JP3516766B2 - Electromagnetic induction probe - Google Patents

Electromagnetic induction probe

Info

Publication number
JP3516766B2
JP3516766B2 JP05977395A JP5977395A JP3516766B2 JP 3516766 B2 JP3516766 B2 JP 3516766B2 JP 05977395 A JP05977395 A JP 05977395A JP 5977395 A JP5977395 A JP 5977395A JP 3516766 B2 JP3516766 B2 JP 3516766B2
Authority
JP
Japan
Prior art keywords
core
coil
primary
electromagnetic induction
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05977395A
Other languages
Japanese (ja)
Other versions
JPH08233877A (en
Inventor
秀樹 若松
Original Assignee
アジレント・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アジレント・テクノロジー株式会社 filed Critical アジレント・テクノロジー株式会社
Priority to JP05977395A priority Critical patent/JP3516766B2/en
Publication of JPH08233877A publication Critical patent/JPH08233877A/en
Application granted granted Critical
Publication of JP3516766B2 publication Critical patent/JP3516766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は一般にインピーダンス測定
装置に関し、特にコロイド状態の物質の構造の定量的研
究・検査・管理のための電気特性測定分野において用い
られる電磁誘導式プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to impedance measuring devices, and more particularly to an electromagnetic induction probe used in the field of measuring electrical characteristics for quantitative research, inspection and control of the structure of substances in a colloidal state.

【0002】[0002]

【従来技術と問題点】コロイドは、粒子状の分散質と連
続相の分散媒からなる分散系である。このような不均質
構造の姿を評価する方法として導電率や誘電率などの電
気的特性の測定がある。特に近年、インピーダンス測定
を利用した誘電率を測定する方法が研究されている。本
出願人は、特願平6−172023にて導電性の大きい
溶液の容量性すなわち誘電率を測定する効果的手段とし
て、電磁誘導方式導電率・誘電率計を提案した。これ
は、従来の電極方式の欠点である界面分極による誤差の
問題を解決し、誘電率を導電性の影響なしに正確に測定
できるものである。そこでは、プローブの構造と簡便な
補正法を提案した。本件は、構造を改善し、さらに精度
を向上させるための提案である。
2. Description of the Related Art Colloids are dispersion systems consisting of a particulate dispersoid and a continuous phase dispersion medium. As a method for evaluating the appearance of such a heterogeneous structure, there is a measurement of electrical characteristics such as conductivity and permittivity. Particularly in recent years, methods for measuring the dielectric constant using impedance measurement have been studied. The applicant of the present application has proposed an electromagnetic induction type conductivity / permittivity meter as an effective means for measuring the capacitance, that is, the permittivity of a solution having a high conductivity in Japanese Patent Application No. 6-172023. This solves the problem of error due to interfacial polarization, which is a drawback of the conventional electrode system, and allows the dielectric constant to be accurately measured without the influence of conductivity. Therefore, we proposed the structure of the probe and a simple correction method. This case is a proposal to improve the structure and further improve the accuracy.

【0003】特願平6−172023の電磁誘導式の誘
電率測定は、電極方式誘電率測定法に比べれば、溶液の
導電率変化による誘電率測定値への影響は格段に取り除
かれている。それは、電極界面分極を原理上消滅させた
からである。ところが、導電率を基準にプローブの感度
乗数(電極方式における、いわゆるセル定数)を校正す
ると、次のような問題がある。図4は、周波数変化に対
する水溶液の誘電率の真値および測定値を、この溶液の
導電率をパラメータにして表したものの一例である。問
題は、誘電率測定値が真値よりも低い値を示し、しかも
導電率の変化に対して誘電率測定値が影響を受けること
である。この誤差の大きさは30%以上になる場合もあ
る。また、測定周波数範囲内で、誘電率と角周波数の積
が導電率にほぼ等しくなる溶液の場合は、図示するよう
に、周波数変化によっても誘電率測定値が変化してしま
う。
In the electromagnetic induction type permittivity measurement of Japanese Patent Application No. 6-172023, the influence of the change in the conductivity of the solution on the measured permittivity is markedly removed as compared with the electrode type permittivity measurement method. This is because the electrode interface polarization was eliminated in principle. However, if the sensitivity multiplier (so-called cell constant in the electrode system) of the probe is calibrated based on the conductivity, there are the following problems. FIG. 4 shows an example of the true value and the measured value of the dielectric constant of the aqueous solution with respect to the frequency change, which is expressed using the conductivity of the solution as a parameter. The problem is that the measured dielectric constant shows a value lower than the true value, and yet the measured dielectric constant is affected by changes in conductivity. The magnitude of this error may be 30% or more. Further, in the case of a solution in which the product of the dielectric constant and the angular frequency is approximately equal to the electric conductivity within the measurement frequency range, as shown in the figure, the measured value of the dielectric constant also changes due to the frequency change.

【0004】この原因を述べる前に、従来技術の電磁誘
導式プローブを説明する。特願平6−172023で提
案した電磁誘導式プローブの第1、第2及び第3の実施
例をそれぞれ図5、図6及び図7に示す。なお図におい
ては同一機能の要素には同一番号を付してある。これら
の要素は次の構成である。インピーダンス測定器本体1
は、信号源2、抵抗3、電圧計4及び電流計5を有して
いる。また電磁誘導式プローブ8は、1次コア10、1
次コイル11、2次コア12、2次コイル13、及びギ
ャップ15を有するシールド14を有し、これらが外装
樹脂モールド9で外装されている。またインピーダンス
測定器本体1とプローブ8間は同軸ケーブル6及び7で
接続されている。なお、図6のプローブの1次コア10
は貫通孔16を有し、図7のプローブはバラン18及び
短絡線17を有する。バランの等価回路を19に示す。
Before describing the cause of this, a conventional electromagnetic induction type probe will be described. The first, second and third embodiments of the electromagnetic induction probe proposed in Japanese Patent Application No. 6-172023 are shown in FIGS. 5, 6 and 7, respectively. In the drawings, elements having the same function are designated by the same reference numeral. These elements have the following structure. Impedance measuring instrument body 1
Has a signal source 2, a resistor 3, a voltmeter 4 and an ammeter 5. In addition, the electromagnetic induction probe 8 includes the primary cores 10 and 1
It has a secondary coil 11, a secondary core 12, a secondary coil 13, and a shield 14 having a gap 15, and these are packaged with a packaging resin mold 9. The impedance measuring device body 1 and the probe 8 are connected by coaxial cables 6 and 7. The primary core 10 of the probe shown in FIG.
Has a through hole 16 and the probe of FIG. 7 has a balun 18 and a short circuit wire 17. The equivalent circuit of the balun is shown in 19.

【0005】図5、図6及び図7の構造を簡略化すれ
ば、いずれも図8のようになる。図は、プローブの環状
コアの環状の中心軸を通る平面で切断した断面を示す図
である。図にはプローブの構成要素として、1次および
2次のトランスの断面とトランスの入出力を示してい
る。信号源2から供給される励磁電流が1次コイル11
に流れて1次トロイダルコア10が励磁されると、1次
トロイダルコア10の断面の中心を中心にした同心円状
の電界31が発生する。溶液中にプローブを浸漬する
と、この電界31によってプローブを囲む電流が溶液に
流れ、その結果2次トロイダルコア12を励磁し、2次
コイル13に電流が流れ、電流計5に値が生じる。この
電流値と、電圧計4で測定した1次コイル11に印加し
た電圧とのベクトル比から、溶液のコンダクタンス成分
とサセプタンス成分を求めることができる。溶液の等価
回路は、溶液の導電率で決まる抵抗と誘電率で決まる静
電容量の並列回路で表されるため、前記溶液のサセプタ
ンス成分すなわち静電容量成分から演算処理によって誘
電率を求める方法が行われている。
If the structures of FIG. 5, FIG. 6 and FIG. 7 are simplified, all are as shown in FIG. The figure is a view showing a cross section taken along a plane passing through an annular center axis of an annular core of a probe. The figure shows the cross sections of the primary and secondary transformers and the input and output of the transformers as the components of the probe. The exciting current supplied from the signal source 2 is the primary coil 11
And the primary toroidal core 10 is excited, a concentric electric field 31 around the center of the cross section of the primary toroidal core 10 is generated. When the probe is immersed in the solution, an electric field surrounding the probe is caused to flow in the solution by this electric field 31, and as a result, the secondary toroidal core 12 is excited, a current flows in the secondary coil 13, and a value is generated in the ammeter 5. From the vector ratio of this current value and the voltage applied to the primary coil 11 measured by the voltmeter 4, the conductance component and susceptance component of the solution can be obtained. Since the equivalent circuit of a solution is represented by a parallel circuit of a resistance determined by the conductivity of the solution and an electrostatic capacitance determined by the dielectric constant, a method of calculating the dielectric constant from the susceptance component of the solution, that is, the electrostatic capacitance component by calculation processing is Has been done.

【0006】図9に、1次トロイダルコアの電界によっ
て流れる電流を示す。図にはプローブの構成要素とし
て、1次および2次のトランスおよびプローブの外装樹
脂モールドの断面を描いている。1次トロイダルコア1
0の電界によって流れる電流には、溶液中のみを流れる
電流32の他に、溶液からプローブを通って溶液に流れ
る電流33が存在する。プローブ内は、図示していない
が、導体を絶縁する絶縁体で満たされているため、絶縁
体の誘電効果による浮遊静電容量が存在し、そこに電流
が流れるのである。なお、絶縁体の抵抗値は非常に高い
ので、絶縁体の抵抗成分に流れる電流は無視できる。こ
の浮遊静電容量に流れる電流33は、2次コア12に鎖
交して流れるべき電流を減少させてしまう。この結果、
おおざっぱに言えば、真値に対して誘電率が小さく測定
されるのである。
FIG. 9 shows a current flowing by the electric field of the primary toroidal core. In the figure, the cross sections of the primary and secondary transformers and the exterior resin mold of the probe are drawn as constituent elements of the probe. Primary toroidal core 1
The electric current flowing by the electric field of 0 includes the electric current 32 flowing only in the solution and the electric current 33 flowing from the solution through the probe to the solution. Although not shown, the inside of the probe is filled with an insulator that insulates the conductor, so that there is stray capacitance due to the dielectric effect of the insulator, and a current flows there. Since the resistance value of the insulator is very high, the current flowing through the resistance component of the insulator can be ignored. The current 33 flowing through this floating capacitance interlinks with the secondary core 12 and reduces the current that should flow. As a result,
Roughly speaking, the dielectric constant is measured smaller than the true value.

【0007】以上に述べたように、誘電率測定値が真値
よりも低い値を示し、導電率の変化に対して誘電率測定
値が影響を受けるのは、電磁誘導で生じた閉路電流の一
部がプローブ内の浮遊静電容量に分流することが原因で
ある。その対策として、プローブの浮遊静電容量を小さ
くすることが考えられるが、プローブの構造上の制約が
多くこの実現は非常に困難である。そこで本出願人は、
平成6年12月29日出願の整理番号40950002
「電磁誘導式プローブの補正方法」にて浮遊静電容量の
影響を補正によって低減する方法を提案した。この提案
は、浮遊静電容量を校正で求める操作が必要であること
が欠点である。
As described above, the measured value of permittivity shows a value lower than the true value, and the measured value of permittivity is affected by the change in conductivity because the closed-circuit current generated by electromagnetic induction is The cause is that a part is shunted to the stray capacitance in the probe. As a countermeasure, it is conceivable to reduce the stray capacitance of the probe, but this is very difficult to realize due to many structural restrictions of the probe. Therefore, the applicant
Reference number 40950002 filed on December 29, 1994
We proposed a method to reduce the effect of stray capacitance by “correction method of electromagnetic induction probe”. This proposal has a drawback in that the operation for obtaining the floating capacitance by calibration is necessary.

【0008】[0008]

【発明の目的】本発明は、上記従来技術の問題である誘
電率が真値より小さく測定され、しかも導電率の変化に
対して誘電率測定値が影響を受ける問題を解決するため
になされたものであり、さらに浮遊静電容量を求めるた
めの校正が不要であり、高精度の誘電率測定が可能な電
磁誘導式プローブを提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art in which the dielectric constant is measured to be smaller than the true value, and the measured dielectric constant is affected by changes in conductivity. It is an object of the present invention to provide an electromagnetic induction probe capable of highly accurate dielectric constant measurement, which does not require calibration for obtaining a floating capacitance.

【0009】[0009]

【発明の概要】本発明は、1次コアと2次コアの組み合
わせ構造を工夫し、具体的には1次コアを2次コアで囲
み、あるいはその逆にし、電磁誘導で生じる閉路電流を
プローブ内の浮遊静電容量に分流させないプローブを実
現することによって、浮遊静電容量の影響を受けない測
定を実現するものである。
SUMMARY OF THE INVENTION The present invention has devised a combined structure of a primary core and a secondary core. Specifically, by enclosing the primary core with a secondary core or vice versa, a closed circuit current generated by electromagnetic induction is probed. By realizing a probe that does not divert the internal stray capacitance, the measurement that is not affected by the stray capacitance is realized.

【0010】[0010]

【発明の実施例】電磁誘導で生じる閉路電流をプローブ
内の浮遊静電容量に分流させない本発明の実施例の概念
図を図1に示す。図は、プローブの環状コアの環状の中
心軸を通る平面で切断した断面を示す図である。なお図
においては、従来技術と同一機能の要素には同一番号を
付してある。この構造の特徴は、2次コア12が1次コ
ア10を囲み、両コアの断面が同心円状になっているこ
とである。2次コアの一部には、1次コイル11及び2
次コイル13の引出線の通る穴が設けられている。両コ
アの断面が同心円状になっているため、1次コアの励磁
によって生じる電界31は、2つのコアを取り囲んで同
心円状になる。この結果、電界31は全て、コアの断面
円の接線方向となり、法線方向成分は無く、溶液からコ
アの方向に流れる電流は生じない。すなわち、溶液から
プローブ内に存在する浮遊容量に流れる電流は発生しな
い。この結果電磁誘導で生じる溶液中の閉路電流はすべ
て溶液内を流れ2次コア12を励磁する。2次コアは筒
状であるが、2次コイル13が2次コア12の断面を囲
むように巻かれているため、通常のトランスと同様に励
磁によって2次コイル13には電流が流れる。この電流
を電流計5が測定し、溶液のインピーダンスの測定がで
きる。なお、本発明の構造は特願平6−172023出
願の構造の対称条件、すなわち、「2つのコアの環状の
中心軸が一致しかつ環状の中心点が一致していて、環状
の中心点を通り該中心軸に垂直な平面に対して対称な構
造」を満たしている。本発明では2つのコアの断面の中
心が描く環状の軌跡が乗る面が、前記対称面になってい
る。
1 is a conceptual diagram of an embodiment of the present invention in which a closed current generated by electromagnetic induction is not shunted to a stray capacitance in a probe. The figure is a view showing a cross section taken along a plane passing through an annular center axis of an annular core of a probe. In the drawings, elements having the same functions as those of the conventional technique are designated by the same reference numerals. The feature of this structure is that the secondary core 12 surrounds the primary core 10 and the cross sections of both cores are concentric. The primary coils 11 and 2 are provided in a part of the secondary core.
A hole through which the lead wire of the next coil 13 passes is provided. Since the cross sections of both cores are concentric, the electric field 31 generated by the excitation of the primary core is concentric so as to surround the two cores. As a result, all the electric fields 31 are in the tangential direction of the cross-sectional circle of the core, have no normal direction component, and no current flows from the solution to the core. That is, no current flows from the solution to the stray capacitance existing in the probe. As a result, all the closed-circuit current in the solution generated by the electromagnetic induction flows in the solution and excites the secondary core 12. Although the secondary core has a tubular shape, since the secondary coil 13 is wound so as to surround the cross section of the secondary core 12, a current flows through the secondary coil 13 by excitation as in a normal transformer. The ammeter 5 measures this current, and the impedance of the solution can be measured. The structure of the present invention has a symmetry condition of the structure of the Japanese Patent Application No. 6-172023, that is, "the two central axes of the two cores are coincident with each other and the center points of the circles are coincident with each other. By the way, the structure “symmetrical with respect to a plane perpendicular to the central axis” is satisfied. In the present invention, the plane on which the circular locus drawn by the centers of the cross sections of the two cores rides is the symmetrical plane.

【0011】図2は、図1の概念図にシールド14aお
よび14b、同軸ケーブル6及び7、並びにバラン18
および短絡線17を加えた詳細図である。シールドは、
1次コイルと2次コイル間の静電結合防止のために施さ
れる。従って内側のシールド14aと外側のシールド1
4bは、2次コイル13を取り囲む構造である。さらに
シールドが2次コイルに対しショートリングにならない
ようにギャップ15が、前記対称面に対して対称構造に
なる位置に設けられている。バラン18と短絡線17
は、同軸ケーブル6および7とコイルとの接続および引
き出し構造における対称性の崩れを補償するために設け
られたものである。これは、従来技術の図7に示すバラ
ン18および短絡線17と同様の作用をするものであ
る。なお信号源2、電圧計4および電流計5が接地され
ていないならば、バラン18および短絡線17は不要で
ある。バラン18および短絡線17は不要である。
FIG. 2 is a schematic diagram of FIG. 1 in which shields 14a and 14b, coaxial cables 6 and 7, and a balun 18 are provided.
It is the detail drawing which added the short circuit wire 17. The shield is
It is applied to prevent electrostatic coupling between the primary coil and the secondary coil. Therefore, the inner shield 14a and the outer shield 1
4b is a structure surrounding the secondary coil 13. Further, a gap 15 is provided at a position having a symmetrical structure with respect to the plane of symmetry so that the shield does not become a short ring with respect to the secondary coil. Balun 18 and short-circuit wire 17
Is provided for compensating the breaking of symmetry in the connection and extraction structure of the coaxial cables 6 and 7 and the coil. This operates similarly to the balun 18 and the short-circuit line 17 shown in FIG. 7 of the prior art. If the signal source 2, the voltmeter 4 and the ammeter 5 are not grounded, the balun 18 and the short-circuit wire 17 are unnecessary. The balun 18 and the short-circuit line 17 are unnecessary.

【0012】本発明の構造を実現する組立方法の実施例
を図3に示す。図は組立の順序とコイルの結線を示すこ
とを目的に描いたもので、コイルの引出線に関する2次
コア及びシールドの細部は省略している。またコイルの
結線が分かりやすいように、コイルの引出線の位置は分
散して示してある。1次コア10を2次コア12が囲ん
だ構造を実現するために、本実施例の特徴は、2次コア
を分割できる構造とし、2次コイルを2次コアの内側に
巻くコイルと外側に巻くコイルから構成することであ
る。 (1)1次コア10に1次コイル11を施す。コイルの
巻始めを41、巻終わりを42とする。 (2)1次コイルの上に内側のシールド14aを施す。
シールドにはギャップ15が設けられている。 (3)このシールドの上に、2次コイルの内側巻線13
aを施す。巻始めを43、巻終わりを44とする。 (4)2次コア12は、環状の中心を通りかつ環状の中
心軸に垂直な平面で、図のように分割できるようになっ
ている。前項のアセンブリをこの2次コアの中に納め
る。 (5)2次コアの外側に、2次コイルの外側巻線13b
を施す。その巻始めを45、巻終わりを46とする。内
側巻線13aと外側巻線13bは、同一巻数とする。そ
して、13aと13bを直列に接続する。その接続はコ
イルに電流を流したとき、2次コア内のみに磁束が発生
する極性である。すなわち、内側コイル及び外側コイル
の巻方向(ねじの回転と進行方向に相似して)が同じな
らば、巻始め同士を接続して巻終わりをコイルの端子と
するか、巻終わり同士を接続して巻始めをコイルの端子
とする。図は巻終わり44と46を接続し、巻始め43
及び45をコイルの端子とする例を示している。また、
内側コイル及び外側コイルの巻方向が逆ならば、巻始め
と巻終わりを接続し、他の巻終わりと巻始めをコイルの
端子とする。 (6)図示していないが、さらに外側シールド及び外装
モールドを施して組み立てが完了する。また、上記では
コイル及びシールド間の絶縁について触れていないが、
必要に応じて絶縁を施す。
An embodiment of an assembling method for realizing the structure of the present invention is shown in FIG. The drawings are drawn for the purpose of showing the order of assembly and the wire connection of the coil, and details of the secondary core and the shield relating to the lead wire of the coil are omitted. Further, the positions of the lead lines of the coils are shown in a dispersed manner so that the connection of the coils can be easily understood. In order to realize the structure in which the primary core 10 is surrounded by the secondary core 12, the feature of this embodiment is that the secondary core is divided into a structure in which the secondary coil is wound inside the secondary core and outside. It consists of a coil to be wound. (1) The primary coil 11 is applied to the primary core 10. The winding start of the coil is 41 and the winding end is 42. (2) The inner shield 14a is provided on the primary coil.
A gap 15 is provided in the shield. (3) Inner winding 13 of the secondary coil on this shield
Apply a. The winding start is 43 and the winding end is 44. (4) The secondary core 12 is a plane that passes through the center of the ring and is perpendicular to the center axis of the ring and can be divided as shown in the figure. The assembly of the previous section is placed in this secondary core. (5) Outer winding 13b of the secondary coil on the outside of the secondary core
Give. The start of winding is 45 and the end of winding is 46. The inner winding 13a and the outer winding 13b have the same number of turns. Then, 13a and 13b are connected in series. The connection has a polarity such that a magnetic flux is generated only in the secondary core when a current is applied to the coil. That is, if the winding directions of the inner coil and the outer coil are similar (similar to the screw rotation and advancing direction), connect the winding start and the winding end as coil terminals, or connect the winding ends. And use the beginning of winding as the coil terminal. In the figure, the winding ends 44 and 46 are connected, and the winding start 43
And 45 are shown as terminals of the coil. Also,
If the winding directions of the inner coil and the outer coil are opposite, the winding start and winding end are connected, and the other winding end and winding start are used as the coil terminals. (6) Although not shown, an outer shield and an exterior mold are further applied to complete the assembly. Also, although the above does not mention insulation between the coil and the shield,
Insulate if necessary.

【0013】なお、トロイダルコアに巻線を施す際、図
3に示す1次コイルのように、巻始めから巻終わりまで
コアの環状を1周すれば、この環状を1巻とする空芯コ
イルが形成される。従って、2次コイルも同様の巻線で
あれば、1次コイルと2次コイルの間に空芯1巻のトラ
ンス結合が存在することになる。ところが、本発明の2
次トランスでは、巻線13aおよび13bの巻方向を同
じにすれば、2次コイルは内側の巻始め(または巻終わ
り)から外側の巻始め(または巻終わり)に戻り、コア
の環状を1周しないので、上記の1巻の空芯コイルは形
成されない。従って、1次コイルと2次コイルの間の空
芯1巻トランスによる結合はなく、1次と2次間のアイ
ソレーションの強化に効果がある。以上に本発明の実施
例を示したが、例示の様式、部分形、配置、その他を限
定するものでなく、必要に応じて本発明の要旨を失うこ
となく構成の変形も許容される。特に説明の便宜上、1
次コアを内側、2次コアを外側としたが、実用上はどち
らかに限定するものではない。
When winding a toroidal core, as in the case of the primary coil shown in FIG. 3, if the ring of the core is wound once from the beginning of winding to the end of winding, an air-core coil in which this ring forms one winding Is formed. Therefore, if the secondary coil has the same winding, there is a transformer coupling of one air core between the primary coil and the secondary coil. However, 2 of the present invention
In the secondary transformer, if the winding directions of the windings 13a and 13b are the same, the secondary coil returns from the inner winding start (or the winding end) to the outer winding start (or the winding end) and makes one round of the core ring. Therefore, the one-turn air core coil is not formed. Therefore, there is no coupling between the primary coil and the secondary coil by the air-core one-turn transformer, and it is effective in strengthening the isolation between the primary and the secondary. Although the embodiments of the present invention have been described above, the exemplary forms, partial shapes, arrangements, etc. are not limited, and modifications of the configuration are allowed as necessary without losing the gist of the present invention. Especially for convenience of explanation, 1
Although the secondary core is the inner side and the secondary core is the outer side, it is not limited to either one in practice.

【0014】[0014]

【発明の効果】特願平6−172023で提案した電磁
誘導方式プローブの改良を提案した。本発明によれば、
プローブ内の浮遊静電容量に流れる電流が発生しないの
で、溶液の導電率変化による誘電率測定値への影響をさ
らに取り除くことが可能になった。この結果、溶液誘電
率を高精度に測定することができ実用に供して有益であ
る。
EFFECT OF THE INVENTION An improvement of the electromagnetic induction type probe proposed in Japanese Patent Application No. 6-172023 was proposed. According to the invention,
Since no current flows through the stray capacitance in the probe, it became possible to further eliminate the influence of the change in the conductivity of the solution on the measured dielectric constant. As a result, the solution dielectric constant can be measured with high accuracy, which is useful for practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の基本構造を示す図である。FIG. 1 is a diagram showing a basic structure of an embodiment of the present invention.

【図2】本発明の実施例の詳細構造を示す図である。FIG. 2 is a diagram showing a detailed structure of an embodiment of the present invention.

【図3】本発明の実施例の実装方法の例を示す図であ
る。
FIG. 3 is a diagram showing an example of a mounting method according to an embodiment of the present invention.

【図4】従来技術で測定した誘電率測定値の傾向を示す
図である。
FIG. 4 is a diagram showing a tendency of a dielectric constant measurement value measured by a conventional technique.

【図5】従来技術のプローブの第1の例を示す図であ
る。
FIG. 5 is a diagram showing a first example of a conventional probe.

【図6】従来技術のプローブの第2の例を示す図であ
る。
FIG. 6 is a diagram showing a second example of a conventional probe.

【図7】従来技術のプローブの第3の例を示す図であ
る。
FIG. 7 is a diagram showing a third example of a conventional probe.

【図8】従来技術のプローブの構造の簡略図である。FIG. 8 is a simplified diagram of the structure of a prior art probe.

【図9】従来技術のプローブの電流経路を示す図であ
る。
FIG. 9 is a diagram showing a current path of a conventional probe.

【符号の説明】[Explanation of symbols]

1:インピーダンス測定器本体 2:信号源 3:抵抗 4:電圧計 5:電流計 6:同軸ケーブル 7:同軸ケーブル 8:電磁誘導式プローブ 9:外装樹脂モールド 10:1次トロイダルコア 11:1次コイル 12:2次トロイダルコア 13:2次コイル 13a:内側2次コイル 13b:外側2次コイル 14:シールド 14a:内側シールド 14b:外側シールド 15:ギャップ 16:コアの貫通孔 17:短絡線 18:バラン 19:バランの等価回路 31:1次トロイダルコアにより誘起した電界 32:溶液中のみを流れる電流 33:溶液とプローブの両方を通る電流 41:1次コイルの巻始め端子 42:1次コイルの巻終わり端子 43:内側2次コイルの巻始め端子 44:内側2次コイルの巻終わり端子 45:外側2次コイルの巻始め端子 46:外側2次コイルの巻終わり端子 1: Impedance measuring device body 2: Signal source 3: resistance 4: Voltmeter 5: Ammeter 6: Coaxial cable 7: Coaxial cable 8: Electromagnetic induction type probe 9: Exterior resin mold 10: 1 primary toroidal core 11: primary coil 12: Secondary toroidal core 13: secondary coil 13a: inner secondary coil 13b: outer secondary coil 14: Shield 14a: inner shield 14b: outer shield 15: Gap 16: Core through hole 17: Short-circuit line 18: Balun 19: Balun equivalent circuit 31: Electric field induced by primary toroidal core 32: Current flowing only in solution 33: Current through both solution and probe 41: winding start terminal of primary coil 42: Terminal of winding end of primary coil 43: Winding start terminal of inner secondary coil 44: Terminal of winding end of inner secondary coil 45: Winding start terminal of outer secondary coil 46: Terminal of winding end of outer secondary coil

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1次トランス及び2次トランスを有し、溶
液の誘電率を測定する電磁誘導式プローブにおいて、前
記トランスの環状コアの環状の中心軸を通る平面で切断
した1次コアおよび2次コアの断面の中心が、互いに重
なるように前記2つのトランスを構成することを特徴と
する電磁誘導式プローブ。
1. An electromagnetic induction probe having a primary transformer and a secondary transformer for measuring a dielectric constant of a solution, wherein the primary core and the secondary core are cut along a plane passing through an annular central axis of an annular core of the transformer. The electromagnetic induction probe, wherein the two transformers are configured such that the centers of the cross sections of the following cores overlap each other.
【請求項2】前記2次コアの前記断面が前記1次コアの
前記断面に対し同心円状に周回し、前記1次コア及び2
次コアの前記断面の中心が互いに重なるように前記1次
コア及び2次コアを配置し、2次コアの内側に巻いた内
側2次コイル及び外側に巻いた外側2次コイルを直列接
続して2次コアのコイルを構成することを特徴とする請
求項1記載の電磁誘導式プローブ。
2. The cross section of the secondary core circulates concentrically with the cross section of the primary core, and
The primary core and the secondary core are arranged such that the centers of the cross sections of the secondary cores overlap each other, and the inner secondary coil wound inside the secondary core and the outer secondary coil wound outside are connected in series. The electromagnetic induction probe according to claim 1, wherein a coil of the secondary core is formed.
【請求項3】前記環状コアの環状の中心を通りかつ前記
環状の前記中心軸に垂直な平面、またはこれにほぼ平行
な面で、前記2次コアを分割できる構造とし、前記1次
コアに1次コイルを巻き、前記1次コイルの外側に静電
シールドを施し、前記静電シールドの外側に前記内側2
次コイルを巻いたアセンブリを前記2次コアの内部に収
納し、前記2次コアの外部に外側2次コイルを巻き、前
記内側2次コイルと前記外側2次コイルの巻始めまたは
巻終わりを互いに接続して2次コイルを構成することを
特徴とする請求項2記載の電磁誘導式プローブ。
3. A structure in which the secondary core can be divided by a plane that passes through the annular center of the annular core and is perpendicular to the central axis of the annular shape, or substantially parallel thereto, A primary coil is wound, an electrostatic shield is provided on the outside of the primary coil, and the inside 2 is provided on the outside of the electrostatic shield.
An assembly in which a secondary coil is wound is housed inside the secondary core, an outer secondary coil is wound outside the secondary core, and winding start or winding end of the inner secondary coil and the outer secondary coil are mutually The electromagnetic induction probe according to claim 2, wherein the secondary coil is connected to form a secondary coil.
【請求項4】前記電磁誘導式プローブにおいて、1次ト
ランスと2次トランスを互いに置き換えた構造を有する
請求項2または3記載の電磁誘導式プローブ。
4. The electromagnetic induction probe according to claim 2, wherein the electromagnetic induction probe has a structure in which a primary transformer and a secondary transformer are replaced with each other.
JP05977395A 1995-02-23 1995-02-23 Electromagnetic induction probe Expired - Fee Related JP3516766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05977395A JP3516766B2 (en) 1995-02-23 1995-02-23 Electromagnetic induction probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05977395A JP3516766B2 (en) 1995-02-23 1995-02-23 Electromagnetic induction probe

Publications (2)

Publication Number Publication Date
JPH08233877A JPH08233877A (en) 1996-09-13
JP3516766B2 true JP3516766B2 (en) 2004-04-05

Family

ID=13122951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05977395A Expired - Fee Related JP3516766B2 (en) 1995-02-23 1995-02-23 Electromagnetic induction probe

Country Status (1)

Country Link
JP (1) JP3516766B2 (en)

Also Published As

Publication number Publication date
JPH08233877A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3649457B2 (en) Electromagnetic induction probe, impedance measuring device, calibration method, and calibration jig
US7847543B2 (en) Precision flexible current sensor
EP1102998B1 (en) Closely-coupled multiple-winding magnetic induction-type sensor
US5828282A (en) Apparatus and method for shielding a toroidal current sensor
EP0365216B2 (en) Current sensor
US5272460A (en) Current and voltage transformer for a metal-encapsulated, gas-insulated high-voltage installation
JP3415697B2 (en) Electromagnetic induction probe
KR20230027087A (en) RF voltage and current (V-I) sensors and measurement methods
JPH01276611A (en) Mutual inductance current transducer and its manufacture
US5896027A (en) Current ratio device for use in forming a current transformer
JP3516766B2 (en) Electromagnetic induction probe
JP2001068359A (en) Transformer device
JPH0426530B2 (en)
CN213069016U (en) Annular coil structure for magnetic core parameter measurement
KR20230027016A (en) RF voltage and current (V-I) sensors and measurement methods
JP3499315B2 (en) Compensation method of electromagnetic induction type probe
JP4189164B2 (en) Current measuring instrument
CN213275740U (en) Flexible current sensor with multiple characteristic quantity measurement
SU1668955A1 (en) High-frequency ammeter measuring transducer
US20230204633A1 (en) Current sensor and manufacturing method of current sensor
SU980174A1 (en) Matching transformer
US20230132660A1 (en) Radio frequency (rf) system with embedded rf signal pickups
Skala et al. Design of current sensor for medium frequency operation
CN118091257A (en) System and method for measuring sensitive loop resistance of magnetic fluid angular vibration sensor
SU109917A1 (en) The method of measuring the conductivity of substances with electrolytic conductivity

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees