように本実施例においては、コ字状を
なす梁部6においてY方向に延びる第3帯状部63が他
の領域よりも幅が広く断面積が他の領域より大きく、か
つ、長さが短くなっており、力学量検出方向以外の方向
でのバネ定数を大きくした構成となっている。即ち、加
速度検出方向であるY方向に直交するX方向(非検出方
向)に可動部4が変位しにくくなっている。換言するな
らば、第1および第2帯状部61,62の幅を狭くする
ことにより、加速度検出方向であるY方向に変位しやす
くなっているとともに、W3>W1,W3>W2,L3
<L1,L3<L2とすることにより、加速度検出方向
でないX方向に変位しにくくなっている。
As described above, in this embodiment, the third strip portion 63 extending in the Y direction in the U-shaped beam portion 6 has a width wider than other regions and a larger cross-sectional area than other regions, and The length is short, and the spring constant is increased in directions other than the mechanical quantity detection direction. That is, the movable portion 4 is less likely to be displaced in the X direction (non-detection direction) orthogonal to the Y direction which is the acceleration detection direction. In other words, by narrowing the widths of the first and second strip-shaped portions 61 and 62, it becomes easier to displace in the Y direction which is the acceleration detection direction, and W3> W1, W3> W2, L3.
By setting <L1 and L3 <L2, it becomes difficult to displace in the X direction, which is not the acceleration detection direction.

【0023】尚、梁部6における第1および第2帯状部
61,62の幅W1,W2及び第3帯状部63の幅W3
は、検出すべき加速度の大小、可動部4に必要とされる
強度の大小に応じて適宜の値にしてもよい。又、可動部
4の材料もポリシリコンの他にタングステン等の高融点
金属を用いてもよい。
The widths W1 and W2 of the first and second strip-shaped portions 61 and 62 and the width W3 of the third strip-shaped portion 63 in the beam portion 6.
May be set to an appropriate value depending on the magnitude of the acceleration to be detected and the magnitude of the strength required for the movable portion 4. Further, as the material of the movable portion 4, a refractory metal such as tungsten may be used instead of polysilicon.

【0024】図3に示すように、可動ゲート電極部8
(9)の下方両側には不純物層からなる固定電極10,
1l(12,13)(ソース・ドレイン部)が形成され
ている。この固定電極10,1l(12,13)はP型
シリコン基板1にイオン注入等によりN型不純物を導入
することにより形成したものである。
As shown in FIG. 3, the movable gate electrode portion 8
Fixed electrodes 10 made of an impurity layer on both lower sides of (9),
1 l (12, 13) (source / drain portions) are formed. The fixed electrodes 10, 11 (12, 13) are formed by introducing N-type impurities into the P-type silicon substrate 1 by ion implantation or the like.

【0025】このように本実施例では、ソース・ドレイ
ンである固定電極10,1l(12,13)と可動部4
及び絶縁膜2、空隙部15とで電界効果トランジスタ
(MISFET)を構成している。従って、可動部4及
び固定電極10,1l(12,13)間に電圧が印加さ
れるとP型シリコン基板1における固定電極10,1l
(12,13)の間にはチャネル領域16が形成される
ため、固定電極10,1l(12,13)間にはドレイ
ン電流が流れることになる。
As described above, in this embodiment, the fixed electrodes 10, 11 (12, 13) serving as the source / drain and the movable portion 4 are used.
A field effect transistor (MISFET) is composed of the insulating film 2 and the void portion 15. Therefore, when a voltage is applied between the movable portion 4 and the fixed electrodes 10, 11 (12, 13), the fixed electrodes 10, 1l on the P-type silicon substrate 1 will be described.
Since the channel region 16 is formed between (12, 13), the drain current flows between the fixed electrodes 10, 11 (12, 13).

【0026】次に、上記のように構成された半導体加速
度センサの作動について説明する。可動部4とP型シリ
コン基板1との間、及び固定電極10,1l(12,1
3)間に電圧をかけると、チャネル領域16が形成さ
れ、固定電極10,1l(12,13)間に電流が流れ
る。ここで本加速度センサが加速度を受けて、図中のY
方向(基板の表面に平行な方向)に可動部4が変位した
場合には、両固定電極10,1l(12,13)間のチ
ャネル領域16と可動ゲート電極部8(9)の重なり面
積が変化することにより、固定電極10,1l間に流れ
る電流は減少し、逆に固定電極12,13間に流れる電
流は増加する。
Next, the operation of the semiconductor acceleration sensor configured as described above will be described. Between the movable part 4 and the P-type silicon substrate 1, and between the fixed electrodes 10 and 11 (12,1).
When a voltage is applied between 3), the channel region 16 is formed and a current flows between the fixed electrodes 10 and 11 (12, 13). Here, the acceleration sensor receives the acceleration, and Y in the figure
When the movable portion 4 is displaced in the direction (parallel to the surface of the substrate), the overlapping area of the channel region 16 between the fixed electrodes 10 and 11 (12, 13) and the movable gate electrode portion 8 (9) becomes large. Due to the change, the current flowing between the fixed electrodes 10 and 11 decreases, and conversely the current flowing between the fixed electrodes 12 and 13 increases.

【0027】また、本加速度センサが加速度を受けて図
中に示すZ方向(基板の表面に垂直な方向)に可動部4
が変位した場合には電界強度の変化によってチャネル領
域16のキャリア濃度が増大し、固定電極10,1l
(12,13)間に流れる電流が増大する。
Further, the present acceleration sensor receives the acceleration and moves in the Z direction (direction perpendicular to the surface of the substrate) shown in the drawing.
Is displaced, the carrier concentration in the channel region 16 increases due to the change in the electric field strength, and the fixed electrodes 10 and 11 are
The current flowing between (12, 13) increases.

【0028】このように本加速度センサは、加速度によ
る可動ゲート電極部8,9と固定電極10,1l,1
2,13との相対的位置の変化により固定電極10,1
l間と固定電極12,13間に流れる電流が変化し、こ
の電流変化の大きさ及び位相により二次元の加速度が検
出される。
As described above, the present acceleration sensor has movable gate electrode portions 8 and 9 and fixed electrodes 10, 11 and 1 due to acceleration.
The fixed electrodes 10, 1 are
The current flowing between 1 and the fixed electrodes 12 and 13 changes, and the two-dimensional acceleration is detected by the magnitude and phase of this current change.

【0029】ここで、図1に示すように、本実施例の加
速度センサは重り部7および可動ゲート電極8,9を支
持する梁部6において、第3帯状部63が、他の領域よ
りも幅が広く(W3>W1,W3>W2)、かつ、長さ
が短く(L3<L1,L3<L2)、加速度検出方向で
あるY方向に直交するX方向(非検出方向)に可動部4
が変位しにくい構造となっているので、可動部4にP型
シリコン基板1の表面に平行な方向に加速度が作用した
場合においても、他軸方向のバネ定数が検出方向のバネ
定数よりも大きいために、他軸方向(図中X方向)の感
度を小さくし、検出方向(図中Y方向)の加速度だけを
検出することができる。よって、極めて正確な加速度検
出ができる。
Here, as shown in FIG. 1, in the acceleration sensor of this embodiment, in the beam portion 6 supporting the weight portion 7 and the movable gate electrodes 8 and 9, the third strip-shaped portion 63 is larger than the other regions. It has a wide width (W3> W1, W3> W2) and a short length (L3 <L1, L3 <L2), and is movable in the X direction (non-detection direction) orthogonal to the Y direction which is the acceleration detection direction.
Has a structure that is difficult to displace, even when acceleration acts on the movable portion 4 in a direction parallel to the surface of the P-type silicon substrate 1, the spring constant in the other axis direction is larger than the spring constant in the detection direction. Therefore, the sensitivity in the other axis direction (X direction in the drawing) can be reduced and only the acceleration in the detection direction (Y direction in the drawing) can be detected. Therefore, extremely accurate acceleration can be detected.

【0030】このように本実施例においては、梁部6の
一部である第3帯状部33を他の領域より幅広にし、か
つ、長さを短くして、力学量検出方向以外の方向でのバ
ネ定数を大きくしたので、梁部6における加速度検出方
向以外の方向(他軸方向)の変位が抑えられ、力学量検
出感度が上がる。 (第2実施例)次に、第2実施例を第1実施例との相違
点を中心に説明する。
As described above, in this embodiment, the third strip portion 33, which is a part of the beam portion 6, is made wider than the other regions, and the length thereof is shortened, so that the third strip portion 33 is provided in a direction other than the mechanical quantity detection direction. Since the spring constant is increased, the displacement of the beam portion 6 in a direction other than the acceleration detection direction (another axis direction) is suppressed, and the mechanical quantity detection sensitivity is increased. (Second Embodiment) Next, the second embodiment will be described focusing on the differences from the first embodiment.

【0031】図4は本実施例に係る半導体加速度センサ
を示す平面図である。図4において梁部6における幅広
な第3帯状部63には矩形の開口部14が多数並設さ
れ、格子状となっている。又、開口部14の周りにおけ
るX,Y方向の幅と、第1および第2帯状部61,62
の幅とは等しく、W4となっている。この開口部14に
より犠牲層エッチングの際にエッチング液が浸透しやす
くなっている。
FIG. 4 is a plan view showing a semiconductor acceleration sensor according to this embodiment. In FIG. 4, a large number of rectangular openings 14 are juxtaposed in the wide third strip portion 63 of the beam portion 6 to form a lattice shape. In addition, the width in the X and Y directions around the opening 14 and the first and second strip-shaped portions 61 and 62.
Is equal to the width of W4 and is W4. The opening 14 facilitates the penetration of the etching solution during the sacrifice layer etching.

【0032】つまり、第1実施例のセンサにおいては、
梁部6における第3帯状部63は幅広となり、梁部6に
おける他の領域(第1および第2帯状部61,62)よ
りもエッチング液が浸透しにくい構造となっているが、
矩形の開口部14を多数設けることにより、第3帯状部
63におけるエッチング浸透方向の距離を第1および第
2帯状部61,62の幅と等しくすることができる。よ
って、梁部6における第3帯状部63のエッチング時間
を梁部6における他の領域(第1および第2帯状部6
1,62)のエッチング時間と等しくできる。従って、
必要最小限の時間でエッチングを完了できるので生産性
を向上させることができる。
That is, in the sensor of the first embodiment,
The third strip portion 63 of the beam portion 6 is wide, and has a structure in which the etching liquid is less likely to penetrate than the other regions (first and second strip portions 61, 62) of the beam portion 6,
By providing a large number of rectangular openings 14, the distance in the etching penetration direction in the third strip portion 63 can be made equal to the width of the first and second strip portions 61, 62. Therefore, the etching time of the third strip portion 63 in the beam portion 6 is set to the other region in the beam portion 6 (first and second strip portions 6).
1, 62) and the etching time can be made equal. Therefore,
Since the etching can be completed in the necessary minimum time, the productivity can be improved.

【0033】この発明の他の態様を以下に説明する。上
記実施例では梁部6におけるY方向に延びる第3帯状部
63の幅を広くし、かつ、長さも短くしたが、コ字状を
なす梁部6においてY方向に延びる第3帯状部63が、
他の領域よりも幅を広くし(W3>W1,W3>W
2)、かつ、長さは等しく又は長く(L3≧L1,L3
≧L2)してもよい。あるいは、コ字状をなす梁部6に
おいてY方向に延びる第3帯状部63が、他の領域より
も長さが短く(L3<L1,L3<L2)、かつ、幅が
同一(W3=W1=W2)としてもよい。
Another aspect of the present invention will be described below. In the above-described embodiment, the width of the third strip-shaped portion 63 extending in the Y direction in the beam portion 6 is wide and the length is also short, but the third strip-shaped portion 63 extending in the Y direction is formed in the U-shaped beam portion 6. ,
Wider than other areas (W3> W1, W3> W
2) and the lengths are equal or long (L3 ≧ L1, L3
≧ L2). Alternatively, the third strip portion 63 extending in the Y direction in the U-shaped beam portion 6 has a shorter length (L3 <L1, L3 <L2) than the other regions and has the same width (W3 = W1). = W2).

【0034】又、ポリシリコン薄膜よりなる梁部6にお
ける第3帯状部63の厚さを他の領域の厚さよりも厚く
することにより断面積を他の領域より大きくして他軸方
向のバネ定数を大きくしてもよい。
Further, by making the thickness of the third strip portion 63 in the beam portion 6 made of a polysilicon thin film thicker than the thickness of other regions, the cross-sectional area is made larger than that of other regions, and the spring constant in the other axial direction is increased. May be increased.

【0035】さらに、ポリシリコン薄膜よりなる梁部6
における第3帯状部63を改質して第3帯状部63を他
の領域よりもヤング率を大きくした材質にすることによ
り、他軸方向のバネ定数を大きくしてもよい。ここで、
改質として、イオン注入などの表面改質が挙げられる。
Further, the beam portion 6 made of a polysilicon thin film
The spring constant in the other axial direction may be increased by modifying the third strip-shaped portion 63 in (3) and making the third strip-shaped portion 63 a material having a Young's modulus larger than that of other regions. here,
Examples of the modification include surface modification such as ion implantation.

【0036】さらには、上記実施例で説明した半導体加
速度センサにおいては、基板としてP型半導体を用いて
説明したが、基板としてN型半導体で構成してもよく、
この場合には拡散電極(固定電極10〜13)はP型で
構成することになる。
Further, in the semiconductor acceleration sensor described in the above embodiment, the P-type semiconductor is used as the substrate, but the N-type semiconductor may be used as the substrate.
In this case, the diffusion electrodes (fixed electrodes 10 to 13) are of P type.

【0037】又、上記実施例では両持ち梁構造としたが
片持ち梁構造であってもよい。さらに、上記実施例では
梁部6に重り部7を設けた構造としたが、重り部7が無
い構造としてもよい。
Further, in the above embodiment, the cantilever structure is used, but the cantilever structure may be used. Further, in the above embodiment, the beam portion 6 is provided with the weight portion 7, but the weight portion 7 may be omitted.

【0038】さらには、梁部6の屈曲形状として、コ字
状以外にも、「U」の字状等の他の形状であってもよ
い。又、上記実施例においては半導体加速度センサにつ
いて述べたが、図5,6に示したヨーレートセンサに具
体化してもよい。この場合は静電容量の変化によりヨー
レートを検出することとなる。又、この他にも振動等を
検出するセンサに適用できる。
Further, the bent shape of the beam portion 6 may be other than the U-shape, such as a "U" shape. Although the semiconductor acceleration sensor has been described in the above embodiment, the yaw rate sensor shown in FIGS. 5 and 6 may be embodied. In this case, the yaw rate is detected by the change in capacitance. In addition to this, it can be applied to a sensor for detecting vibration and the like.

【0039】[0039]

【発明の効果】以上詳述したように請求項1または請求
項2に記載の発明によれば、力学量検出方向以外の方向
に変位しにくくすることができる優れた効果を発揮す
る。
As described in detail above, claim 1 or claim
According to the invention described in Item 2 , the excellent effect of making it difficult to displace in a direction other than the mechanical quantity detection direction is exhibited.

【0040】請求項に記載の発明によれば、請求項1
または請求項2に記載の発明の効果に加え、犠牲エッチ
ングを容易に行うことができる
According to the invention described in claim 3, claim 1
Or in addition to the effect of the invention described in claim 2 , sacrificial etching
Can be performed easily .

【0041】[0041]

【0042】[0042]

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の半導体加速度センサを示す平面
図。
FIG. 1 is a plan view showing a semiconductor acceleration sensor according to a first embodiment.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B新面図。FIG. 3 is a new BB view of FIG.

【図4】第2実施例の半導体加速度センサを示す平面
図。
FIG. 4 is a plan view showing a semiconductor acceleration sensor according to a second embodiment.

【図5】従来の半導体加速度センサを示す平面図。FIG. 5 is a plan view showing a conventional semiconductor acceleration sensor.

【図6】図5のC−C断面図。6 is a cross-sectional view taken along line CC of FIG.

【符号の説明】[Explanation of symbols]

1…半導体基板としてのP型シリコン基板、6…梁部、
61…第1帯状部、62…第2帯状部、63…第3帯状
1 ... P-type silicon substrate as a semiconductor substrate, 6 ... Beam portion,
61 ... 1st strip | belt-shaped part, 62 ... 2nd strip | belt-shaped part, 63 ... 3rd strip | belt-shaped part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−43380(JP,A) 特開 平6−109755(JP,A) 特開 平5−172843(JP,A) 特開 平6−294814(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/84 G01L 9/04 G01P 15/125 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-7-43380 (JP, A) JP-A-6-109755 (JP, A) JP-A-5-172843 (JP, A) JP-A-6- 294814 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 29/84 G01L 9/04 G01P 15/125

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板と、 前記半導体基板の上方に所定の間隔を隔てて配置され、
コ字状に屈曲形成された梁部を介して所定の変位方向へ
移動可能に保持された可動部を構成する重り部とを備え
半導体力学量センサであって、 前記梁部は、前記半導体基板と平行に配置され、前記変
位方向と直交する直交方向に延設された第1帯状部と、
該第1帯状部と平行配置されるとともに前記重り部に連
結された第2帯状部と、前記第1帯状部と前記第2帯状
部とを連結する幅広部とを有し、 前記幅広部における前記直交方向の幅は前記第1帯状部
及び前記第2帯状部における前記変位方向の幅よりも広
く設定されており、かつ、前記幅広部における前記変位
方向の長さは、前記第1帯状部及び前記第2帯状部にお
ける前記直交方向の長さよりも短く設定されている こと
を特徴とする半導体力学量センサ。
1. A semiconductor substrate, and a semiconductor substrate disposed above the semiconductor substrate with a predetermined space therebetween.
In the predetermined displacement direction via the beam that is bent in a U shape
And a weight portion that constitutes a movable portion that is movably held
In the semiconductor dynamic quantity sensor, the beam portion is arranged in parallel with the semiconductor substrate,
A first strip-shaped portion extending in an orthogonal direction orthogonal to the position direction;
It is arranged in parallel with the first strip portion and is connected to the weight portion.
A second band-shaped portion which is tied, the first band-shaped portion and the second band-shaped portion
A wide portion that connects the first wide band portion and a width of the wide portion in the orthogonal direction.
And wider than the width of the second strip portion in the displacement direction.
And the displacement in the wide part
The length in the direction is the same as the first strip-shaped portion and the second strip-shaped portion.
The semiconductor dynamic quantity sensor is set to be shorter than the length in the orthogonal direction .
【請求項2】 半導体基板と、 前記半導体基板の上方に所定の間隔を隔てて配置され、
コ字状に屈曲形成された梁部を介して移動可能に保持さ
れた可動部を構成する重り部とを備え、前記重り部が検
出方向へ変位することにより力学量を検出するようにし
た半導体力学量センサであって、 前記梁部は、前記半導体基板と平行に配置され、一端が
アンカー部により前記半導体基板に連結されるとともに
前記検出方向と直交する直交方向に延設された第1帯状
部と、該第1帯状部と平行配置されるとともに一端が前
記重り部に連結された第2帯状部と、前記第1帯状部の
他端と前記第2帯状部の他端とを連結する幅広部とを有
し、 前記幅広部における前記直交方向の幅は前記第1帯状部
及び前記第2帯状部における前記検出方向の幅よりも広
く設定されており、かつ、前記幅広部における前記検出
方向の長さは、前記第1帯状部及び前記第2帯状部にお
ける前記直交方向の長さよりも短く設定されていること
を特徴とする 半導体力学量センサ。
2. A semiconductor substrate and a semiconductor substrate, which is disposed above the semiconductor substrate with a predetermined space therebetween.
It is movably held via a beam that is bent in a U shape.
And a weight part that constitutes a movable part that is
The mechanical quantity is detected by displacing in the outgoing direction.
In the semiconductor dynamic quantity sensor, the beam portion is arranged in parallel with the semiconductor substrate, and one end of the beam portion is arranged.
While being connected to the semiconductor substrate by the anchor portion,
A first strip extending in a direction orthogonal to the detection direction
Part and the first strip-shaped part are arranged in parallel and one end is in front
A second strip portion connected to the weight portion and the first strip portion.
A wide portion that connects the other end to the other end of the second strip portion
And the width of the perpendicular direction in the wide portion is the first belt portion
And wider than the width of the second strip portion in the detection direction.
Is set, and the detection in the wide area is performed.
The length in the direction is the same as the first strip-shaped portion and the second strip-shaped portion.
Set shorter than the length in the orthogonal direction.
A semiconductor dynamic quantity sensor characterized by .
【請求項3】 前記幅広部は、エッチング液侵入用の開
口部を有する請求項1または請求項2に記載の半導体力
学量センサ
3. The wide portion is an opening for entering an etching solution.
The semiconductor dynamical quantity sensor according to claim 1 or 2 which has a mouth .
JP16903495A 1995-07-04 1995-07-04 Semiconductor dynamic quantity sensor Expired - Lifetime JP3518067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16903495A JP3518067B2 (en) 1995-07-04 1995-07-04 Semiconductor dynamic quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16903495A JP3518067B2 (en) 1995-07-04 1995-07-04 Semiconductor dynamic quantity sensor

Publications (2)

Publication Number Publication Date
JPH0923015A JPH0923015A (en) 1997-01-21
JP3518067B2 true JP3518067B2 (en) 2004-04-12

Family

ID=15879100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16903495A Expired - Lifetime JP3518067B2 (en) 1995-07-04 1995-07-04 Semiconductor dynamic quantity sensor

Country Status (1)

Country Link
JP (1) JP3518067B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231410C (en) * 2001-02-09 2005-12-14 三菱电机株式会社 Weight detector for elevator
US6583374B2 (en) * 2001-02-20 2003-06-24 Rockwell Automation Technologies, Inc. Microelectromechanical system (MEMS) digital electrical isolator
JP2004338044A (en) * 2003-05-15 2004-12-02 Nikon Corp Micro-actuator, optical device, variable light attenuator, and optical switch
US7273762B2 (en) * 2004-11-09 2007-09-25 Freescale Semiconductor, Inc. Microelectromechanical (MEM) device including a spring release bridge and method of making the same
EP2327960B1 (en) 2008-08-18 2019-10-09 Hitachi, Ltd. Micro electro mechanical system
JP5023019B2 (en) * 2008-08-26 2012-09-12 日本信号株式会社 Planar actuator
JP2010080466A (en) * 2008-09-24 2010-04-08 Fuji Electric Holdings Co Ltd Acceleration and angular acceleration sensor
GB201117164D0 (en) 2011-10-05 2011-11-16 Atlantic Inertial Systems Ltd Accelerometer
US9227833B2 (en) * 2012-06-06 2016-01-05 Rosemount Aerospace Inc. Vibration isolated MEMS structures and methods of manufacture

Also Published As

Publication number Publication date
JPH0923015A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP3385688B2 (en) Semiconductor yaw rate sensor and method of manufacturing the same
JP3149196B2 (en) Vibration or acceleration measurement sensor
JP3412293B2 (en) Semiconductor yaw rate sensor and method of manufacturing the same
US6137150A (en) Semiconductor physical-quantity sensor having a locos oxide film, for sensing a physical quantity such as acceleration, yaw rate, or the like
EP0442280A2 (en) Method and apparatus for semiconductor chip transducer
JP3555388B2 (en) Semiconductor yaw rate sensor
EP0582797A1 (en) Laterally sensitive accelerometer and method for making
JPH0349267A (en) Semiconductor type acceleration sensor and its manufacture
JP3518067B2 (en) Semiconductor dynamic quantity sensor
JPH07307478A (en) Semiconductor accelerometer and its manufacture
US6849912B2 (en) Vertical transistor comprising a mobile gate and a method for the production thereof
JP3292286B2 (en) Vibration transducer and manufacturing method thereof
US20040135466A1 (en) Electrostatic vibration device
JP3355812B2 (en) Semiconductor yaw rate sensor
JP3331648B2 (en) Semiconductor acceleration sensor
JP3633555B2 (en) Semiconductor dynamic quantity sensor
JPH0830718B2 (en) Semiconductor acceleration sensor
US7155977B2 (en) Semiconductor dynamic quantity sensor
JP3385759B2 (en) Semiconductor yaw rate sensor and method of manufacturing the same
JPH11118826A (en) Micromachine sensor
JP3508249B2 (en) Semiconductor dynamic quantity sensor
JPH06196721A (en) Semiconductor accelerometer and manufacture thereof
JP2004004119A (en) Semiconductor dynamic quantity sensor
JPH1096633A (en) Angular speed detector
JPH08320339A (en) Semiconductor dynamic-quantity sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term