JP3517086B2 - Method for manufacturing curved pipe with stainless steel build-up welded on inner surface of steel pipe - Google Patents
Method for manufacturing curved pipe with stainless steel build-up welded on inner surface of steel pipeInfo
- Publication number
- JP3517086B2 JP3517086B2 JP15266097A JP15266097A JP3517086B2 JP 3517086 B2 JP3517086 B2 JP 3517086B2 JP 15266097 A JP15266097 A JP 15266097A JP 15266097 A JP15266097 A JP 15266097A JP 3517086 B2 JP3517086 B2 JP 3517086B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- temperature
- welded
- bending
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Branch Pipes, Bends, And The Like (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、石油精製機器等に
用いられる湾曲管であって、内面にステンレス鋼を肉盛
溶接したもの(一般にエルボと言い、以下、エルボ、或
いは内面ステンレス鋼肉盛エルボということがある)の
製造方法に関するものであり、特に一体型の内面ステン
レス鋼肉盛エルボの製造方法に関するものである。
【0002】
【従来の技術】石油精製機器の配管材等、耐食性が要求
される箇所で使用されるエルボには、内面にステンレス
鋼の肉盛溶接が施されている。この様なエルボは図1に
示す様に、湾曲角度の小さい分割曲管を先に作ってお
き、該曲管の内面にステンレス鋼の肉盛溶接を行った
後、周溶接を行って該分割曲管を継ぎ、所望の曲げ角度
を持つ様に製造するのが一般的であった。
【0003】この様な製造方法を採用する理由は、第一
に曲がり角度の大きいエルボの内面肉盛溶接は技術的に
困難であり、その実施には大がかりな装置を必要とする
からであり、第二には仮に直管状態で内面肉盛溶接を行
い、その後湾曲加工するという技術的に簡便な方法を採
用するにしても、この種のエルボの内面肉盛溶接に通常
使用されるステンレス鋼(SUS347,SUS30
8,SUS316等)がオーステナイトとデルタフェラ
イトの2相組織であるため、母材である炭素鋼や低合金
鋼の熱間成形温度域では延性が低く、肉盛溶接した後で
曲げ成形を行うとステンレス鋼層に割れ・剥離等が生じ
るからである。
【0004】この様なところから、上記各理由に記載し
た方法の中間的方法、即ち曲げ成形後であっても比較的
簡単に肉盛溶接を行うことができる程度の小さい曲げ角
度を有するサイズの曲管(以下、単に素管ということが
ある)に分割して前記手順で製造するというプロセスを
採用せざるを得なかったのである。
【0005】前記製造方法では、複数の素管の熱間での
曲げ成形、次いで肉盛溶接、更に各曲管を継ぐ周溶接が
必要であり、エルボの製造に長い時間と手間を要し、コ
ストも高くなる。また、素管内面の肉盛溶接はたとえ曲
がり角度が小さいものであっても、それ自体困難である
ため、ビード形状にも問題が生じやすい。更に、出来上
がったエルボが周溶接を行っているため、前記曲げ成形
後に行われるステンレス鋼層の溶体化或いは安定化のた
めの熱処理条件が制限を受けることがあり、その様な場
合にはエルボの品質にも影響が及ぶ。
【0006】この様なところから、直管時点でステンレ
ス鋼を肉盛溶接し、その後所望の角度まで曲げ成形を行
って一体でエルボを製造できる方法についての改良研究
がなされる様になってきた。
【0007】例えば、特開昭56−144868号公報
には、肉盛溶接されるステンレス鋼の組成を調整し、且
つ、シェフラー組織図におけるフェライト量を10%以
下とすることで、肉盛溶接後に曲げ加工を行ってもステ
ンレス鋼層に割れが生じない様にするエルボの製造方法
が紹介されている。
【0008】しかしながら、この方法によって製造され
るエルボであっても、ステンレス鋼層の割れが発生する
ことがあった。これは、シェフラー組織図で推定される
フェライト量と実際に生成するフェライト量が必ずしも
一致しないことやフェライトの量だけではなく分布状
態、偏析等も延性に影響を与えるためである。また、フ
ェライト量が10%以下であっても、その量が極端に少
ない場合には溶接時に高温割れを生じる等、別の問題が
発生する場合もあった。
【0009】
【発明が解決しようとする課題】本発明は上記の様な状
況に着目してなされたものであり、その目的は、ステン
レス鋼層に割れ・剥離等が生じることなく曲げ加工を行
うことができる内面ステンレス鋼肉盛エルボを一体型で
製造する方法を提供することである。
【0010】
【課題を解決するための手段】上記課題を達成し得た、
本発明に係るエルボの製造方法とは、実質的に直管状態
である鋼管の内面にステンレス鋼を肉盛溶接した後これ
を曲げ加工してエルボを製造する方法であって、母材で
ある鋼管の内面にステンレス鋼を肉盛溶接した後、この
肉盛溶接鋼管を一旦前記母材のAc3点以上1000℃以
下の温度に加熱し、その後、前記母材部分の温度が55
0℃以上であり、且つ、前記肉盛溶接されたステンレス
鋼層の温度が700℃以下である様な状態で前記肉盛溶
接鋼管の曲げ成形を行うことを特徴とするものである。
【0011】
【発明の実施の形態】本発明者らは、一体型の内面ステ
ンレス鋼肉盛エルボの開発にあたり、肉盛溶接されるス
テンレス肉盛金属の高温延性挙動に着目した。本発明者
らの検討の結果、ステンレス肉盛金属は700℃を超え
たあたりから1000℃を超えるあたりの温度範囲では
延性が低くなるが、それより低温側の領域および高温側
の領域では曲げ成形に耐え得る十分な延性を有すること
が分かった。
【0012】前述の如く、ステンレス肉盛金属はその組
織(オーステナイトとデルタフェライトの2相組織)の
ため、800℃を超える様な高温域では延性が低いこと
は元々知られていた。しかしながら、700℃以下の温
度になると延性が良くなるという知見はこれまでなかっ
たものである。従来この様な知見が得られていなかった
のは、母材である炭素鋼或いは低合金鋼を曲げ成形する
ためには該母材をAc3点以上の温度に加熱して組織をオ
ーステナイト化し、変形抵抗を低下させた状態で曲げ成
形を行う必要があり、通常その様な熱間成形が行われる
温度は900℃を超える様な温度となるため、それ以下
の温度域において、本発明者らが行った様な詳細な検討
が行われていなかったためであると考えられる。
【0013】本発明者らは、前記知見を基に、更に作業
性や母材の加工性等を勘案しつつ、一体型の内面ステン
レス鋼肉盛エルボの開発を進め、本発明を完成したもの
である。
【0014】割れ・剥離等の防止の観点からは、前記の
様に延性が良好となる700℃以下、或いは1000℃
超で曲げ成形を行うことが有効である。しかしながら、
1000℃を超える高温では、肉盛溶接されたステンレ
ス鋼層の結晶粒が粗大化したり、該ステンレス鋼層と母
材との間で炭素の移動が激しくなって組織が変化する等
の影響を受けるため、最終的なエルボの機械的性質が劣
化する恐れがある。また、高周波曲げ方法ではエルボ全
体を1000℃超の温度にすることは難しく、型曲げ方
法では、炉から取り出して型にセットするまで1000
℃超の温度に維持することは困難である。
【0015】一方、700℃以下での曲げ成形を行う場
合、加熱・温度コントロールは容易となるものの、単に
700℃以下に昇温するだけでは母材の変形抵抗が高く
成形が困難である。
【0016】しかしながら、母材を一旦Ac3点以上の温
度に加熱して組織をオーステナイト化し、その後冷却し
た場合には、たとえ従来の熱間成形温度以下であって
も、母材組織がオーステナイト単相或いはオーステナイ
ト相中に多少のフェライト相が生成する程度の状況であ
れば、従来の熱間成形温度の場合に比べて変形抵抗は若
干高くはなるものの、エルボの製造が十分に可能なレベ
ルの変形抵抗であることが分かった。ただし、冷却し過
ぎるとフェライト相が増加して母材の強度が上がり、変
形抵抗が高くなるので、曲げ加工を行うためには母材の
温度が550℃以上である必要がある。また、前記の様
に1000℃を超える高温では、肉盛溶接されたステン
レス鋼層の結晶粒が粗大化したり、該ステンレス鋼層と
母材との間で炭素の移動が激しくなって組織が変化する
等の影響を受けるため、一旦加熱する温度は1000℃
以下とする必要がある。
【0017】従って、鋼管の内面にステンレス鋼を肉盛
溶接した後、該肉盛溶接鋼管を一旦前記鋼管のAc3点以
上1000℃以下の温度に加熱し、その後、前記鋼管部
分の温度が550℃以上であり、且つ、前記肉盛溶接さ
れたステンレス鋼層の温度が700℃以下である様な状
態で前記肉盛溶接鋼管の曲げ成形を行えば、前記ステン
レス鋼層の延性が高くて割れ・剥離等が生じないと共
に、前記鋼管の変形抵抗が曲げ加工を可能とする程度に
低いので、一体型の内面ステンレス鋼肉盛エルボの製造
が可能となるのである。
【0018】この様な製造方法を採用すれば、肉盛金属
層中のデルタフェライトの量を考慮する必要はない。ま
た、一体型のエルボが製造できることにより、直管状態
で内面肉盛溶接が行えるため、溶接能率が高く、且つビ
ード形状の優れた自動溶接が可能となると共に、曲げ成
形後に行われるステンレス鋼層の溶体化或いは安定化の
ための熱処理が、母材の周溶接による制限を受けること
なく、ステンレス鋼層の性質に合わせて条件を決めるこ
とが可能となるので、エルボの品質も向上させることが
できる様になる。
【0019】
【実施例】以下、本発明を実施例によって更に詳細に説
明するが、本発明は下記実施例によって制限されるもの
ではなく、前・後記の趣旨に徴して変更することはいず
れも本発明の技術的範囲に含まれる。
【0020】(実験例1)表1に示す組成のステンレス
鋼について、高温における延性を引張試験により調べ
た。引張試験は、高周波加熱型高温高速引張試験機を用
いて、平行部がφ8×35mmLの溶着金属試験片を大
気雰囲気下で昇温し、所定温度に達してから2分後に歪
み速度20mm/秒で引張り破断させることにより行っ
た。尚、表1に示す各鋼種は全てSUS347の組成を
満足するものであり、フェライト量はシェフラー組織図
から求められる値である。
【0021】
【表1】
【0022】実験結果を図2に示す。各鋼種いずれも7
00℃以下では安定して高い延性を有していることが分
かる。
【0023】(実験例2)Cr−Mo鋼板の上に、SU
S309Lを下盛り、表1に示す各鋼種を上盛りとして
ステンレス鋼を2層肉盛溶接した試験片を準備して、高
温曲げ試験を行い、試験後のステンレス鋼層の割れの状
況を調べた。上記試験片はいずれもステンレス鋼層まで
含めた厚みが28mmであり、該試験片を母材であるC
r−Mo鋼のAc3点以上の950℃まで炉内で加熱、1
時間保持した後、炉から取り出して曲げ型の上に設置、
600〜900℃の温度まで冷却して、図3に示す様に
曲げRが56mmの条件で曲げ成形を行った。母材であ
るCr−Mo鋼および下盛りに使用したSUS309L
ステンレス鋼の組成を表2に、各試験片の割れ状況の結
果を表3に示す。尚、曲げ試験を行った際の試験片の温
度は、試験片全体でほぼ均一であり、また曲げ成形工程
中に約30℃低下した。
【0024】
【表2】【0025】
【表3】
【0026】上盛りの鋼種がいずれの場合でも、曲げ開
始温度が700℃以下であればステンレス鋼層に割れは
見られなかった。
【0027】(実験例3)実際のエルボ規格品を作製す
る試作実験(試料No.1,2)を行った。各試料の母
材および肉盛溶接したステンレス鋼の組成は表4に示す
通りである。また、いずれの試料も肉盛溶接は直管状態
の母材に自動TIG溶接を用いて行い、下盛りとしてS
US309Lステンレス鋼を1層、上盛りとしてSUS
347ステンレス鋼を2層形成した。エルボのサイズは
90゜ 12Bsch160LRであり、肉盛溶接した
表面は溶接ままとした。成形には加熱・冷却の温度管理
が容易な型曲げ方式を採用し、炉内で母材のAc3点以上
である表4に示す温度まで加熱、該温度で2時間保持し
た後、炉より取り出して曲げ型の上に設置し、表4中に
示す成形開始温度に下がるまで待ってからプレス成形を
行った。尚、成形温度は母材の外表面および肉盛溶接層
の表面を測温したものである。また、曲げRはR=1.
37D(Dはエルボの直径)とした。
【0028】
【表4】
【0029】試料No.1,2共に肉盛溶接したステン
レス鋼層に割れは見られず、また母材との界面での剥離
等も見られなかった。尚、上記曲げ成形の後、No.
1,2のエルボについて、母材の調質のための焼きなら
し・焼き戻し処理を行い、下記の様な特性についても調
べた。
【0030】常温での曲げ試験(ASME Sec.
IX)
No.1,2共に延性良好で、割れは発生しなかった。
肉盛溶接層の組織観察および硬さ測定
No.1,2共に、上盛りのSUS347部のヴィッカー
ス硬度はHv200〜210と正常な値であり、組織は
オーステナイトとフェライトの2層組織であって、炭化
物は主にNbCであり、シグマ相は見られなかった。
肉盛溶接層の硫酸・硫酸銅腐食試験(ASTM A2
62)
No.1,2共に孔食および割れは発生しなかった。
以上の結果、No.1,2のエルボは良好な性質である
ことが確認できた。
【0031】
【発明の効果】以上説明してきた様に、本発明に係る湾
曲管の製造方法は、鋼管の内面にステンレス鋼を肉盛溶
接した後、該肉盛溶接鋼管を前記鋼管のAc3点以上10
00℃以下の温度に加熱し、その後、前記鋼管部分の温
度が550℃以上であり、且つ、前記肉盛溶接されたス
テンレス鋼層の温度が700℃以下である様な状態で前
記肉盛溶接鋼管の曲げ成形を行う様に構成されているの
で、曲げ成形後も前記ステンレス鋼層に割れ・剥離等が
生じることがなく、その結果、内面ステンレス鋼肉盛エ
ルボを一体型で製造することが可能となった。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved tube used for petroleum refining equipment and the like, which has a stainless steel build-up welded on its inner surface (generally referred to as an elbow, The present invention relates to a method of manufacturing an elbow or an inner surface stainless steel build-up elbow), and more particularly to a method of manufacturing an integrated inner surface stainless steel build-up elbow. 2. Description of the Related Art Elbows used in places where corrosion resistance is required, such as piping materials for petroleum refining equipment, are overlaid with stainless steel on the inner surface. As shown in FIG. 1, such an elbow is prepared by first forming a divided curved pipe having a small bending angle, performing build-up welding of stainless steel on the inner surface of the curved pipe, and performing circumferential welding to perform the divided welding. It was common to join curved pipes and manufacture them to have a desired bending angle. [0003] The reason for adopting such a manufacturing method is that, first of all, it is technically difficult to weld the inner surface of an elbow having a large bend angle, and a large-scale apparatus is required for carrying out the welding. Secondly, even if a technically simple method of performing internal surface build-up welding in a straight pipe state and then bending is adopted, stainless steels commonly used for internal surface build-up welding of this type of elbow (SUS347, SUS30
8, SUS316) has a two-phase structure of austenite and delta ferrite, and therefore has low ductility in the hot forming temperature range of carbon steel or low alloy steel as a base material. This is because cracking, peeling, and the like occur in the stainless steel layer. [0004] In view of the above, an intermediate method of the methods described above for each of the above-mentioned reasons, that is, a size having a small bending angle such that the overlay welding can be performed relatively easily even after bending. This necessitated the adoption of a process in which the tube was divided into curved tubes (hereinafter sometimes simply referred to as "base tubes") and manufactured according to the above procedure. [0005] In the above-mentioned manufacturing method, a plurality of pipes need to be formed by hot bending, then build-up welding, and girth welding for connecting each bent pipe, and it takes a long time and effort to manufacture an elbow. Costs are also high. Further, even if the bend angle is small, the overlay welding of the inner surface of the raw pipe itself is difficult, so that a problem is likely to occur in the bead shape. Furthermore, since the finished elbow performs girth welding, the heat treatment conditions for solutionizing or stabilizing the stainless steel layer performed after the bending may be limited, and in such a case, the elbow may not be formed. Quality is also affected. [0006] From such a situation, an improvement study has been conducted on a method of manufacturing an elbow integrally by overlay-welding stainless steel at the time of a straight pipe and thereafter performing bending to a desired angle. . For example, Japanese Patent Application Laid-Open No. 56-144868 discloses that the composition of a stainless steel to be welded by overlaying is adjusted and the amount of ferrite in a Schaeffler structure diagram is set to 10% or less so that after welding, A method for manufacturing an elbow that prevents the stainless steel layer from cracking even after bending is introduced. However, even with the elbow manufactured by this method, the stainless steel layer sometimes cracked. This is because the amount of ferrite estimated in the Schaeffler structure diagram does not always coincide with the amount of ferrite actually formed, and not only the amount of ferrite but also the distribution state, segregation, etc. affect ductility. Further, even when the amount of ferrite is 10% or less, another problem may occur if the amount is extremely small, such as high temperature cracking during welding. SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object of the present invention is to perform bending without causing cracking or peeling of a stainless steel layer. It is an object of the present invention to provide a method for manufacturing an internal stainless steel cladding elbow that can be integrally formed. [0010] The above object has been achieved.
The method for manufacturing an elbow according to the present invention is a method for manufacturing an elbow by overlay-welding stainless steel to the inner surface of a steel pipe that is substantially in a straight pipe state and then bending the same to manufacture an elbow. After build-up welding stainless steel on the inner surface of the steel pipe, this build-up welded steel pipe is once heated to a temperature of not less than 3 points Ac and not more than 1000 ° C. of the base material.
The overlaid welded steel pipe is bent in a state where the temperature is 0 ° C. or more and the temperature of the overlay-welded stainless steel layer is 700 ° C. or less. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have focused on the high-temperature ductility behavior of a stainless steel overlay metal to be welded in the development of an integral type internal stainless steel overlay elbow. As a result of the study by the present inventors, the stainless overlay metal has low ductility in a temperature range from around 700 ° C. to over 1000 ° C., but bend forming is performed in a lower temperature region and a higher temperature region. It has been found that it has sufficient ductility to withstand the stress. As mentioned above, it was originally known that stainless overlay metal has low ductility in a high temperature range exceeding 800 ° C. due to its structure (two-phase structure of austenite and delta ferrite). However, there is no finding that ductility is improved at a temperature of 700 ° C. or lower. Conventionally, such a finding was not obtained because in order to bend the carbon steel or the low alloy steel as the base material, the base material was heated to a temperature of three or more Ac to austenitize the structure, It is necessary to perform bending in a state in which the deformation resistance is lowered, and since the temperature at which such hot forming is usually performed is a temperature exceeding 900 ° C., the inventors of the present invention in a temperature range below that. It is probable that this was because the detailed examination as was conducted was not performed. Based on the above findings, the present inventors proceeded with the development of an integrated inner surface stainless steel overlay elbow while further considering the workability and workability of the base material, and completed the present invention. It is. From the viewpoint of preventing cracking and peeling, 700 ° C. or lower, or 1000 ° C., at which the ductility is improved as described above.
It is effective to carry out bending at super. However,
At a high temperature exceeding 1000 ° C., the overlaid welded stainless steel layer is affected by the coarsening of the crystal grains, and the movement of carbon between the stainless steel layer and the base metal is so severe that the structure is changed. Therefore, the mechanical properties of the final elbow may be deteriorated. Also, it is difficult to raise the temperature of the entire elbow to more than 1000 ° C. by the high-frequency bending method.
It is difficult to maintain temperatures above ℃. On the other hand, when performing bending at a temperature of 700 ° C. or less, heating and temperature control become easy, but simply raising the temperature to 700 ° C. or less results in high deformation resistance of the base material and makes it difficult to form. However, when the base material is once heated to a temperature of three or more Ac to austenite the structure, and then cooled, the base material structure is austenitic even if the temperature is lower than the conventional hot forming temperature. In a situation in which some ferrite phase is formed in the phase or austenite phase, although the deformation resistance is slightly higher than in the case of the conventional hot forming temperature, it is at a level sufficient to manufacture an elbow. It was found to be deformation resistance. However, if the temperature is excessively cooled, the ferrite phase increases to increase the strength of the base material and increase the deformation resistance. Therefore, the temperature of the base material needs to be 550 ° C. or higher in order to perform bending. At a high temperature exceeding 1000 ° C., as described above, the crystal grains of the overlay-welded stainless steel layer become coarse, and the movement of carbon between the stainless steel layer and the base metal becomes severe, and the structure changes. Temperature once heated to 1000 ° C.
It is necessary to: Therefore, after the stainless steel is weld-welded to the inner surface of the steel pipe, the weld-welded steel pipe is once heated to a temperature of not less than three points Ac and not more than 1000 ° C. of the steel pipe. ℃ or more, and if the bead-welded steel pipe is bent under the condition that the temperature of the build-up welded stainless steel layer is 700 ° C. or less, the stainless steel layer has high ductility and is cracked. -Since there is no peeling or the like and the deformation resistance of the steel pipe is low enough to enable bending, it is possible to manufacture an integrated inner stainless steel cladding elbow. If such a manufacturing method is adopted, it is not necessary to consider the amount of delta ferrite in the build-up metal layer. In addition, since the integrated elbow can be manufactured, the internal surface build-up welding can be performed in a straight pipe state, thereby enabling high welding efficiency and excellent automatic bead shape welding, and a stainless steel layer formed after bending. Since the heat treatment for solution or stabilization of the steel can be determined according to the properties of the stainless steel layer without being restricted by girth welding of the base metal, the quality of the elbow can be improved. I can do it. Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. It is included in the technical scope of the present invention. (Experimental Example 1) The ductility of the stainless steel having the composition shown in Table 1 at a high temperature was examined by a tensile test. The tensile test is performed by using a high-frequency heating type high-temperature high-speed tensile tester to raise the temperature of a welded metal test piece having a parallel portion of φ8 × 35 mmL in an air atmosphere, and a strain rate of 20 mm / sec two minutes after reaching a predetermined temperature. The test was carried out by tensile breaking. Each steel type shown in Table 1 satisfies the composition of SUS347, and the amount of ferrite is a value obtained from a Schaeffler micrograph. [Table 1] FIG. 2 shows the experimental results. 7 for each steel type
It can be seen that when the temperature is lower than 00 ° C., the material has stable high ductility. (Experimental Example 2) SU on a Cr-Mo steel sheet
A specimen was prepared by welding S309L on the lower side and each steel type shown in Table 1 as the upper side, and a stainless steel layer was welded by two layers, and a high-temperature bending test was performed to examine the state of cracking of the stainless steel layer after the test. . Each of the test pieces had a thickness of 28 mm including the stainless steel layer, and the test piece was used as a base material C
Heat the r-Mo steel in the furnace to 950 ° C, which is more than 3 points of Ac, 1
After holding for a while, remove it from the furnace and set it on the bending mold,
After cooling to a temperature of 600 to 900 ° C., bending was performed under the condition that the bending R was 56 mm as shown in FIG. SUS309L used for base material Cr-Mo steel and underlay
Table 2 shows the composition of the stainless steel, and Table 3 shows the results of the cracking status of each test piece. In addition, the temperature of the test piece at the time of performing the bending test was substantially uniform throughout the test piece, and dropped by about 30 ° C. during the bending process. [Table 2] [Table 3] Regardless of the type of the upper steel plate, no crack was observed in the stainless steel layer if the bending start temperature was 700 ° C. or lower. (Experimental Example 3) A trial production experiment (sample Nos. 1 and 2) for producing an actual elbow standard product was performed. Table 4 shows the composition of the base metal and the build-up welded stainless steel of each sample. In all samples, overlay welding was performed on the base metal in a straight pipe state using automatic TIG welding, and S
One layer of US309L stainless steel, SUS as top
Two layers of 347 stainless steel were formed. The size of the elbow was 90 ° 12Bsch160LR, and the build-up welded surface was left as-welded. In the molding, a mold bending method is adopted, in which heating and cooling temperature control is easy, and the material is heated in the furnace to the temperature shown in Table 4 which is at least three points of Ac of the base material, and is held at the temperature for 2 hours. It was taken out, placed on a bending die, and waited until the molding start temperature shown in Table 4 was lowered before press molding. The molding temperature is a value obtained by measuring the outer surface of the base material and the surface of the overlay welding layer. The bending R is R = 1.
37D (D is the diameter of the elbow). [Table 4] Sample No. No cracks were found in the stainless steel layers which were overlay-welded in both 1 and 2, and no delamination at the interface with the base material was seen. In addition, after the above bending,
The elbows 1 and 2 were subjected to normalizing and tempering treatments for refining the base material, and the following characteristics were also examined. Bending test at normal temperature (ASME Sec.
IX) Both Nos. 1 and 2 had good ductility and no cracks occurred. In both the structure observation and hardness measurement No. 1 and No. 2 of the build-up welded layer, the Vickers hardness of the upper SUS 347 part was a normal value of Hv 200 to 210, and the structure was a two-layer structure of austenite and ferrite. The carbide was mainly NbC and no sigma phase was found. Sulfuric acid / copper sulfate corrosion test of overlay welding layer (ASTM A2
62) No. Pitting and cracking did not occur in both 1 and 2. As a result, as shown in FIG. It was confirmed that Elbows 1 and 2 had good properties. As described above, according to the method for manufacturing a curved pipe according to the present invention, after the stainless steel is weld-welded to the inner surface of the steel pipe, the weld-welded steel pipe is welded to the Ac 3 of the steel pipe. Points above 10
Heating to a temperature of 00 ° C. or less, and thereafter, in a state where the temperature of the steel pipe portion is 550 ° C. or more and the temperature of the overlay-welded stainless steel layer is 700 ° C. or less, Since the steel pipe is configured to be formed by bending, the stainless steel layer is not cracked or peeled off even after the bending, and as a result, the inner surface stainless steel overlay elbow can be integrally manufactured. It has become possible.
【図面の簡単な説明】
【図1】従来の内面ステンレス鋼肉盛エルボの製造方法
を説明するための図である。
【図2】SUS347ステンレス鋼の高温延性挙動を調
べた結果を示すグラフである。
【図3】実験例2で行った高温曲げ試験の曲げ成形の様
子を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining a method of manufacturing a conventional inner surface stainless steel overlay elbow. FIG. 2 is a graph showing the results of examining the hot ductility behavior of SUS347 stainless steel. FIG. 3 is a diagram illustrating a state of bending in a high-temperature bending test performed in Experimental Example 2.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−5022(JP,A) 特開 平8−47724(JP,A) 特開 平8−294729(JP,A) 特開 平9−52174(JP,A) 特開 昭59−83717(JP,A) 特開 昭59−232225(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21D 5/00 - 9/18 B23K 9/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-5022 (JP, A) JP-A-8-47724 (JP, A) JP-A-8-294729 (JP, A) JP-A-9-99 52174 (JP, A) JP-A-59-83717 (JP, A) JP-A-59-232225 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B21D 5 / 00-9 / 18 B23K 9/04
Claims (1)
盛溶接した後、この肉盛溶接鋼管を一旦前記母材のAc3
点以上1000℃以下の温度に加熱し、その後、前記母
材部分の温度が550℃以上であり、且つ、前記肉盛溶
接されたステンレス鋼層の温度が700℃以下である様
な状態で前記肉盛溶接鋼管の曲げ成形を行うことを特徴
とする鋼管の内面にステンレス鋼を肉盛溶接した湾曲管
の製造方法。(57) [Claims 1 After the stainless steel on the inner surface of the steel pipe as the base material steel was overlay welding, Ac 3 to the overlay welding steel pipe once the preform
It was heated to 1000 ° C. or less of a temperature above a point, then the mother
Steel pipe temperature of wood portions is at 550 ° C. or higher, and, which is characterized in that the bending of the overlay welded steel pipe temperature of the overlay welding stainless steel layer is in such a state is 700 ° C. or less Method of manufacturing a curved tube with stainless steel build- up welded on the inner surface of the tube.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15266097A JP3517086B2 (en) | 1997-06-10 | 1997-06-10 | Method for manufacturing curved pipe with stainless steel build-up welded on inner surface of steel pipe |
IT98MI001268 IT1303917B1 (en) | 1997-06-10 | 1998-06-05 | Exfoliation crack prevention method for pressurised container - involves performing heat treatment prior to welding within specified temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15266097A JP3517086B2 (en) | 1997-06-10 | 1997-06-10 | Method for manufacturing curved pipe with stainless steel build-up welded on inner surface of steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11721A JPH11721A (en) | 1999-01-06 |
JP3517086B2 true JP3517086B2 (en) | 2004-04-05 |
Family
ID=15545306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15266097A Expired - Fee Related JP3517086B2 (en) | 1997-06-10 | 1997-06-10 | Method for manufacturing curved pipe with stainless steel build-up welded on inner surface of steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3517086B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101992387A (en) * | 2010-10-23 | 2011-03-30 | 徐州正菱涂装有限公司 | Production process for novel steel pipe surface on-line treatment |
-
1997
- 1997-06-10 JP JP15266097A patent/JP3517086B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101992387A (en) * | 2010-10-23 | 2011-03-30 | 徐州正菱涂装有限公司 | Production process for novel steel pipe surface on-line treatment |
Also Published As
Publication number | Publication date |
---|---|
JPH11721A (en) | 1999-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5097017B2 (en) | Manufacturing method of high Cr ferritic heat resistant steel | |
JP5751012B2 (en) | Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance | |
US9370846B2 (en) | Process for producing combustor structural member, and combustor structural member, combustor for gas turbine and gas turbine | |
JP5348383B2 (en) | High toughness welded steel pipe with excellent crushing strength and manufacturing method thereof | |
JP5796351B2 (en) | High strength sour line pipe excellent in crush resistance and manufacturing method thereof | |
JP4254483B2 (en) | Long-life heat-resistant low alloy steel welded member and method for producing the same | |
EP3636787B1 (en) | Bent steel pipe and method for producing same | |
JP6309576B2 (en) | Reaction tube for ethylene production having an alumina barrier layer | |
JP5803270B2 (en) | High strength sour line pipe excellent in crush resistance and manufacturing method thereof | |
JP4062190B2 (en) | Austenitic stainless steel pipe for nuclear power | |
JP3846246B2 (en) | Steel pipe manufacturing method | |
JP3517086B2 (en) | Method for manufacturing curved pipe with stainless steel build-up welded on inner surface of steel pipe | |
JP5362825B2 (en) | Ferritic stainless steel excellent in workability of welded portion, welded steel pipe using the same, and manufacturing method thereof | |
JP6814678B2 (en) | Ferritic stainless steel pipes for thickening pipe ends and ferritic stainless steel pipes for automobile exhaust system parts | |
JP7226083B2 (en) | wire and steel wire | |
RU2255848C1 (en) | Double-layer hot rolled sheets making method | |
JP2002102936A (en) | Manufacturing method of elbow joint | |
JP3937369B2 (en) | Processing method of ferritic stainless steel pipe | |
US4138279A (en) | Method of producing stainless steel product | |
JP7276641B1 (en) | Electric resistance welded steel pipe and its manufacturing method | |
WO2024157537A1 (en) | Electric resistance welded steel pipe and line pipe | |
CN115821161B (en) | Austenitic stainless steel, seamless bent pipe, and preparation method and application thereof | |
JP7211566B1 (en) | High-strength hot-rolled steel sheet and manufacturing method thereof, and high-strength electric resistance welded steel pipe and manufacturing method thereof | |
JPS6013025A (en) | Production of electric welded steel pipe having low yield point and high strength | |
JPS59107068A (en) | Treatment in weld zone of nickel alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110130 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130130 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |