JP3514743B2 - Film thickness measuring device and substrate polishing device - Google Patents

Film thickness measuring device and substrate polishing device

Info

Publication number
JP3514743B2
JP3514743B2 JP2001259763A JP2001259763A JP3514743B2 JP 3514743 B2 JP3514743 B2 JP 3514743B2 JP 2001259763 A JP2001259763 A JP 2001259763A JP 2001259763 A JP2001259763 A JP 2001259763A JP 3514743 B2 JP3514743 B2 JP 3514743B2
Authority
JP
Japan
Prior art keywords
substrate
electrodes
film thickness
conductive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001259763A
Other languages
Japanese (ja)
Other versions
JP2003065707A (en
Inventor
恵友 鈴木
Original Assignee
株式会社半導体先端テクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体先端テクノロジーズ filed Critical 株式会社半導体先端テクノロジーズ
Priority to JP2001259763A priority Critical patent/JP3514743B2/en
Publication of JP2003065707A publication Critical patent/JP2003065707A/en
Application granted granted Critical
Publication of JP3514743B2 publication Critical patent/JP3514743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、膜厚測定装置及
び基板研磨装置に関し、特に、半導体基板上に形成した
導電膜などの膜厚を測定する膜厚測定装置及びこの測定
装置を備えた基板研磨装置に適用して好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring device and a substrate polishing device, and more particularly to a film thickness measuring device for measuring the film thickness of a conductive film formed on a semiconductor substrate and a substrate provided with this measuring device. It is suitable to be applied to a polishing device.

【0002】[0002]

【従来の技術】近時においては、半導体基板上の積層膜
を平坦化する方法として、CMP(化学機械研磨)法が
多く用いられている。CMP法による研磨では、従来の
エッチバック法などの平坦化技術と比べると大幅に平面
性を向上させることができる。
2. Description of the Related Art Recently, a CMP (Chemical Mechanical Polishing) method has been widely used as a method for flattening a laminated film on a semiconductor substrate. Polishing by the CMP method can significantly improve the flatness as compared with the conventional flattening technique such as the etch back method.

【0003】CMP法による研磨の際には、所定の膜ま
で研磨が行われたか否かを検出するため、エンドポイン
トの検出(End Point Detection)が行われている。エ
ンドポイントの検出としては、研磨パッド側からウェー
ハ表面に光を照射し、反射光から反射率を測定する分光
法、ウェーハ上に形成された導電膜相互の電流値を検出
するうず電流法、研磨パッドの回転トルクを検出するト
ルク検出法などが知られている。
During polishing by the CMP method, end point detection is performed in order to detect whether or not a predetermined film has been polished. The endpoints are detected by irradiating the wafer surface with light from the polishing pad side and then measuring the reflectance from the reflected light.A eddy current method that detects the current value between the conductive films formed on the wafer. A torque detection method for detecting the rotation torque of the pad is known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、CMP
法による研磨においても、ウェーハの全領域で数Åレベ
ルの平坦性を得ることは依然として困難が伴う。特に直
径300mmの大径ウェーハでは、ウェーハの面内で研
磨量にバラツキが生じてしまう。例えば、ダマシン法に
よる銅配線パターンの形成の際には、ウェーハ面内での
研磨量のバラツキを限りなく0に近づける必要がある
が、直径300mmのウェーハの全域でバラツキを抑え
ることは困難であった。
[Problems to be Solved by the Invention] However, CMP
Even with polishing by the method, it is still difficult to obtain flatness of several Å level over the entire area of the wafer. Particularly, in the case of a large-diameter wafer having a diameter of 300 mm, the polishing amount varies within the surface of the wafer. For example, when forming a copper wiring pattern by the damascene method, it is necessary to make the variation in the polishing amount within the wafer surface as close as possible to 0, but it is difficult to suppress the variation in the entire area of a wafer having a diameter of 300 mm. It was

【0005】また、上述したエンドポイントの検出で
は、被研磨膜の下層の膜が露出した時点で初めてエンド
ポイントが検出されるため、下層の膜が露出する以前に
は被研磨膜の研磨量、膜厚を検出することができなかっ
た。すなわち、分光法では、基板上に照射した光の反射
率の変動からエンドポイントを検出するため、被研磨膜
がウェーハ全面に残存している間は反射率に変動がな
く、被研磨膜の下層の膜が露出するまでは研磨量の変動
を検出できなかった。
Further, in the above-described detection of the endpoint, the endpoint is detected only when the lower layer film of the film to be polished is exposed. Therefore, before the lower layer film is exposed, the polishing amount of the film to be polished, The film thickness could not be detected. That is, in the spectroscopic method, since the endpoint is detected from the fluctuation of the reflectance of the light irradiated on the substrate, the reflectance does not change while the film to be polished remains on the entire surface of the wafer, and the lower layer of the film to be polished is not changed. The fluctuation of the polishing amount could not be detected until the film was exposed.

【0006】また、トルク検出法においても、被研磨膜
が全面に残存している間はトルクに変動がないため、下
層の膜が露出するまではトルクの変動を検出できなかっ
た。
Also in the torque detection method, since the torque does not fluctuate while the film to be polished remains on the entire surface, the fluctuation of the torque cannot be detected until the lower layer film is exposed.

【0007】うず電流法では、被研磨膜である半導体基
板上の導電パターン相互に流れる電流を検出するが、研
磨に伴う電流値の変化量は微小であり、精度の高い膜厚
の検出は困難であった。また、うず電流法で研磨の不均
一性が検出できるのは、下層の層間絶縁膜が露出する直
前であるため、その後に研磨量を補正することができな
かった。
In the eddy current method, a current flowing between conductive patterns on a semiconductor substrate, which is a film to be polished, is detected. However, the amount of change in current value due to polishing is minute, and it is difficult to detect the film thickness with high accuracy. Met. Further, the nonuniformity of polishing can be detected by the eddy current method just before the lower interlayer insulating film is exposed, so that the polishing amount cannot be corrected thereafter.

【0008】図8は、いわゆるダマシン法による銅配線
の形成工程を示す概略断面図であって、半導体基板10
1上の層間絶縁膜102に形成したトレンチ(溝)10
4を銅膜103で埋め込み、CMP法で研磨した状態を
示している。図8に示すように、平坦化が均一に行われ
ない場合には、半導体基板101上の一部の領域105
のみで銅膜103の下層の層間絶縁膜102が露出して
しまう。
FIG. 8 is a schematic cross-sectional view showing a step of forming a copper wiring by the so-called damascene method.
Trench 10 formed in the interlayer insulating film 102 on
4 is filled with the copper film 103 and is polished by the CMP method. As shown in FIG. 8, when planarization is not performed uniformly, a partial region 105 on the semiconductor substrate 101 is formed.
Only by that, the interlayer insulating film 102 under the copper film 103 is exposed.

【0009】上述したエンドポイントの検出方法では、
図8に示すように、領域105の層間絶縁膜102が露
出して初めてエンドポイントが検出される。しかし、図
8に示すように下層の層間絶縁膜102が露出した後に
研磨のプロファイル調整を行っても、研磨はウェーハ上
の全域で行われるため、領域105の近傍では過度に研
磨が行われてしまう。これにより、配線パターンの膜厚
の均一性が損なわれ、局所的に配線パターンの膜厚が減
少するという問題が生じていた。そして、配線パターン
の膜厚の減少によって配線抵抗が高まり、高速動作の支
障となっていた。
In the above endpoint detection method,
As shown in FIG. 8, the endpoint is detected only after the interlayer insulating film 102 in the region 105 is exposed. However, as shown in FIG. 8, even if the polishing profile adjustment is performed after the lower interlayer insulating film 102 is exposed, since the polishing is performed over the entire area of the wafer, excessive polishing is performed in the vicinity of the region 105. I will end up. As a result, the uniformity of the film thickness of the wiring pattern is impaired, and the film thickness of the wiring pattern locally decreases. The reduction in the film thickness of the wiring pattern increases the wiring resistance, which hinders high-speed operation.

【0010】この発明は上述のような問題を解決するた
めになされたものであり、被研磨膜の下層の膜が露出す
る前であっても、研磨中に被研磨膜の膜厚を測定するこ
とのできる膜厚測定装置及び基板研磨装置を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and measures the film thickness of a film to be polished during polishing even before the film underlying the film to be polished is exposed. An object of the present invention is to provide a film thickness measuring device and a substrate polishing device capable of performing the above.

【0011】[0011]

【課題を解決するための手段】この発明の膜厚測定装置
は、被測定対象である回転する基板上の導電膜と接触し
て導通し、前記導電膜の移動に伴って回動する複数の回
動部を備え、前記基板を回転させている間に前記複数の
回動部の間に印加した電位差及び電流値から前記導電膜
所定箇所の膜厚を反復的に測定するものである。
A film thickness measuring apparatus of the present invention comprises a plurality of films which are brought into contact with a conductive film on a rotating substrate, which is an object to be measured, so as to be conductive, and which are rotated with the movement of the conductive film. A rotating part is provided, and the film thickness of a predetermined portion of the conductive film is repeatedly measured from a potential difference and a current value applied between the plurality of rotating parts while the substrate is rotated .

【0012】また、前記複数の回動部を電極として、一
対の電流注入用の電極と、この一対の電流注入用の電極
の間に配置された他の一対の電圧測定用の電極とを備え
たものである。
The plurality of rotating parts are used as electrodes, and a pair of current injection electrodes and another pair of voltage measurement electrodes arranged between the pair of current injection electrodes are provided. It is a thing.

【0013】また、前記回動部が導体球からなるもので
ある。
Further, the rotating portion is made of a conductive ball.

【0014】また、前記回動部が導体円板からなるもの
である。
Further, the rotating portion is composed of a conductor disk.

【0015】また、この発明の膜厚測定装置は、先端部
が被測定対象である導電膜の表面の下部に配置される複
数の細管と、前記細管内を満たし、毛細管現象により前
記先端部よりも上側に突出して前記導電膜と接触する液
体金属とを備え、前記複数の細管の液体金属の間に印加
した電位差及び電流値から前記導電膜の膜厚を測定する
ものである。
Further, according to the film thickness measuring apparatus of the present invention, the tip portion is filled with a plurality of thin tubes arranged below the surface of the conductive film to be measured, and the inside of the thin tubes is filled by the capillary phenomenon.
A liquid metal that projects above the tip and contacts the conductive film is provided, and the film thickness of the conductive film is measured from the potential difference and the current value applied between the liquid metals of the plurality of thin tubes. .

【0016】また、前記複数の細管を電極として、一対
の電流注入用の電極と、この一対の電流注入用の電極の
間に配置された他の一対の電圧測定用の電極とを備えた
ものである。
Further, the plurality of thin tubes are used as electrodes, and a pair of current injection electrodes and another pair of voltage measurement electrodes arranged between the pair of current injection electrodes are provided. Is.

【0017】また、前記液体金属が水銀である。The liquid metal is mercury.

【0018】また、前記液体金属が親油性の導電液であ
る。
The liquid metal is a lipophilic conductive liquid.

【0019】また、この発明の基板研磨装置は、被研磨
対象である基板が装着される回転ヘッドと、前記基板の
表面と密着して前記基板表面を研磨する研磨パッドと、
前記基板表面と接触する複数の電極を有し、前記基板を
回転させている間に前記複数の電極の間に印加する電圧
と電流から前記基板表面の導電膜の所定箇所の厚さを
復的に測定する膜厚測定手段とを備えたものである。
Further, the substrate polishing apparatus of the present invention comprises a rotary head on which a substrate to be polished is mounted, a polishing pad which adheres to the surface of the substrate to polish the substrate surface,
Having a plurality of electrodes in contact with the surface of the substrate,
Anti the thickness of a predetermined portion of said plurality of conductive films of the substrate surface from the voltage and current applied between the electrodes while rotating
And a film thickness measuring means for performing a recursive measurement.

【0020】また、前記複数の電極として、一対の電流
注入用の電極と、この一対の電流注入用の電極の間に配
置された他の一対の電圧測定用の電極とを備えたもので
ある。
As the plurality of electrodes, a pair of electrodes for current injection and another pair of electrodes for voltage measurement arranged between the pair of electrodes for current injection are provided. .

【0021】また、前記電極が前記研磨パッドの所定領
域に設けられているものである。
Further, the electrode is provided in a predetermined region of the polishing pad.

【0022】また、前記電極が前記研磨パッドとは独立
して前記基板の表面に対向するように設けられているも
のである。
Further, the electrode is provided so as to face the surface of the substrate independently of the polishing pad.

【0023】また、前記電極が、前記基板と接触して前
記基板の移動に伴って回動する回動部を備えたものであ
る。
Further, the electrode is provided with a rotating portion which comes into contact with the substrate and rotates with the movement of the substrate.

【0024】また、前記回動部が導体球からなるもので
ある。
Further, the rotating portion is made of a conductive ball.

【0025】また、前記回動部が導体円板からなるもの
である。
Further, the rotating portion is composed of a conductor disk.

【0026】また、前記電極は、先端部が前記基板の表
の下部に配置される複数の細管と、前記細管内を満た
し、毛細管現象により前記先端部よりも上側に突出して
前記基板と接触する液体金属とを備えたものである。
Further, the electrode fills the inside of the thin tubes with a plurality of thin tubes whose tip portions are disposed below the surface of the substrate, and projects upward from the tip portions due to a capillary phenomenon. A liquid metal in contact with the substrate.

【0027】また、前記液体金属が水銀である。The liquid metal is mercury.

【0028】また、前記液体金属が親油性の導電液であ
る。
The liquid metal is a lipophilic conductive liquid.

【0029】[0029]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図面に基づいて説明する。図1は、実施
の形態1にかかる基板研磨装置の概略構成を示す断面図
である。図1に示すように、この基板研磨装置は、発泡
ウレタン等の研磨パッド2が設けられた定盤1、半導体
基板4が装着される回転ヘッド3を有しており、半導体
基板4と研磨パッド2の間にスラリーを流し、定盤1と
回転ヘッド3を共に回転させることによって半導体基板
4表面の研磨を行う。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a schematic configuration of a substrate polishing apparatus according to the first embodiment. As shown in FIG. 1, this substrate polishing apparatus has a surface plate 1 provided with a polishing pad 2 such as urethane foam, and a rotary head 3 on which a semiconductor substrate 4 is mounted. The surface of the semiconductor substrate 4 is polished by pouring the slurry between the two and rotating the surface plate 1 and the rotary head 3 together.

【0030】定盤1上には、膜厚測定ユニット5が設け
られている。膜厚測定ユニット5は4本の端子を備えた
ユニットであって、半導体基板4の表面に形成された導
電膜(被研磨膜)に電流を流し、いわゆる4端子法(4
探針法)によって導電膜のシート抵抗値から導電膜の膜
厚を測定するものである。
A film thickness measuring unit 5 is provided on the surface plate 1. The film thickness measuring unit 5 is a unit having four terminals, and an electric current is passed through a conductive film (a film to be polished) formed on the surface of the semiconductor substrate 4 to obtain a so-called four-terminal method (4
The film thickness of the conductive film is measured from the sheet resistance value of the conductive film by the probe method).

【0031】図2は、定盤1の上面を示す概略斜視図で
ある。図2に示すように、定盤1及び発泡ウレタン2に
膜厚測定ユニット5が挿入される凹部6が設けられてい
る。
FIG. 2 is a schematic perspective view showing the upper surface of the surface plate 1. As shown in FIG. 2, the surface plate 1 and the urethane foam 2 are provided with a recess 6 into which the film thickness measuring unit 5 is inserted.

【0032】図3は膜厚測定ユニット5の構成を示す概
略断面図である。図3に示すように、実施の形態1の膜
厚測定ユニット5は、4本の端子がボール7によって構
成されている。各ボール7はホルダ8に対して回動自在
に装着されており、ホルダ8はユニット本体9に装着さ
れている。ホルダ8とユニット本体9の間にはバネ10
が設けられている。
FIG. 3 is a schematic sectional view showing the structure of the film thickness measuring unit 5. As shown in FIG. 3, in the film thickness measurement unit 5 of the first embodiment, four terminals are composed of balls 7. Each ball 7 is rotatably attached to a holder 8, and the holder 8 is attached to a unit body 9. A spring 10 is provided between the holder 8 and the unit body 9.
Is provided.

【0033】ボール7は全ての方向に回動自在であるた
め、定盤1上の膜厚測定ユニット5の位置に制約を受け
ることなく、ボール7は半導体基板4と定盤1の相対的
な移動に追随して回動する。
Since the ball 7 is rotatable in all directions, the ball 7 is not restricted by the position of the film thickness measuring unit 5 on the surface plate 1, and the ball 7 is relatively positioned between the semiconductor substrate 4 and the surface plate 1. It rotates following the movement.

【0034】4端子法による膜厚測定では、図3に示す
ように外側の2つの端子がI端子、I端子とされ、
内側の2つの端子がV、V端子とされる。そして、
外側のI端子とI端子の間に電流iを流し、内側の
、V端子間の電位差vを測定することにより、R
=v/iからV、V端子間の配線抵抗を測定する。
配線抵抗は導電膜の膜厚に反比例するため、配線抵抗の
値から膜厚を求めることができる。
In the film thickness measurement by the four-terminal method, the two outer terminals are I 1 terminal and I 2 terminal as shown in FIG.
The two inner terminals are referred to as V 1 and V 2 terminals. And
By passing a current i between the outer I 1 and I 2 terminals and measuring the potential difference v between the inner V 1 and V 2 terminals, R
= Measure the wiring resistance between the V 1 and V 2 terminals from v / i.
Since the wiring resistance is inversely proportional to the film thickness of the conductive film, the film thickness can be obtained from the value of the wiring resistance.

【0035】4端子法による膜厚測定では、電位差を測
定する内側のV、V端子間での電流はほとんど流れ
ないため、V、V端子の接触抵抗は無視できる。こ
のため、接触抵抗が生じた場合でも、V、V端子間
で生じる電圧降下を正確に計測できる。従って、この原
理に基づいて、図3に示すように、回動するボール7に
よって4つの端子を構成した場合であっても正確に
、V端子間の電位差を測定することができ、研磨
している導電膜の膜厚を高精度に測定することができ
る。
In the film thickness measurement by the 4-terminal method, almost no current flows between the V 1 and V 2 terminals inside which the potential difference is measured, so that the contact resistance of the V 1 and V 2 terminals can be ignored. Therefore, even if the contact resistance is generated, the voltage drop generated between the V 1 and V 2 terminals can be accurately measured. Therefore, based on this principle, the potential difference between the V 1 and V 2 terminals can be accurately measured even when the rotating ball 7 constitutes four terminals as shown in FIG. The film thickness of the conductive film being polished can be measured with high accuracy.

【0036】これにより、研磨中に半導体基板4上の導
電膜の膜厚を高精度にモニタすることが可能となる。そ
して、導電膜が除去されて下層の層間絶縁膜が露出する
前から導電膜の厚さのプロファイルを測定できるため、
研磨量の少ない領域を重点的に研磨するようプロファイ
ル制御を行うことが可能となる。これにより、直径30
0mmウェーハなどの大径ウェーハであっても、ウェー
ハの全域で研磨量を一定に保つことが可能となる。プロ
ファイル制御は、回転ヘッド3にかける下向きの力(研
磨加工圧)、定盤1及び回転ヘッド3の加工圧、回転
数、スラリーの供給量などのパラメータを変更すること
によって行う。これにより、導電膜の膜厚が厚い領域の
研磨量を多くし、導電膜の膜厚が小さい領域の研磨量を
少なくすることができ、直径300mmのウェーハであ
っても面内の研磨量のバラツキを最小限に抑えることが
できる。
As a result, the film thickness of the conductive film on the semiconductor substrate 4 can be monitored with high accuracy during polishing. Then, the thickness profile of the conductive film can be measured before the conductive film is removed and the lower interlayer insulating film is exposed.
It becomes possible to perform profile control so as to focus the polishing on a region having a small polishing amount. This gives a diameter of 30
Even with a large-diameter wafer such as a 0 mm wafer, the polishing amount can be kept constant over the entire area of the wafer. Profile control is performed by changing parameters such as a downward force (polishing processing pressure) applied to the rotary head 3, a processing pressure of the surface plate 1 and the rotary head 3, a rotation speed, and a slurry supply amount. This makes it possible to increase the polishing amount in the region where the conductive film has a large film thickness and reduce the polishing amount in the region where the conductive film has a small film thickness. Variations can be minimized.

【0037】以上説明したように実施の形態1によれ
ば、膜厚測定ユニット5を4つのボール7を備えたユニ
ットから構成したため、定盤1と回転ヘッド3が回転し
ている状態であっても、ボールと半導体基板4を接触さ
せることが可能となる。これにより、4つのボール7を
端子として、4端子法による膜厚測定を行うことが可能
となる。従って、研磨の最中であっても研磨している導
電膜の膜厚のプロファイルをリアルタイムで得ることが
可能となり、研磨プロファイルの調整を行うことが可能
となる。そして、半導体基板4の全域で均一な研磨を行
うことが可能となり、ダマシン法などにより形成される
配線パターンに過研磨が行われることを抑止でき、所望
の膜厚の配線パターンを形成することが可能となる。
As described above, according to the first embodiment, since the film thickness measuring unit 5 is composed of the unit including the four balls 7, the surface plate 1 and the rotary head 3 are in a rotating state. Also, the balls can be brought into contact with the semiconductor substrate 4. This makes it possible to measure the film thickness by the four-terminal method using the four balls 7 as terminals. Therefore, even during polishing, it is possible to obtain the profile of the film thickness of the conductive film being polished in real time, and the polishing profile can be adjusted. Then, it becomes possible to uniformly polish the entire area of the semiconductor substrate 4, it is possible to prevent the wiring pattern formed by the damascene method or the like from being excessively polished, and to form a wiring pattern having a desired film thickness. It will be possible.

【0038】実施の形態2.次に、図4及び図5に基い
て、この発明の実施の形態2について説明する。実施の
形態2は、膜厚測定ユニット5の4つの端子I
,V,Vを回動可能な4つのローラ11によっ
て構成し、実施の形態1と同様に4端子法による膜厚測
定を行うものである。
Embodiment 2. Next, a second embodiment of the invention will be described with reference to FIGS. 4 and 5. In the second embodiment, the four terminals I 1 of the film thickness measuring unit 5,
I 2 , V 1 and V 2 are composed of four rotatable rollers 11, and the film thickness is measured by the 4-terminal method as in the first embodiment.

【0039】図4に示すように、4つのローラ11は1
本の回転軸12に対して回動可能に挿入されている。各
ローラ11は円板状の金属から構成されている。半導体
基板4との接触抵抗を低減するため、各ローラ11の外
周はエッジ状の鋭角形状とされている。
As shown in FIG. 4, the four rollers 11 are
It is rotatably inserted into the rotary shaft 12 of the book. Each roller 11 is made of a disc-shaped metal. In order to reduce the contact resistance with the semiconductor substrate 4, the outer periphery of each roller 11 has an edge-shaped acute angle shape.

【0040】回転軸12には4つのローラ11に対応し
て導電膜12aが形成されている。各ローラ11と各導
電膜12aは電気的に接続されており、導電膜12aを
介して各ローラ11へ電流が流れ、また、各ローラ11
の電位が計測される。
A conductive film 12a is formed on the rotary shaft 12 so as to correspond to the four rollers 11. Each roller 11 and each conductive film 12a are electrically connected to each other, a current flows to each roller 11 through the conductive film 12a, and each roller 11
Is measured.

【0041】このように、実施の形態2では4つのロー
ラ11と回転軸12から膜厚測定ユニット5を構成して
いるため、4つの端子の回転機構を簡素に構成すること
ができ、製造コストを低減させることができる。
As described above, in the second embodiment, since the film thickness measuring unit 5 is composed of the four rollers 11 and the rotating shaft 12, the rotating mechanism of the four terminals can be simply constructed, and the manufacturing cost can be reduced. Can be reduced.

【0042】実施の形態2の膜厚測定ユニット5では、
半導体基板4の移動方向が回転軸12に対して垂直方向
であることが望ましい。従って、図5に示すように、研
磨パッド2から独立して膜厚測定ユニット5を設ける場
合に適している。
In the film thickness measuring unit 5 of the second embodiment,
It is desirable that the moving direction of the semiconductor substrate 4 be perpendicular to the rotation axis 12. Therefore, as shown in FIG. 5, it is suitable when the film thickness measuring unit 5 is provided independently of the polishing pad 2.

【0043】図5は、半導体基板4よりも小さい研磨パ
ッド2を備えた基板研磨装置に実施の形態2の膜厚測定
ユニット5を設けた例を示している。この基板研磨装置
では、半導体基板4上に研磨パッド2が配置されてい
る。そして、半導体基板4と、半導体基板4よりも小さ
い研磨パッド2を共に回転させることによって半導体基
板4の表面が研磨される。
FIG. 5 shows an example in which the film thickness measuring unit 5 of the second embodiment is provided in a substrate polishing apparatus having a polishing pad 2 smaller than the semiconductor substrate 4. In this substrate polishing apparatus, the polishing pad 2 is arranged on the semiconductor substrate 4. Then, the surface of the semiconductor substrate 4 is polished by rotating the semiconductor substrate 4 and the polishing pad 2 smaller than the semiconductor substrate 4 together.

【0044】図5に示す基板研磨装置では、半導体基板
4の回転方向と、膜厚測定ユニット5の回転軸12aの
長手方向とが垂直となるように構成されている。これに
より、半導体基板4の回転が効率良くローラ11に伝達
され、半導体基板4及びローラ11に無理な力がかかる
ことを抑止できる。
In the substrate polishing apparatus shown in FIG. 5, the rotation direction of the semiconductor substrate 4 and the longitudinal direction of the rotation shaft 12a of the film thickness measuring unit 5 are perpendicular to each other. Thereby, the rotation of the semiconductor substrate 4 is efficiently transmitted to the roller 11, and it is possible to prevent the semiconductor substrate 4 and the roller 11 from being subjected to an excessive force.

【0045】実施の形態3.次に、図6及び図7に基い
て、この発明の実施の形態3について説明する。実施の
形態3は、膜厚測定ユニット5の4つの端子I
,V,Vを液体金属(例えば水銀(Hg))に
よって構成したものである。
Embodiment 3. Next, a third embodiment of the invention will be described with reference to FIGS. 6 and 7. In the third embodiment, the four terminals I 1 of the film thickness measurement unit 5,
I 2 , V 1 and V 2 are composed of liquid metal (for example, mercury (Hg)).

【0046】図6に示すように、この膜厚測定ユニット
5は4つの導電性の毛細管13を有して構成されてお
り、毛細管現象によって上方に吸い上げられた水銀14
が毛細管13の先端で球状に突出している。突出した水
銀14は、表面張力によって流れることなく毛細管13
の先端部に留まっている。
As shown in FIG. 6, the film thickness measuring unit 5 has four conductive capillaries 13, and the mercury 14 sucked upward by the capillarity phenomenon.
Is spherically projected at the tip of the capillary tube 13. The protruding mercury 14 does not flow due to surface tension and does not flow into the capillary tube 13.
Stays at the tip of.

【0047】実施の形態3の膜厚測定ユニット5は、毛
細管13の先端から突出した水銀14を半導体基板4上
の導電膜に接触させることにより、実施の形態1と同様
に4端子法による膜厚測定を行うものである。水銀14
と導電膜の接触は金属同士の接触であり、密着性が高い
ため、定盤1及び回転ヘッド3が回転して半導体基板4
を研磨している最中であっても、水銀14と導電膜を確
実に接触させることができる。また、水銀14とスラリ
ーはなじみにくいため、水銀14と導電膜の間にスラリ
ーが入ることが抑止される。
In the film thickness measuring unit 5 of the third embodiment, the mercury 14 projecting from the tip of the capillary tube 13 is brought into contact with the conductive film on the semiconductor substrate 4, so that the film is formed by the four-terminal method as in the first embodiment. The thickness is measured. Mercury 14
Since the contact between the conductive film and the conductive film is metal-to-metal contact and the adhesion is high, the surface plate 1 and the rotary head 3 rotate to rotate the semiconductor substrate 4
The mercury 14 and the conductive film can be surely brought into contact with each other even during polishing. Further, since the mercury 14 and the slurry are hard to fit in, it is possible to prevent the slurry from entering between the mercury 14 and the conductive film.

【0048】図7は、毛細管13の先端の水銀14と半
導体基板4の表面が接触した状態を示す概略断面図であ
る。図7に示すように、毛細管13の内径2rに対して
毛細管13の先端と半導体基板4の距離dを十分小さく
しておく。これにより、毛細管13内の水銀14が半導
体基板4上に流れ出すことを抑えることができる。特
に、水銀14は表面張力が大きいため、内径2rに対し
て距離dを十分小さくすることにより、水銀14が毛細
管13と半導体基板4の間から流れ出すことを抑止でき
る。
FIG. 7 is a schematic sectional view showing a state in which the mercury 14 at the tip of the capillary tube 13 and the surface of the semiconductor substrate 4 are in contact with each other. As shown in FIG. 7, the distance d between the tip of the capillary tube 13 and the semiconductor substrate 4 is made sufficiently small with respect to the inner diameter 2r of the capillary tube 13. This can prevent the mercury 14 in the capillary tube 13 from flowing out onto the semiconductor substrate 4. In particular, since the surface tension of mercury 14 is large, it is possible to prevent the mercury 14 from flowing out between the capillary tube 13 and the semiconductor substrate 4 by making the distance d sufficiently smaller than the inner diameter 2r.

【0049】毛細管13の内径が所定値以下であれば、
毛細管現象によって自然に水銀14を毛細管13の先端
部に突出させることができる。好適には、毛細管13の
内径2rを1mm程度以下とすることにより毛細管現象
を利用することができる。内径2rは水銀14が通る条
件下で最小値まで小さくすることができる。また、下側
から圧力をかけて水銀14を毛細管13の先端に突出さ
せるようにしてもよい。この場合には、圧力を調整する
ことによって水銀14の突出量を制御することができ、
半導体基板4上の膜との密着性を可変することができ
る。
If the inner diameter of the capillary tube 13 is less than a predetermined value,
Due to the capillary phenomenon, the mercury 14 can naturally be caused to protrude to the tip of the capillary tube 13. Preferably, the capillary phenomenon can be utilized by setting the inner diameter 2r of the capillary tube 13 to about 1 mm or less. The inner diameter 2r can be reduced to the minimum value under the condition that the mercury 14 passes. Alternatively, pressure may be applied from below to cause the mercury 14 to project to the tip of the capillary tube 13. In this case, the amount of protrusion of the mercury 14 can be controlled by adjusting the pressure,
The adhesion with the film on the semiconductor substrate 4 can be changed.

【0050】半導体基板4上の導電膜が完全に研磨され
て、下層の層間絶縁膜が露出した場合には、毛細管13
の先端に突出した水銀14を毛細管13内に納めるよう
にする。
When the conductive film on the semiconductor substrate 4 is completely polished to expose the underlying interlayer insulating film, the capillary tube 13
The mercury 14 protruding at the tip of the tube is housed in the capillary tube 13.

【0051】また、毛細管13から液体金属を流すよう
にしても良い。半導体基板4の表面はスラリーで濡れて
いるため、半導体基板4上の導電膜への導通を確実に行
うためには、液体金属としてブラックカーボンなどの親
油性導電液を用いることが望ましい。この場合は、毛細
管現象を利用しないため、毛細管の内径については特に
制約はない。
Further, liquid metal may be made to flow from the capillary tube 13. Since the surface of the semiconductor substrate 4 is wet with the slurry, it is desirable to use a lipophilic conductive liquid such as black carbon as the liquid metal in order to surely conduct electricity to the conductive film on the semiconductor substrate 4. In this case, since the capillary phenomenon is not used, there is no particular restriction on the inner diameter of the capillary tube.

【0052】このように、ブラックカーボンなどの親油
性導電液を毛細管13から半導体基板4の表面へ流すこ
とにより、毛細管13と半導体基板4上の導電膜を導通
させることができる。この際、半導体基板4上に一定量
以上の親油性導電液が流れると端子間がショートする場
合があるため、パルス的に導電液を流すことが望まし
い。これにより、隣接する毛細管13間が短絡する前に
測定を行うことができる。
As described above, by flowing the lipophilic conductive liquid such as black carbon from the capillary tube 13 to the surface of the semiconductor substrate 4, the capillary tube 13 and the conductive film on the semiconductor substrate 4 can be electrically connected. At this time, if a certain amount or more of the lipophilic conductive liquid flows on the semiconductor substrate 4, a short circuit may occur between the terminals, so it is desirable to flow the conductive liquid in a pulsed manner. Accordingly, the measurement can be performed before the adjacent capillaries 13 are short-circuited.

【0053】[0053]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0054】被測定対象である基板上の導電膜と接触し
て導通し、導電膜の移動に伴って回動する複数の回動部
を設けたことにより、導電膜を研磨している最中に回動
部を導電膜と接触させることが可能となる。そして、導
電膜上の2点間の電位差及び電流値から研磨中に膜厚を
測定することが可能となる。
During the polishing of the conductive film, a plurality of rotating portions are provided which are brought into contact with the conductive film on the substrate to be measured so as to be conductive and rotate with the movement of the conductive film. In addition, the rotating part can be brought into contact with the conductive film. Then, the film thickness can be measured during polishing from the potential difference between the two points on the conductive film and the current value.

【0055】複数の回動部を電極として、一対の電流注
入用の電極と、この一対の電流注入用の電極の間に配置
された他の一対の電圧測定用の電極とを設けたことによ
り、いわゆる4端子法による膜厚測定が可能となる。
By providing a pair of current injection electrodes and another pair of voltage measurement electrodes arranged between the pair of current injection electrodes, the plurality of rotating parts are used as electrodes. The film thickness can be measured by the so-called 4-terminal method.

【0056】回動部を導体球によって構成したため、被
測定対象である導電膜が形成された基板の移動方向に制
約を受けることなく、回動部を導電膜と接触させること
ができる。
Since the rotating portion is composed of the conductive sphere, the rotating portion can be brought into contact with the conductive film without being restricted by the moving direction of the substrate on which the conductive film to be measured is formed.

【0057】回動部を導体円板から構成したため、簡素
な構成で基板の導電膜の動きに追従させることができ、
測定装置のコストを低減させることができる。
Since the rotating portion is composed of the conductive disk, it is possible to follow the movement of the conductive film of the substrate with a simple structure.
The cost of the measuring device can be reduced.

【0058】細管内を満たす液体金属を被測定対象であ
る導電膜と接触させたことにより、導電膜を研磨してい
る最中であっても液体金属を導電膜と接触させることが
できる。そして、導電膜上の2点間の電位差及び電流値
から研磨中に膜厚を測定することが可能となる。
By bringing the liquid metal filling the narrow tube into contact with the conductive film to be measured, the liquid metal can be brought into contact with the conductive film even while the conductive film is being polished. Then, the film thickness can be measured during polishing from the potential difference between the two points on the conductive film and the current value.

【0059】複数の細管を電極として、一対の電流注入
用の電極と、この一対の電流注入用の電極の間に配置さ
れた他の一対の電圧測定用の電極とを設けたことによ
り、いわゆる4端子法による膜厚測定が可能となる。
By using a plurality of thin tubes as electrodes, a pair of electrodes for current injection and another pair of electrodes for voltage measurement arranged between the pair of electrodes for current injection are provided. The film thickness can be measured by the 4-terminal method.

【0060】液体金属を表面張力の高い水銀としたこと
により、細管から導電膜上に液体金属が流れ出してしま
うことを抑止できる。従って、複数の細管の間を短絡さ
せることなく液体金属と導電膜を接触させることができ
る。
By using mercury having a high surface tension as the liquid metal, it is possible to prevent the liquid metal from flowing out from the thin tube onto the conductive film. Therefore, the liquid metal and the conductive film can be brought into contact with each other without short-circuiting the plurality of thin tubes.

【0061】液体金属を親油性の導電液としたことによ
り、研磨される導電膜上に供給されているスラリーなど
の液体が供給されている場合であっても、確実に導電液
と導電膜と接触させることができる。
By using the liquid metal as the lipophilic conductive liquid, the conductive liquid and the conductive film are surely formed even when the liquid such as the slurry supplied on the conductive film to be polished is supplied. Can be contacted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施の形態1にかかる基板研磨装置の概略構
成を示す断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a substrate polishing apparatus according to a first embodiment.

【図2】 定盤の上面を示す概略斜視図である。FIG. 2 is a schematic perspective view showing an upper surface of a surface plate.

【図3】 実施の形態1の膜厚測定ユニットの構成を示
す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing the configuration of the film thickness measurement unit according to the first embodiment.

【図4】 実施の形態2の膜厚測定ユニットの構成を示
す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing a configuration of a film thickness measurement unit according to a second embodiment.

【図5】 半導体基板上に研磨パッドが備えられた基板
研磨装置に実施の形態2の膜厚測定ユニットを設けた例
を示す概略斜視図である。
FIG. 5 is a schematic perspective view showing an example in which a film thickness measuring unit according to the second embodiment is provided in a substrate polishing apparatus in which a polishing pad is provided on a semiconductor substrate.

【図6】 実施の形態3の膜厚測定ユニットの構成を示
す概略断面図である。
FIG. 6 is a schematic sectional view showing a configuration of a film thickness measurement unit according to a third embodiment.

【図7】 毛細管の先端の水銀と半導体基板の表面が接
触した状態を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a state where mercury at the tip of a capillary tube and the surface of a semiconductor substrate are in contact with each other.

【図8】 ダマシン法による銅配線の形成工程を示す概
略断面図である。
FIG. 8 is a schematic cross-sectional view showing a step of forming a copper wiring by a damascene method.

【符号の説明】 1 定盤、 2 研磨パッド、 3 回転ヘッド、 4
半導体基板、 5膜厚測定ユニット、 6 凹部、
7 ボール、 8 ホルダ、 9 ユニット本体、 1
0 バネ、 11 ローラ、 12 回転軸、 13
毛細管、 14 水銀。
[Explanation of symbols] 1 surface plate, 2 polishing pad, 3 rotating head, 4
Semiconductor substrate, 5 film thickness measurement unit, 6 recess,
7 balls, 8 holders, 9 unit body, 1
0 spring, 11 roller, 12 rotating shaft, 13
Capillary, 14 mercury.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 7/06 B24B 37/04 H01L 21/304 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) G01B 7/06 B24B 37/04 H01L 21/304

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定対象である回転する基板上の導電
膜と接触して導通し、前記導電膜の移動に伴って回動す
る複数の回動部を備え、前記基板を回転させている間に
前記複数の回動部の間に印加した電位差及び電流値から
前記導電膜の所定箇所の膜厚を反復的に測定することを
特徴とする膜厚測定装置。
1. The substrate is rotated , comprising a plurality of rotating portions which are brought into contact with a conductive film on a rotating substrate, which is an object to be measured, so as to be conductive, and which rotate with the movement of the conductive film . thickness measuring device according to claim <br/> repeating measuring the thickness of a predetermined portion of the conductive layer from the potential and the current value is applied between the plurality of rotating parts in between.
【請求項2】 前記複数の回動部を電極として、一対の
電流注入用の電極と、この一対の電流注入用の電極の間
に配置された他の一対の電圧測定用の電極とを備えたこ
とを特徴とする請求項1記載の膜厚測定装置。
2. A pair of electrodes for current injection and a pair of electrodes for voltage measurement arranged between the pair of electrodes for current injection using the plurality of rotating parts as electrodes. The film thickness measuring device according to claim 1, wherein
【請求項3】 前記回動部が導体球からなることを特徴
とする請求項1又は2記載の膜厚測定装置。
3. The film thickness measuring device according to claim 1, wherein the rotating portion is made of a conductive sphere.
【請求項4】 前記回動部が導体円板からなることを特
徴とする請求項1又は2記載の膜厚測定装置。
4. The film thickness measuring device according to claim 1, wherein the rotating portion is formed of a conductor disk.
【請求項5】 先端部が被測定対象である導電膜の表面
の下部に配置される複数の細管と、 前記細管内を満たし、毛細管現象により前記先端部より
も上側に突出して前記導電膜と接触する液体金属とを備
え、 前記複数の細管の液体金属の間に印加した電位差及び電
流値から前記導電膜の膜厚を測定することを特徴とする
膜厚測定装置。
5. The surface of a conductive film whose tip is an object to be measured.
A plurality of thin tubes arranged in the lower part of the
Also includes a liquid metal protruding upward and in contact with the conductive film, wherein the film thickness of the conductive film is measured from a potential difference and a current value applied between the liquid metals of the plurality of capillaries. measuring device.
【請求項6】 前記複数の細管を電極として、一対の電
流注入用の電極と、この一対の電流注入用の電極の間に
配置された他の一対の電圧測定用の電極とを備えたこと
を特徴とする請求項5記載の膜厚測定装置。
6. A plurality of thin tubes are used as electrodes, and a pair of electrodes for current injection and another pair of electrodes for voltage measurement arranged between the pair of electrodes for current injection are provided. The film thickness measuring device according to claim 5.
【請求項7】 前記液体金属が水銀であることを特徴と
する請求項5又は6記載の膜厚測定装置。
7. The film thickness measuring device according to claim 5, wherein the liquid metal is mercury.
【請求項8】 前記液体金属が親油性の導電液であるこ
とを特徴とする請求項5又は6記載の膜厚測定装置。
8. The film thickness measuring device according to claim 5, wherein the liquid metal is a lipophilic conductive liquid.
【請求項9】 被研磨対象である基板が装着される回転
ヘッドと、 前記基板の表面と密着して前記基板表面を研磨する研磨
パッドと、 前記基板表面と接触する複数の電極を有し、前記基板を
回転させている間に前記複数の電極の間に印加する電圧
と電流から前記基板表面の導電膜の所定箇所の厚さを
復的に測定する膜厚測定手段とを備えたことを特徴とす
る基板研磨装置。
9. A rotary head on which a substrate to be polished is mounted, a polishing pad that adheres to the surface of the substrate to polish the substrate surface, and a plurality of electrodes that contact the substrate surface, The substrate
Anti the thickness of a predetermined portion of said plurality of conductive films of the substrate surface from the voltage and current applied between the electrodes while rotating
A substrate polishing apparatus comprising: a film thickness measuring means for performing a recursive measurement.
【請求項10】 前記複数の電極として、一対の電流注
入用の電極と、この一対の電流注入用の電極の間に配置
された他の一対の電圧測定用の電極とを備えたことを特
徴とする請求項9記載の基板研磨装置。
10. The plurality of electrodes comprises a pair of electrodes for current injection and another pair of electrodes for voltage measurement arranged between the pair of electrodes for current injection. The substrate polishing apparatus according to claim 9.
【請求項11】 前記電極が前記研磨パッドの所定領域
に設けられていることを特徴とする請求項9又は10記
載の基板研磨装置。
11. The substrate polishing apparatus according to claim 9, wherein the electrode is provided in a predetermined region of the polishing pad.
【請求項12】 前記電極が前記研磨パッドとは独立し
て前記基板の表面に対向するように設けられていること
を特徴とする請求項9又は10記載の基板研磨装置。
12. The substrate polishing apparatus according to claim 9, wherein the electrode is provided so as to face the surface of the substrate independently of the polishing pad.
【請求項13】 前記電極が、前記基板と接触して前記
基板の移動に伴って回動する回動部を備えたことを特徴
とする請求項9〜12のいずれかに記載の基板研磨装
置。
13. The substrate polishing apparatus according to claim 9, wherein the electrode is provided with a rotating portion that comes into contact with the substrate and rotates with the movement of the substrate. .
【請求項14】 前記回動部が導体球からなることを特
徴とする請求項13記載の基板研磨装置。
14. The substrate polishing apparatus according to claim 13, wherein the rotating portion is a conductive ball.
【請求項15】 前記回動部が導体円板からなることを
特徴とする請求項13記載の基板研磨装置。
15. The substrate polishing apparatus according to claim 13, wherein the rotating portion is made of a conductor disk.
【請求項16】 前記電極は、 先端部が前記基板の表面の下部に配置される複数の細管
と、 前記細管内を満たし、毛細管現象により前記先端部より
も上側に突出して前記基板と接触する液体金属とを備え
たことを特徴とする請求項9〜12のいずれかに記載の
基板研磨装置。
16. The electrode includes a plurality of capillaries tip disposed below the surface of the substrate, fill the narrow tube, from the distal end by capillary action
The substrate polishing apparatus according to any one of claims 9 to 12, further comprising a liquid metal protruding upward and contacting the substrate.
【請求項17】 前記液体金属が水銀であることを特徴
とする請求項16記載の基板研磨装置。
17. The substrate polishing apparatus according to claim 16, wherein the liquid metal is mercury.
【請求項18】 前記液体金属が親油性の導電液である
ことを特徴とする請求項16記載の基板研磨装置。
18. The substrate polishing apparatus according to claim 16, wherein the liquid metal is a lipophilic conductive liquid.
JP2001259763A 2001-08-29 2001-08-29 Film thickness measuring device and substrate polishing device Expired - Fee Related JP3514743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259763A JP3514743B2 (en) 2001-08-29 2001-08-29 Film thickness measuring device and substrate polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259763A JP3514743B2 (en) 2001-08-29 2001-08-29 Film thickness measuring device and substrate polishing device

Publications (2)

Publication Number Publication Date
JP2003065707A JP2003065707A (en) 2003-03-05
JP3514743B2 true JP3514743B2 (en) 2004-03-31

Family

ID=19087085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259763A Expired - Fee Related JP3514743B2 (en) 2001-08-29 2001-08-29 Film thickness measuring device and substrate polishing device

Country Status (1)

Country Link
JP (1) JP3514743B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426529B2 (en) * 2015-04-28 2018-11-21 日立Geニュークリア・エナジー株式会社 Film thickness measuring method and film thickness measuring apparatus
CN114719807B (en) * 2022-06-09 2022-09-06 山东达驰电气有限公司 Transformer part thickness detection device

Also Published As

Publication number Publication date
JP2003065707A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US6620336B2 (en) Polishing pad, polishing apparatus and polishing method
KR100255063B1 (en) Flattening method and apparatus for semiconductor device
US20050173259A1 (en) Endpoint system for electro-chemical mechanical polishing
JP4163516B2 (en) Integrated endpoint detection system with optical and eddy current monitoring
US6517413B1 (en) Method for a copper CMP endpoint detection system
JP5542293B2 (en) Field end point detection and process monitoring method and apparatus for chemical mechanical polishing
US6515493B1 (en) Method and apparatus for in-situ endpoint detection using electrical sensors
US20070239309A1 (en) Polishing apparatus and polishing method
JPH0761610B2 (en) Polishing method and device
US20050061674A1 (en) Endpoint compensation in electroprocessing
CN1246125C (en) End point detection system for mechanical polishing applications
TW490360B (en) End-point detection system for chemical mechanical polishing applications
TW202339902A (en) Technique for training neural network for use in in-situ monitoring during polishing and polishing system
KR100298822B1 (en) Apparatus for cmp and method for cmp
KR20180059351A (en) Polishing apparatus and polishing method
JP3514743B2 (en) Film thickness measuring device and substrate polishing device
JP3507678B2 (en) Polishing slurry, substrate polishing apparatus and substrate polishing method
US6432728B1 (en) Method for integration optimization by chemical mechanical planarization end-pointing technique
US7690966B1 (en) Method and apparatus for detecting planarization of metal films prior to clearing
JP4020739B2 (en) Polishing device
JP2007266235A (en) Polishing device
US6607650B1 (en) Method of forming a plated layer to a predetermined thickness
JP2001274126A (en) Polishing apparatus
KR100585070B1 (en) Apparatus for detecting end point during chemical-mechanical polishing process
JP2002025959A (en) Grinding apparatus of semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees