JP3513287B2 - Dynamic vibration absorber - Google Patents

Dynamic vibration absorber

Info

Publication number
JP3513287B2
JP3513287B2 JP27488495A JP27488495A JP3513287B2 JP 3513287 B2 JP3513287 B2 JP 3513287B2 JP 27488495 A JP27488495 A JP 27488495A JP 27488495 A JP27488495 A JP 27488495A JP 3513287 B2 JP3513287 B2 JP 3513287B2
Authority
JP
Japan
Prior art keywords
weight
base plate
dynamic vibration
vibration absorber
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27488495A
Other languages
Japanese (ja)
Other versions
JPH0989043A (en
Inventor
幸治 山崎
慶明 満山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27488495A priority Critical patent/JP3513287B2/en
Publication of JPH0989043A publication Critical patent/JPH0989043A/en
Application granted granted Critical
Publication of JP3513287B2 publication Critical patent/JP3513287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、大型構造物、高層
構造物等の振動を制振する動吸振装置に関する。 【0002】 【従来の技術】動吸振装置の基本構成は、図7側面図
に示すように、重錘01と、ばね要素03と、球軸受0
2とで構成され、特に重錘01は大きな重錘011と調
整のための小さい重錘012とで構成されている。この
種の動吸振器はその固有振動数ωを被制振構造物の固有
振動数ω0 に一致させることによって被制振構造物の振
動振幅や振動加速度等を低減させることができる。ここ
で、重錘01の質量Mと、ばね要素03の剛性Kによ
り、動吸振器の固有振動数ωは式(1)で与えられる。 ω=√(K/M) ・・・・・・(1) したがって、ωをω0 に調整するためには、M又はKを
変化させる必要がある。また、構造物の振動を最も良く
低減するための動吸振器の減衰は式(2)で与えられ
る。 ξ=√〔3μ/〔8(1+μ)3 〕〕 ・・・・・(2) ただし、μ=動吸振器の質量M/構造物質量M0 ξ=減衰比 【0003】 【発明が解決しようとする課題】しかしながら、この種
の動吸振器においては、その固有振動数を広範囲にかつ
正確に対象構造物のそれに一致させるためには、図7に
示すように、大きい重錘011の上に小重錘012を重
ね調整する必要があるので、調整に時間がかかる。ま
た、小重錘012の増加にともない重錘01の重心が変
化し、動吸振器の信頼性を損なう惧れがある。 【0004】本発明はこのような事情に鑑みて提案さ
れたもので、固有振動数を広範囲にわたって調整するこ
とができるとともに、重錘の増減による重心の変化を少
なくすることが可能な構造簡単、コスト低廉かつ信頼性
大なる動吸振装置を提供することを目的とする。 【0005】 【課題を解決するための手段】この目的を達成するため
に、本発明の動吸振装置は、縦長水平長方形の底板の左
右両側に沿って互いに平行に突設された同一断面かつ同
一長さを有する左右1対の型鋼レールと、上記各型鋼レ
ール上にそれぞれ配置されそれぞれ縦方向に転動自在
に支持された球軸受及び高さの増加に伴って反力が非線
型に増加する非線型特性ばねよりなる同一サイズの複数
対の支持部材対と、上記複数の支持部材上に左右部が支
持された前後方向に移動自在の水平長方形の重錘荷重支
持台板と、上記重錘荷重支持台板の縦方向中心線上であ
って同台板の下面に固着された大重錘及び同台板の上面
に固着され同一サイズの長方形鋼板からなる小重錘と、
上記球軸受と上記重錘荷重支持台板との間に挿入支持さ
れた複数板のシムとをえたことを特徴とする。 【0006】 【発明の実施の形態】本発明の一実施例を図面について
説明すると、図1はその全体横断面図、図2は図1のII
ーII矢視縦断面図、図3は図1のIII部を示す拡大図、
図4は図3のへリカルコイルばねを示す平面図、側面図
である。図5は図4のヘリカルコイルばねの組立要領を
示す工程図、図6は図4のヘリカルコイルばねの特性図
及びその配置要領を示す図である。 【0007】まず、図1〜図2において、全体的構造を
説明すると、被制振構造物7の上にばね要素としてヘリ
カルコイルばね(以下ばねという)3、大重錘11とし
て鋼塊及び小重錘12としての複数鋼板、型鋼5等で
構成されたカバー6付きの水平振動用動吸振器が搭載さ
れている。ここで、球軸受2とばね3とは1対的に対設
され、本実施例では4対の球軸受2及びばね3が前後方
向に左右2列となって左右の平行I型鋼5、5上に合計
8対が配置されている。合計8対の球軸受〜ばねの上に
は水平長方形の重錘支持台板1aの左右部が上載支持さ
れ、重錘支持台板1aの長手中心線に沿って重錘1が支
持されており、重錘1は重錘支持台板1a上の上面に固
着された複数の同一長方形鋼板からなる小重錘12と、
重錘支持台板の下面に固着された長方立方体状の鋼塊か
らなる大重錘11とからなる。 【0008】次に、図3〜図4において、ばねの構造を
説明すると、ばね3は、図4に示すように、適宜上下間
隔で前後方向に延びる同一サイズの水平長方形の上部バ
ー3a,下部バー3bと、両バー3a,3bの左側面同
士、右側面同士に一定ピッチで穿設された同径の複数
(ここでは、前後部それぞれ5個ずつ)上部取付孔3
c,下部取付孔3dとを有し、前部片側各5個の取付孔
上下バーとも、同図(A)に示すように、中心Oに
向かうハ字状をなすように、後部片側各5個の取付孔
上下バーとも中心Oに向かうハ字状をなすように、
それぞれ穿設されている。ここで、各上下1対の上部取
付孔3c、下部取付孔3dにはより線よりなる半円状の
ばねエレメント3eの上下端がそれぞれ挿入され、凝固
剤等により固着されている。したがって、各ばねエレメ
ント3eは、同図(A)平面図に示すように、前部の5
本は前方に拡開する方向を向き、後部の5本は後方に拡
開する方向を向いており、コイルばねエレメントの全長
はL、横幅はB,全高はHである。ここで、ヘリカルコ
イルばねの組立要領の一例を説明すると、図5におい
て、まず、(1)に示すように、ヘリカル細線を20本
束ねて(2)に示す適長の単位ばねを形成し、この単位
ばねの7本を、(3)に示すように、束ねて、湾曲して
円弧状単位ばねを複数本製作する。次に、(4)に示す
ように、各上下1対の長方形支持台板1a,1bの長手
方向の両側に等間隔に左右それぞれ5個ずつの傾斜挿入
孔をあけたのち、各円弧状単位ばねの上下端をそれぞれ
上下部バー3a,3bの各挿入孔3c,3dに挿入し、
それぞれ凝固剤等で固着するのである。 【0009】このような構成によれば、動吸振器はばね
の高さを調整することにより鋼性Kを調整できるので、
重錘の重量を増減させることなく動吸振器の固有振動数
を所要の値に設定できる。 【0010】また、球軸受部の構造を説明すると、図3
において、2aはI型鋼5の上面に縦設された前後方向
の溝部材2bの溝に挿入された複数の等径鋼球、は重
錘支持台板1aの下面の左右部に沿って貼着された前後
方向に延びる複数の同一サイズのシム板である。このよ
うに、等径鋼球2a,溝部材2b及びシム板により
球軸受2が形成されている。また、シムの板厚の調整に
当たっては、重錘及びその取付台板の全体を持ち上げて
ボルトナットを外して行う。シム板はボルトナットで
支持台板1aに固着されているので、取外しは容易であ
る。 【0011】このような構造の動吸振装置において、鋼
板の質量をM,ばね鋼性をKとすると、この動吸振器の
固有振動数は式(3)により求めることができる。ここ
で、ヘリカルコイルばね3の鋼性Kは、図6に示すよう
に、振幅依存性(図8参照)があり、ばねの静たわみx
の関数となる。通常、同図に示されるように、静たわみ
xと鋼性Kの関係は式(3)によって示される。 K=A(1/xr) ・・・・・(3) A:定数 r:>1の定数 したがって、球軸受のシム4の板厚を調整することによ
って、固有振動数を所要の値に設定することができる。 【0012】なお、上記実施例においては、重錘は全体
装置の重心が大重錘11、小重錘12の各重量によりば
ね取付位置付近にあるようになっており、その重量調整
は小重錘12をなす鋼板のみの増減で行う。 【0013】 【発明の効果】このような動吸振器は多数の小重錘を用
いずに、ばねの静たわみ量を変えて鋼性を変えることに
よって固有振動数を調節できる。さらに、重量を球軸受
のみが受持ち、ばねには重量負荷が加わらないのでばね
の疲労が小さい。このため動吸振器の性能及び信頼性を
高めることができる。 【0014】要するに、本発明の動吸振装置によれば、
縦長水平長方形の底板の左右両側に沿って互いに平行に
突設された同一断面かつ同一長さを有する左右1対の型
鋼レールと、上記各型鋼レール上にそれぞれ配置され
それぞれ縦方向に転動自在に支持された球軸受及び高さ
の増加に伴って反力が非線型に増加する非線型特性ばね
よりなる同一サイズの複数対の支持部材対と、上記複数
の支持部材上に左右部が支持された前後方向に移動自在
の水平長方形の重錘荷重支持台板と、上記重錘荷重支持
台板の縦方向中心線上であって同台板の下面に固着され
た大重錘及び同台板の上面に固着され同一サイズの長方
形鋼板からなる小重錘と、上記球軸受と上記重錘荷重支
持台板との間に挿入支持された複数板のシムとをえた
ことにより、固有振動数を広範囲にわたって調整するこ
とができるとともに、重錘の増減による重心の変化を少
なくすることが可能な構造簡単、コスト低廉かつ信頼性
大なる動吸振装置を得るから、本発明は産業上極めて有
益なものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic vibration damping device for damping vibration of a large structure, a high-rise structure or the like. [0002] The basic configuration of the Related Art dynamic vibration device, as shown in the side view of FIG. 7, a weight 01, a spring element 03, ball bearings 0
In particular, the weight 01 is made up of a large weight 011 and a small weight 012 for adjustment. This type of dynamic vibration absorber can reduce the vibration amplitude, vibration acceleration, and the like of the controlled structure by making its natural frequency ω equal to the natural frequency ω 0 of the controlled structure. Here, the natural frequency ω of the dynamic vibration absorber is given by Expression (1) based on the mass M of the weight 01 and the rigidity K of the spring element 03. ω = √ (K / M) (1) Therefore, in order to adjust ω to ω 0 , it is necessary to change M or K. Further, the damping of the dynamic vibration absorber for best reducing the vibration of the structure is given by Expression (2). ξ = √ [3μ / [8 (1 + μ) 3 ]] (2) where μ = mass M of dynamic vibration absorber / mass of structural material M 0 ξ = damping ratio However, in this type of dynamic vibration absorber, as shown in FIG. 7, in order to make its natural frequency correspond to that of the target structure over a wide range and accurately, a large weight 011 must be placed on the large weight 011, as shown in FIG. Since it is necessary to overlap and adjust the small weight 012, the adjustment takes time. In addition, the center of gravity of the weight 01 changes with the increase of the small weight 012, which may impair the reliability of the dynamic vibration absorber. [0004] The present invention has such a proposed in view of the circumstances, it is possible to adjust widely the natural frequency, simple structure capable of reducing the change in center of gravity due to changes in weight It is an object of the present invention to provide a low-cost and highly reliable dynamic vibration absorber. [0005] [Means for Solving the Problems] To achieve this object, the dynamic vibration absorber of the present invention, the same cross-section and projecting from the flat row to each other along the left and right sides of the bottom plate of the elongated horizontal rectangles a pair of left and right shape steel rails having the same length, are arranged on each of the mold steel rails, the reaction force with the increase of freely supported ball bearing and height rolling longitudinally respectively in the non-linear A plurality of pairs of support members of the same size comprising an increasing non-linear characteristic spring; a horizontal rectangular weight load support base plate movable in the front-rear direction with left and right portions supported on the plurality of support members; A large weight fixed on the longitudinal center line of the weight load support base plate and fixed to the lower surface of the base plate and a small weight fixed to the upper surface of the base plate and formed of a rectangular steel plate of the same size;
Inserted and supported between the ball bearing and the weight support plate
Characterized in that e Bei a shim multiple plates. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an embodiment of the present invention, and FIG.
FIG. 3 is a vertical sectional view taken along the arrow II, FIG.
FIG. 4 is a plan view and a side view showing the helical coil spring of FIG. FIG. 5 is a process chart showing the procedure for assembling the helical coil spring of FIG. 4, and FIG. 6 is a view showing the characteristic diagram of the helical coil spring of FIG. First, the overall structure will be described with reference to FIGS. 1 and 2. A helical coil spring (hereinafter referred to as a spring) 3 as a spring element and a steel ingot and a small A horizontal vibration dynamic vibration absorber with a cover 6 made of a plurality of steel plates as the weight 12, an I- shaped steel 5, and the like is mounted. Here, the ball bearing 2 and the spring 3 are provided as a pair, and in this embodiment, four pairs of the ball bearing 2 and the spring 3 are arranged in two rows in the front-rear direction, and the left and right parallel I-beams 5, 5 are formed. A total of eight pairs are located above. The left and right portions of the horizontal rectangular weight support base plate 1a are mounted on and supported by a total of eight pairs of ball bearings to springs, and the weight 1 is supported along the longitudinal center line of the weight support base plate 1a. The weight 1 is a small weight 12 made of a plurality of the same rectangular steel plates fixed to the upper surface of the weight support base plate 1a;
And a massive weight 11 made of a rectangular cube of steel ingot fixed to the lower surface of the weight supporting base plate. Next, the structure of the spring will be described with reference to FIGS. 3 and 4. As shown in FIG. 4, the spring 3 has a horizontal rectangular upper bar 3a and a lower rectangular bar which extend in the front-rear direction at appropriate intervals. and a bar 3b, both bars 3a, the left faces of 3b, and a plurality of same diameter (here, each five respective front and rear portions) bored at a predetermined pitch in the right faces the upper mounting hole 3 of
c, and a lower mounting hole 3d, and the five mounting holes on each side of the front part are formed such that both upper and lower bars have a C-shape toward the center O as shown in FIG. Each of the five mounting holes is shaped like a letter “C” toward the center O in both upper and lower bars.
Each is drilled. Here, upper and lower ends of a semicircular spring element 3e made of a stranded wire are inserted into a pair of upper and lower mounting holes 3c and 3d, respectively, and are fixed by a coagulant or the like. Therefore, as shown in the plan view of FIG.
The book is oriented in the direction of expanding forward, and the five rear parts are oriented in the direction of expanding rearward. The total length of the coil spring element is L, the width is B, and the overall height is H. Here, an example of a procedure for assembling the helical coil spring will be described . In FIG. 5 , first, as shown in (1), 20 helical thin wires are bundled to form an appropriate length unit spring shown in (2). As shown in (3), seven of these unit springs are bundled and curved to produce a plurality of arcuate unit springs. Next, as shown in (4), after each of the upper and lower pairs of rectangular support base plates 1a, 1b, five inclined insertion holes are formed at both sides in the longitudinal direction at equal intervals, and then each arc-shaped unit is formed. Insert the upper and lower ends of the spring into the insertion holes 3c and 3d of the upper and lower bars 3a and 3b, respectively.
Each is fixed with a coagulant or the like. According to such a configuration, the dynamic vibration absorber can adjust the steel K by adjusting the height of the spring.
The natural frequency of the dynamic vibration absorber can be set to a required value without increasing or decreasing the weight of the weight. The structure of the ball bearing will be described with reference to FIG.
2a, a plurality of equal-diameter steel balls inserted into the grooves of the longitudinal groove member 2b vertically provided on the upper surface of the I-shaped steel 5, and 4 attached along the left and right portions of the lower surface of the weight supporting base plate 1a. A plurality of shim plates of the same size are attached and extend in the front-rear direction. Thus, equal diameter steel ball 2a, the groove member 2b and the shim plate 4,
A ball bearing 2 is formed. Further, in adjusting the thickness of the shim, the weight and the entire mounting base plate are lifted, and the bolt and nut are removed. Since the shim plate 4 is fixed to the support base plate 1a with bolts and nuts, removal is easy. In the dynamic vibration absorber having such a structure, when the mass of the steel plate is represented by M and the spring steel property is represented by K, the natural frequency of the dynamic vibration absorber can be obtained by equation (3). Here, as shown in FIG. 6, the steel K of the helical coil spring 3 has amplitude dependency (see FIG. 8), and the spring has a static deflection x.
Is a function of Normally, as shown in the figure, the relationship between the static deflection x and the steel K is represented by Expression (3). K = A (1 / x r ) (3) A: constant r: constant of> 1 Therefore, by adjusting the plate thickness of the shim 4 of the ball bearing, the natural frequency can be set to a required value. Can be set. In the above-described embodiment, the weight of the overall apparatus is such that the center of gravity of the entire apparatus is near the spring mounting position due to the weight of each of the large weight 11 and the small weight 12, and the weight is adjusted by the small weight. This is performed by increasing or decreasing only the steel plate forming the weight 12. The dynamic vibration absorber of this kind can adjust the natural frequency by changing the amount of static deflection of the spring and changing the steel properties without using a large number of small weights. Furthermore, since only the ball bearing bears the weight and no weight load is applied to the spring, the fatigue of the spring is small. Therefore, the performance and reliability of the dynamic vibration absorber can be improved. In short, according to the dynamic vibration absorber of the present invention,
A pair of left and right shape steel rail having the same section and the same length left along both sides are <br/> projecting flat row together of the bottom plate of the elongated horizontal rectangles, are arranged on each of the mold steel rail,
A plurality of pairs of support members of the same size, each comprising a ball bearing rotatably supported in the longitudinal direction and a non-linear characteristic spring whose reaction force increases non-linearly with an increase in height; A horizontal rectangular weight load support base plate movable left and right with the left and right portions supported on the member, and fixed to the lower surface of the weight load support base plate on the vertical center line of the weight load support base plate and small weight made of rectangular steel plate secured to the same size on the upper surface of Oshige weight and the base plate, the ball bearing and the weight load supporting
By painting Bei a shim multiple plates which are inserted into and supported between the lifting base plate, it is possible to adjust widely the natural frequency, which can reduce the change in center of gravity due to changes in weight The present invention is industrially very useful because a dynamic vibration absorber having a simple structure, low cost and high reliability is obtained.

【図面の簡単な説明】 【図1】本発明の一実施例の動吸振装置を示す全体横断
面図である。 【図2】図1のII-IIに沿った全体縦断面図である。 【図3】図1のIII部を示す拡大図である。 【図4】図3のヘリカルコイルばねを示し、同図
(A),(B)はそれぞれその平面図、側面図である。 【図5】図4のヘリカルコイルばねの組立要領を示す工
程図である。 【図6】図4のヘリカルコイルばねの特性図及び配置要
領を示す図である。 【図7】従来の動吸振装置を示す基本構成図である。 【図8】図7の動吸振装置の静たわみと鋼性との関係を
示し、鋼性に振幅依存性があることを示す線図である。 【符号の説明】 1 重錘 1a 支持台板(上部) 1b 支持台板(下部) 2 球軸受 2a 等径鋼球 2b 溝部材 3 ヘリカルコイルばね(ばね) 3a 上部バー 3b 下部バー 3c 上部取付孔 3d 下部取付孔 3e ばねエレメント シム板 5 I型鋼 6 カバー 7 被制振構造物 11 大重錘 12 小重錘
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall cross-sectional view showing a dynamic vibration absorber according to one embodiment of the present invention. FIG. 2 is an overall vertical sectional view taken along line II-II of FIG. FIG. 3 is an enlarged view showing a part III in FIG. 1; 4 shows the helical coil spring of FIG. 3, and FIGS. 4A and 4B are a plan view and a side view, respectively. FIG. 5 is a process chart showing the procedure for assembling the helical coil spring of FIG. 4; 6 is a diagram showing a characteristic diagram and an arrangement point of the helical coil spring of FIG. 4; FIG. 7 is a basic configuration diagram showing a conventional dynamic vibration absorber. 8 is a diagram showing a relationship between static deflection and steel properties of the dynamic vibration absorber of FIG. 7, and showing that steel properties have amplitude dependence. [Description of Signs] 1 Weight 1a Support base plate (upper) 1b Support base plate (lower) 2 Ball bearing 2a Equal-diameter steel ball 2b Groove member 3 Helical coil spring (spring) 3a Upper bar 3b Lower bar 3c Upper mounting hole 3d Lower mounting hole 3e Spring element 4 Shim plate 5 I-shaped steel 6 Cover 7 Damped structure 11 Large weight 12 Small weight

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16F 15/00 - 15/08 E04H 9/02 341 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F16F 15/00-15/08 E04H 9/02 341

Claims (1)

(57)【特許請求の範囲】 【請求項1】 縦長水平長方形の底板の左右両側に沿っ
て互いに平行に突設された同一断面かつ同一長さを有す
る左右1対の型鋼レールと、上記各型鋼レール上にそれ
ぞれ配置されそれぞれ縦方向に転動自在に支持された
球軸受及び高さの増加に伴って反力が非線型に増加する
非線型特性ばねよりなる同一サイズの複数対の支持部材
対と、上記複数の支持部材上に左右部が支持された前後
方向に移動自在の水平長方形の重錘荷重支持台板と、上
記重錘荷重支持台板の縦方向中心線上であって同台板の
下面に固着された大重錘及び同台板の上面に固着され同
一サイズの長方形鋼板からなる小重錘と、上記球軸受と
上記重錘荷重支持台板との間に挿入支持された複数板の
シムとをえたことを特徴とする動吸振装置。
(57) and a pair of left and right shape steel rail having [Claims 1] Vertical same section and the same length left along both sides projecting from the flat row mutually horizontal rectangular bottom plate, the are arranged on each mold steel rails, the reaction force with the increase of freely supported ball bearing and height rolling in the longitudinal direction, each of the plurality of pairs of the same size of a non-linear characteristic spring that increases nonlinearly A pair of support members, a horizontal rectangular weight load support base plate movable in the front-rear direction, the left and right portions of which are supported on the plurality of support members, and a vertical center line of the weight load support base plate; A large weight fixed to the lower surface of the base plate and a small weight fixed to the upper surface of the base plate and formed of a rectangular steel plate of the same size ;
Of multiple plates inserted and supported between the weight load support base plate
Characterized in that e Bei a shim dynamic vibration absorber.
JP27488495A 1995-09-28 1995-09-28 Dynamic vibration absorber Expired - Fee Related JP3513287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27488495A JP3513287B2 (en) 1995-09-28 1995-09-28 Dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27488495A JP3513287B2 (en) 1995-09-28 1995-09-28 Dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JPH0989043A JPH0989043A (en) 1997-03-31
JP3513287B2 true JP3513287B2 (en) 2004-03-31

Family

ID=17547886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27488495A Expired - Fee Related JP3513287B2 (en) 1995-09-28 1995-09-28 Dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JP3513287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125726B (en) 2013-06-03 2016-01-29 Teknologian Tutkimuskeskus Vtt Oy Self-regulating mass dampers and systems that include the same
CN113684123B (en) * 2021-07-26 2024-05-31 中科福德(辽宁)新能源有限公司 Overlapping type high-temperature heat pump experiment table

Also Published As

Publication number Publication date
JPH0989043A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
US5970666A (en) Large-scale high strength seismic isolator
JP3513287B2 (en) Dynamic vibration absorber
US3854256A (en) Fabrication of furnace linings with support frame
TW201638444A (en) Support structure
CN113357308B (en) High-efficient low frequency vibration isolation device
JP3884836B2 (en) Isolation floor device
JPH0593475A (en) Elastioplastic damper
DE3138504A1 (en) SHOCK AND VIBRATION DAMPER
DE2523732C3 (en) System for sinking into the ground and pulling out of the ground support or auxiliary elements that are used in the creation of pile foundations
JP3268403B2 (en) Horizontal spring device for base-isolated floor
CN215166763U (en) Structural vibration isolation device
JP2983493B2 (en) Bearing device and seismic isolation device
JPH07158315A (en) Elastoplastic damper
CN210482268U (en) Bidirectional layered shear type soil box
JP3753264B2 (en) Building seismic isolation device
Spiliopoulos et al. Earthquake induced pounding in adjacent buildings
JP3337127B2 (en) Seismic isolation device
SE428915B (en) overhead crane
CN215926365U (en) Earthquake-resistant structure for building design
CN214143790U (en) Column bottom steel structure component
CN108824664B (en) Embedded composite shock insulation device, embedded composite shock insulation system and use method thereof
CN115110793A (en) Auxiliary stabilizing device for historic building and inertial damper determining method thereof
JP2631901B2 (en) Seismic isolation / damping device
JPH0450366Y2 (en)
JPH0523441A (en) Biaxial vibration table device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees