JP3511742B2 - Method for producing low density molded article and low density sheet - Google Patents

Method for producing low density molded article and low density sheet

Info

Publication number
JP3511742B2
JP3511742B2 JP19019795A JP19019795A JP3511742B2 JP 3511742 B2 JP3511742 B2 JP 3511742B2 JP 19019795 A JP19019795 A JP 19019795A JP 19019795 A JP19019795 A JP 19019795A JP 3511742 B2 JP3511742 B2 JP 3511742B2
Authority
JP
Japan
Prior art keywords
pulp
fiber
water retention
sheet
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19019795A
Other languages
Japanese (ja)
Other versions
JPH0941300A (en
Inventor
浩 末永
至弘 吉村
修 北尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP19019795A priority Critical patent/JP3511742B2/en
Publication of JPH0941300A publication Critical patent/JPH0941300A/en
Application granted granted Critical
Publication of JP3511742B2 publication Critical patent/JP3511742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パルプ繊維を使用
して、緩衝性に優れ、包装用緩衝材料として好適な低密
度成型体及び低密度シートの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-density molded product and a low-density sheet which are excellent in cushioning property and suitable as a cushioning material for packaging, using pulp fibers.

【0002】[0002]

【従来の技術】一般に、包装用緩衝材料の性能として要
求される特性は様々であるが、基本的に重要な性能は、
流通の過程において包装貨物が受ける衝撃、振動等から
貨物を保護する役目である。従来、包装用緩衝材として
は、ポリスチレン、ポリウレタン、ポリエチレン等の合
成樹脂の発泡体を成型体としたものが広い分野で広汎に
利用されている。しかしながら、これら合成樹脂の発泡
体は、強度があって、様々な成型体に加工が容易であ
り、使用に便利である反面、使用済みの発泡体の処理方
法に適切な方法がなく、今日では環境問題を惹起してい
るのが現状である。即ち、発泡体に用いられる合成樹脂
は高い燃焼カロリーを有するため使用済みの発泡体を焼
却処理すると燃焼温度が高くなり、焼却炉を損傷する問
題があり、埋土してもそのような場所もなく、まして自
然環境に放置した場合、生分解性がないため分解されず
環境を汚染するという問題がある。
2. Description of the Related Art Generally, various characteristics are required as the performance of a cushioning material for packaging, but basically, the important performance is as follows.
This is the role of protecting the packaged cargo from shocks, vibrations, etc. during the distribution process. 2. Description of the Related Art Conventionally, as a cushioning material for packaging, a foamed body of a synthetic resin such as polystyrene, polyurethane, or polyethylene has been widely used in a wide field. However, these synthetic resin foams have strength, are easy to process into various molded bodies, and are convenient to use, but on the other hand, there is no suitable method for treating used foams. The current situation is causing environmental problems. That is, since the synthetic resin used for the foam has a high combustion calorie, burning the used foam raises the combustion temperature and causes a problem of damaging the incinerator. However, there is a problem that when it is left in a natural environment, it is not biodegradable and is not decomposed and pollutes the environment.

【0003】そのため、合成樹脂にセルロース繊維を混
合して発泡体とする製造方法(特開昭55−23109
号公報、特開平3−269025号公報、特公昭52−
19152号公報参照)やセルロース繊維に動植物性の
糊料、合成樹脂エマルジョン、ゴムラテックス等から選
ばれた接着剤を一定の割合で配合した組成物に、分解温
度が100℃以下の発泡剤を含有させ、発泡させること
による発泡体の製造方法(特開平7−41588号公
報)等が提案されている。
Therefore, a method for producing a foam by mixing cellulose fibers with a synthetic resin (Japanese Patent Laid-Open No. 55-23109).
Japanese Patent Publication No. 3-269025, Japanese Patent Publication No.
19152) and cellulose fibers, and a composition in which an adhesive selected from animal and vegetable pastes, synthetic resin emulsions, rubber latices and the like is blended at a constant ratio, and a foaming agent having a decomposition temperature of 100 ° C. or less is contained. Then, a method for producing a foam by foaming and foaming (JP-A-7-41588) is proposed.

【0004】一方、低密度のシート材料としては、セル
ロース繊維に粒子状の発泡剤を混入して抄紙して得られ
る原紙を加熱することにより発泡させて低密度で嵩高な
紙を製造する方法(特開平5−339898 号公
報)、セルロース繊維に中空球状バテライト型炭酸カル
シウムを配合してなる嵩高紙(特開平3−124895
号公報)、繊維の柔軟化剤の存在下で架橋剤を反応させ
て得られる架橋パルプと、熱融着性繊維の混合物を成型
して得られる嵩高性シート(特開平4−202895号
公報)、捲縮形態がスパイラル捲縮である偏心芯鞘型又
はサイドバイサイド型複合繊維からなる嵩高紙(特開平
2−300398号公報)等が開示されている。上記の
発泡剤にて発泡させる方法では、発泡状態の制御が難し
く、発泡した気泡は不均一になりやすく、構造的にも不
均一な発泡体になりやすい。
On the other hand, as a low-density sheet material, a method of producing a low-density and bulky paper by heating a base paper obtained by mixing a cellulose fiber with a particulate foaming agent to make a paper ( Japanese Unexamined Patent Publication (Kokai) No. 5-339898), bulky paper made by blending hollow spherical vaterite type calcium carbonate with cellulose fibers (Japanese Unexamined Patent Publication No. 3-124895).
Gazette), a bulky sheet obtained by molding a mixture of a cross-linking pulp obtained by reacting a cross-linking agent in the presence of a softening agent for fibers, and a heat-fusible fiber (JP-A-4-202895). A bulky paper (Japanese Patent Laid-Open No. 2-300398) made of an eccentric core-sheath type or a side-by-side type composite fiber whose crimp form is a spiral crimp is disclosed. In the method of foaming with the above-mentioned foaming agent, it is difficult to control the foaming state, the foamed cells are likely to be nonuniform, and the structurally nonuniform foam is likely to be formed.

【0005】又、セルロース系材料を使用したシート材
料では、合成樹脂、合成繊維更には填料を使用して嵩高
シートを作製する方法において、得られた低密度の成型
体は繊維材料同士の接触点が少なく、セルロース繊維と
強く結合することが出来ないので嵩高性には優れていて
も強度が低く、成型加工時に形状が変化するなど加工性
の悪いものとなる。また、熱融着繊維を使用した場合に
は、セルロース繊維分は自然界で分解されるが、熱融着
繊維は合成樹脂からなっているため自然界で分解されに
くく環境汚染源となる。
Further, in the case of a sheet material using a cellulosic material, in the method of producing a bulky sheet using a synthetic resin, synthetic fibers, and a filler, the obtained low-density molded product has a contact point between fiber materials. However, even if it is excellent in bulkiness, it has low strength, and its shape is changed during molding, resulting in poor workability. Further, when the heat-sealing fiber is used, the cellulose fiber content is decomposed in the natural world, but the heat-sealing fiber is made of a synthetic resin so that it is hardly decomposed in the natural world and becomes a source of environmental pollution.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、かかる
現状に鑑み、使用済みのものが環境汚染を伴わずに処理
できる緩衝材料の製造方法について鋭意検討した結果、
廃棄しても生分解性を有し環境への悪影響がなく、しか
も焼却処理しても焼却炉や環境への問題を引き起こさな
いセルロース繊維であって、微細化セルロース繊維が繊
維同士の結合強度を強固にするということ、並びに、架
橋され、捻れや変形のようなカールが付与され、結合強
度が極めて低いセルロース繊維が圧縮性に優れるという
ことに着眼し、これらの繊維の特定量を組み合わせて原
料とし、網を備えた成型装置で脱液、乾燥して得られる
成型体は、低密度でありながら圧縮強度と緩衝性に優
れ、結合強度が強く、緩衝材として或いは包装資材とし
て極めて優れること、並びに前記原料を湿式の抄紙機で
抄紙、乾燥して得られるシートは、低密度で強度に優れ
ていることを見出し、本発明を完成するに至った。本発
明の目的は、低密度で圧縮強度と緩衝性の優れる成型体
及び低密度で強度の優れるシートの製造方法を提供する
ことにある。
In view of the above situation, the inventors of the present invention have made extensive studies as to a method for producing a buffer material that can be used without environmental pollution, and as a result,
Cellulose fibers that are biodegradable even if discarded and do not have an adverse effect on the environment, and do not cause problems to the incinerator or the environment even when incinerated. Focusing on the fact that it is toughened, and that the cellulose fibers that are crosslinked, curled such as twisted and deformed, and have extremely low bond strength have excellent compressibility, and a specific amount of these fibers is combined to make a raw material. The molded body obtained by deliquoring and drying with a molding machine equipped with a net is excellent in compressive strength and buffering property even though it has a low density, has a strong bonding strength, and is extremely excellent as a buffering material or a packaging material, Further, they have found that a sheet obtained by paper-making and drying the above raw material with a wet paper machine has low density and excellent strength, and thus completed the present invention. An object of the present invention is to provide a method for producing a molded product having a low density and excellent compressive strength and cushioning properties, and a sheet having a low density and excellent strength.

【0007】[0007]

【課題を解決するための手段】本発明の第一は、保水度
が210〜450%の微細繊維化パルプを全繊維重量当
り3〜65重量%と、保水度が25〜65%で湿潤カー
ルファクターが0.5〜1.0の範囲にあるカールドフ
ァイバーを全繊維重量当り35〜97重量%含有する混
合物を原料とする水スラリーを、網を備えた成型機に導
入し、脱液して成型、乾燥することを特徴とする低密度
成型体の製造方法である。本発明の第二は、保水度が2
10〜450%の微細繊維化パルプを全繊維重量当り3
〜65重量%と、保水度が25〜65%で湿潤カールフ
ァクターが0.5〜1.0の範囲にあるカールドファイ
バーを全繊維重量当り35〜97重量%含有する混合物
を原料とする水スラリーを、湿式抄紙機で抄紙し、乾燥
することを特徴とする低密度シートの製造方法である。
The first object of the present invention is to make fine fiberized pulp having a water retention of 210 to 450% based on the total fiber weight of 3 to 65% by weight and a water retention of 25 to 65% and a wet curl. A water slurry obtained by using a mixture containing 35 to 97% by weight of curled fiber having a factor in the range of 0.5 to 1.0 based on the total fiber weight as a raw material was introduced into a molding machine equipped with a net, and deliquored. It is a method for producing a low-density molded product, which comprises molding and drying. The second aspect of the present invention is that the water retention is 2
10 to 450% of fine fiberized pulp 3 per total fiber weight
To 65% by weight, and water made from a mixture containing 35 to 97% by weight of curled fiber having a water retention of 25 to 65% and a wet curl factor in the range of 0.5 to 1.0, based on the total fiber weight. A method for producing a low-density sheet, which comprises making a slurry into a paper using a wet paper machine and drying the paper.

【0008】[0008]

【発明の実施の形態】本発明は、微細繊維化パルプとカ
ールドファイバーを含む混合物を成型或いは抄紙して低
密度成型体或いはシートを製造する方法である。本発明
に使用される微細繊維化パルプは、パルプ繊維を微細化
し、保水度が210〜450%の範囲のものである。こ
のような微細繊維化パルプは、パルプ繊維の媒体攪拌ミ
ル処理(特開平4−18186号公報)、振動ミル処理
(特開平6−10286号公報)、高圧均質化装置での
処理、コロイドミル処理等により製造されるものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a low-density molded body or sheet by molding or papermaking a mixture containing fine fiberized pulp and curled fiber. The fine fiberized pulp used in the present invention is one in which pulp fibers are made fine and the water retention is in the range of 210 to 450%. Such fine fiberized pulp is a pulp fiber medium stirring mill treatment (JP-A-4-18186), a vibration mill treatment (JP-A-6-10286), a treatment in a high-pressure homogenizer, a colloid mill treatment. Etc. are manufactured.

【0009】前記処理方法で用いられる装置のうち、前
記媒体攪拌ミルは、固定した粉砕容器に挿入した攪拌機
を高速で回転させて、粉砕容器内に充填した、例えば、
ガラスビーズやアルミナビーズのような媒体とパルプ繊
維を攪拌して、剪断応力によりパルプ繊維を粉砕する装
置であり、粉砕装置には塔式、槽式、流通管式、アニュ
ラー式等があるが、どの様式の装置でも遜色なく本発明
のために使用できる。又、振動ミルは、粉砕容器を高速
振動させ、容器内に充填されたビーズ、ボール、ロッド
等によってパルプ繊維に衝撃力、剪断力等の力を作用さ
せて粉砕処理を行う装置であり、高圧均質化装置は、パ
ルプ繊維スラリーに高い圧力をかけることによって小径
オリフィスの間を通過させてパルプ繊維を粉砕、分散さ
せる装置である。
Among the devices used in the above-mentioned treatment method, the medium stirring mill is filled in the grinding container by rotating the stirring machine inserted in a fixed grinding container at high speed.
It is a device that agitates a medium such as glass beads or alumina beads and pulp fiber, and pulverizes the pulp fiber by shearing stress.The pulverizing device includes a tower type, a tank type, a flow pipe type, an annular type, etc. Any type of device can be used with the present invention. A vibrating mill is a device that vibrates a crushing container at high speed and applies a force such as an impact force or a shearing force to pulp fibers by beads, balls, rods, etc. filled in the container to perform a crushing process. The homogenizing device is a device that crushes and disperses pulp fibers by applying high pressure to the pulp fiber slurry so that the pulp fiber slurry passes through the small-diameter orifices.

【0010】媒体攪拌ミルや振動ミルにより得られた微
細繊維化パルプは、他の処理装置に比べパルプ繊維の柔
軟性が高く、繊維の長さ方向だけでなく3次元的に微細
繊維化が施されているため、本発明で用いるカールドフ
ァイバー同士を効率よく、又強固に結合することができ
るため好ましいが、本発明では特に微細繊維化パルプの
製造方法が制限されるわけではない。しかしながら、本
発明で使用される微細繊維化パルプの保水度が210%
未満の場合、微細化が充分でないため、カールドファイ
バー同士の結合が十分でなく、このような微細繊維化パ
ルプとカールドファイバーの組合せで得られた成型体
は、保形力が弱く、型くずれし易くなり、又シートの場
合、強度を発現しないので実用的ではない。逆に、微細
繊維化パルプの保水度が450%を超えると、パルプ繊
維の微細化と同時に短繊維化が極端に進むためこのよう
な微細繊維化パルプとカールドファイバーとの組合せに
より得られた成型体或いはシートの強度が弱くなるため
適さない。
The fine fiberized pulp obtained by the medium agitation mill or the vibration mill has higher flexibility of pulp fibers than other processing devices, and the fine fiberization is performed not only in the longitudinal direction of the fibers but also three-dimensionally. Therefore, the curled fibers used in the present invention can be efficiently and strongly bonded to each other, which is preferable, but the present invention is not particularly limited to the method for producing fine fiber pulp. However, the water retention of the fine fiberized pulp used in the present invention is 210%.
If it is less than the above, because the micronization is not sufficient, the binding between the curled fibers is not sufficient, and the molded product obtained by the combination of such microfiberized pulp and the curled fiber has a weak shape retention force and loses its shape. The sheet is not practical because it does not exhibit strength. On the other hand, if the water retention of the fine fiberized pulp exceeds 450%, the pulp fiber becomes finer and at the same time the fiber shortening is extremely advanced. Therefore, a combination of such fine fiberized pulp and curled fiber was obtained. Not suitable because the strength of the molded body or sheet becomes weak.

【0011】微細繊維化パルプの原料としては、針葉樹
木材と広葉樹木材をクラフト蒸解、ソーダ蒸解或いはサ
ルファイト蒸解して得られる化学パルプ、コットンやリ
ンターからのパルプ、古紙パルプ等が挙げられ、これら
は漂白して或いは未漂白で適宜選択して単独で或いは混
合して用いられるが、特にこれらに限定されるものでは
ない。
Examples of the raw materials for the fine fiberized pulp include chemical pulp obtained by craft cooking, soda cooking or sulfite cooking of softwood and hardwood, pulp from cotton and linter, waste paper pulp, and the like. Bleached or unbleached may be appropriately selected and used alone or as a mixture, but is not particularly limited thereto.

【0012】本発明で用いられるカールドファイバー
は、形態的にはその長い繊維にカールやネジレのような
変形が架橋反応による化学結合によって恒久的に付与さ
れ、曲折し、元の繊維の長さと比べて見掛けの長さが小
さいパルプ繊維のことをいう。しかしながら、このよう
な繊維の変形は、乾燥状態では変形が維持されていて
も、繊維が水に濡れることによって繊維内の歪が開放さ
れ、変形の程度が弱まることも有り得る。本発明では、
このように変形が付与され、屈曲している繊維の1本1
本の変形の程度を示す指標として、水に浸漬した後の一
本の繊維の長さを顕微鏡を用いて観察し、繊維の変形が
どれだけ直線的な元の繊維の長さから外れているかを数
値化した湿潤カールファクターを用いている。本発明で
は前記湿潤カールファクターは、カールドファイバーを
室温、24時間純水に浸漬した後の繊維の実際の長さ
(LA)と繊維の最大投影長さ(繊維を囲む長方形の最
長辺の長さ、LB)を測定し、{(LA/LB)−1}
で算出された値と定義される。
The curled fiber used in the present invention is, in terms of morphology, deformed such as curl and twist due to a chemical bond due to a cross-linking reaction, which is permanently imparted to the long fiber, and is bent, so that the length of the original fiber becomes equal to that of the original fiber. Compared with pulp fibers, the apparent length is smaller. However, such a deformation of the fiber may cause the strain in the fiber to be released due to the wetting of the fiber by water even if the deformation is maintained in a dry state, and the degree of the deformation may be weakened. In the present invention,
One of the bent fibers that is deformed in this way
As an index showing the degree of deformation of a book, the length of one fiber after immersion in water is observed with a microscope, and how much the deformation of the fiber deviates from the linear length of the original fiber Wet curl factor that was quantified is used. In the present invention, the wet curl factor is the actual length (LA) of the fiber after the curled fiber is immersed in pure water at room temperature for 24 hours and the maximum projected length of the fiber (the length of the longest side of the rectangle surrounding the fiber). Now, measure LB), {(LA / LB) -1}
It is defined as the value calculated in.

【0013】カールドファイバーとしては公知のものが
本発明のために使用できる。例えば、C2〜C8のジア
ルデヒド並びに酸官能基を有するC2〜C8のモノアル
デヒドを使用してセルロース系繊維の内部を架橋させた
平均保水度28%〜50%のセルロース系架橋繊維(特
公平5−71702号公報)、C2〜C9のポリカルボ
ン酸を用いてセルロース系繊維に内部架橋させた、保水
度約25%〜60%の架橋繊維(特開平3−20617
4号公報、特開平3−206175号公報、特開平3−
206176号公報参照)、更には市販のもの(例え
ば、米国ウェアハウザー社製、商品名:HBA−FF)
等が挙げられ、適宜選択して用いられる。架橋繊維を製
造する際に、パルプ繊維に架橋剤を添加した後、機械的
撹拌を施し、次いでフラッフ化と加熱処理を行い、繊維
に変形を付与したまま固定すると湿潤カールファクター
のより大きなカールドファイバーが得られる。
Known curled fibers can be used for the present invention. For example, a C2-C8 dialdehyde and a C2-C8 monoaldehyde having an acid functional group are used to crosslink the inside of the cellulosic fiber, and the cellulosic crosslinked fiber having an average water retention of 28% to 50% (Japanese Patent Publication No. -71702), a cellulosic fiber is internally crosslinked with a C2 to C9 polycarboxylic acid, and the crosslinked fiber has a water retention of about 25% to 60% (JP-A-3-20617).
No. 4, JP-A-3-206175, and JP-A-3-206175.
206176), and further commercially available products (for example, product name: HBA-FF, manufactured by Warehauser, USA).
And the like, which are appropriately selected and used. When producing cross-linked fibers, after adding a cross-linking agent to pulp fibers, mechanical stirring is performed, then fluffing and heat treatment are performed, and if the fibers are fixed with deformation, the curl with a larger wet curl factor is obtained. Fiber is obtained.

【0014】しかしながら、これらの架橋結合を有する
パルプ繊維は、架橋処理によりセルロース分子の水酸基
(−OH)が減少し、そのためこのような繊維の親水性
は、架橋処理を行わないパルプ繊維に比べ小さくなって
おり、水を保持する能力を示す保水度の値は低下し、そ
の値は25〜65%の範囲内である。保水度が25%未
満では繊維間結合を形成する能力が大幅に減少し、微細
繊維化パルプと組み合わせて使用しても成型体と紙の強
度が不足し、逆に保水度が65%を超えて大きくなると
付与された変形を維持する能力が不足し、湿潤カールフ
ァクターが低くなり過ぎ、低密度の成型体とシートが得
られなくなる。本発明に使用するカールドファイバーの
湿潤カールファクターは、0.5〜1.0の範囲であ
る。カールドファイバーの湿潤ファクターが0.5未満
では嵩高性が小さくなり、低密度の成型体或いはシート
が得られず、逆に、カールファクターが1.0を超えて
大きくなると、パルプ繊維に変形を付与する際に機械的
処理を強化する必要があるが、そうすることによりパル
プ繊維の損傷を招き、成型体或いはシートの強度が著し
く低下するため実用に適さない。
However, in the pulp fibers having these cross-linking bonds, the hydroxyl groups (-OH) of the cellulose molecules are reduced by the cross-linking treatment, and therefore the hydrophilicity of such fibers is smaller than that of the pulp fibers not subjected to the cross-linking treatment. The value of the water retention, which indicates the ability to retain water, decreases, and the value is within the range of 25 to 65%. If the water retention is less than 25%, the ability to form interfiber bonds will be significantly reduced, and the strength of the molded body and paper will be insufficient even when used in combination with fine fiberized pulp. Conversely, the water retention will exceed 65%. When the size becomes larger, the ability to maintain the applied deformation becomes insufficient, the wet curl factor becomes too low, and it becomes impossible to obtain a molded body and a sheet having a low density. The wet curl factor of the curled fiber used in the present invention is in the range of 0.5 to 1.0. When the wetting factor of the carded fiber is less than 0.5, the bulkiness becomes small, and a low-density molded body or sheet cannot be obtained. Conversely, when the curl factor exceeds 1.0, the pulp fiber is deformed. It is necessary to strengthen the mechanical treatment at the time of applying, but doing so causes damage to the pulp fibers and significantly reduces the strength of the molded body or sheet, which is not suitable for practical use.

【0015】前記したように、湿潤カールファクターが
0.5〜1.0の範囲のカールドファイバーでは、パル
プ繊維に相当量変形が付与されて、屈曲しており、しか
も架橋結合が施されているので繊維は剛直であるため、
繊維同士の接触する確率が変形も架橋結合も行われてい
ない通常のパルプ繊維と比べて低く、更にそのようなカ
ールドファイバー単独でスラリーとして成型体或いはシ
ートを形成し、次いで脱水・乾燥しても繊維同士の絡み
合いが弱く、水酸基による水素結合も生成し難いので、
その成型体或いはシートの強度は著しく弱く、実用に供
することができない。しかしながら、前記したようにカ
ールドファイバーに微細繊維化パルプを添加して用いる
ことにより、低密度で強度の強い成型材料或いはシート
を製造することができることが判明したが、密度と強度
のバランスは、カールドファイバーと微細繊維化パルプ
の混合比率を変えてコントロールされる。
As described above, in the case of the curled fiber having a wet curl factor in the range of 0.5 to 1.0, the pulp fiber is deformed to a considerable extent, is bent, and is crosslinked. Since the fibers are rigid because
The probability of fibers coming into contact with each other is lower than that of ordinary pulp fibers that are neither deformed nor cross-linked. Further, such curled fiber alone is used to form a molded body or sheet as a slurry, which is then dehydrated and dried. In addition, since the entanglement of fibers is weak and it is difficult to generate hydrogen bonds due to hydroxyl groups,
The strength of the molded body or sheet is extremely weak and it cannot be put to practical use. However, as described above, it has been found that a molding material or sheet having a low density and a high strength can be produced by adding a fine fiberized pulp to a curled fiber, but the balance between the density and the strength is: It is controlled by changing the mixing ratio of carded fiber and fine fiberized pulp.

【0016】本発明における低密度とは成型体及びシー
トとも密度が0.05g/cm3〜0.35g/cm3
範囲のことをいい、それで実用的な強度を付与するため
には前記の特性を有する微細繊維化パルプを絶乾全繊維
重量当り3〜65重量%、前記の特性を有するカールド
ファイバーを絶乾全繊維重量当り35〜97重量%の割
合で混合して用いる必要がある。微細繊維化パルプが3
重量%未満では、成型体或いはシートの強度が不足し、
実用に供することができず、逆に微細繊維化パルプが6
5重量%を超えると、密度が0.35g/cm3を超え
て高くなる。低密度成型体或いはシートにその他の繊維
原料として公知の晒或いは未晒パルプ繊維を、微細繊維
化パルプの混合比率の範囲内で用いることができる。公
知のパルプ繊維としては、針葉樹化学パルプや広葉樹化
学パルプ、或いはGP、TMP(サーモメカニカルパル
プ)等の機械パルプ、古紙パルプ、コットンパルプ、リ
ンターパルプ等の漂白又は未漂白で、未叩解、又は叩解
したものを挙げることができるが、特に限定されない。
The low density in the present invention means that the density of both the molded body and the sheet is in the range of 0.05 g / cm 3 to 0.35 g / cm 3 , and in order to give practical strength, the above-mentioned is used. It is necessary to mix the fine fiberized pulp having the characteristics in an amount of 3 to 65% by weight based on the total dry fiber weight, and the curled fiber having the characteristics described above in a ratio of 35 to 97% by weight based on the total dry weight of the total fiber. . Fine fiberized pulp 3
If it is less than wt%, the strength of the molded body or sheet will be insufficient,
It cannot be put to practical use, and conversely, fine fiberized pulp is 6
If it exceeds 5% by weight, the density becomes higher than 0.35 g / cm 3 . Known bleached or unbleached pulp fibers, which are known as other fiber raw materials, can be used in the low-density molded body or sheet within the range of the mixing ratio of the fine fiberized pulp. Known pulp fibers include softwood chemical pulp, hardwood chemical pulp, mechanical pulp such as GP and TMP (thermo-mechanical pulp), bleached or unbleached waste paper pulp, cotton pulp, linter pulp, etc., unbeaten or beaten. Examples thereof include, but are not particularly limited to.

【0017】本発明の低密度成型体は、前記のカールド
ファイバーと微細繊維化パルプを含有する混合原料をパ
ルプモールド製造において使用されているワイヤー製の
所望の形状を有する金型に導入され、次いで吸引や加圧
によって脱水、乾燥し、所望の形状を有する成型体とす
ることにより得られ、繊維の使用比率により低い密度を
容易にコントロールして様々な水準の圧縮性を有し、緩
衝材として好適に使用し得る成型体が得られる。又、同
様に、本発明の低密度シートは、前記の混合原料を公知
の湿式抄紙法で抄紙し、乾燥することにより得られ、低
い密度で強度の優れたシートが得られる。更に、低密度
成型体或いはシートの強度を更に向上させるために、製
紙用として用いられている公知の紙力増強剤を添加して
もよい。紙力増強剤としては、尿素ホルムアルデヒド樹
脂、メラミンホルムアルデヒド樹脂、ポリアミド尿素ホ
ルムアルデヒド樹脂、ケトン樹脂、ポリアミドエピクロ
ルヒドリン樹脂、ポリアミドポリアミンエピクロルヒド
リン樹脂、グリセロールポリグリシジルエーテル樹脂、
ポリエチレンイミン樹脂等を挙げることができ、これら
の紙力増強剤は、単独で或いは適宜選択されて2種以上
を併用してもよい。これらの紙力増強剤を使用すると、
乾燥状態における強度が向上すると同時に、水湿潤状態
での強度も増し、より一層圧縮抵抗性の強い成型体或い
は強度の優れたシートを得ることができる。
The low-density molded article of the present invention is obtained by introducing the mixed raw material containing the above-mentioned curled fiber and fine fiberized pulp into a metal mold having a desired shape, which is used in pulp mold production, Then, it is dehydrated and dried by suction or pressure to obtain a molded product having a desired shape, and the low density can be easily controlled by the ratio of the fibers used to provide various levels of compressibility and a cushioning material. A molded body that can be suitably used as is obtained. Similarly, the low-density sheet of the present invention is obtained by paper-making the above-mentioned mixed raw material by a known wet papermaking method and drying, and a sheet having a low density and excellent strength can be obtained. Further, in order to further improve the strength of the low-density molded product or sheet, a known paper-strengthening agent used for papermaking may be added. As the paper strength enhancer, urea formaldehyde resin, melamine formaldehyde resin, polyamide urea formaldehyde resin, ketone resin, polyamide epichlorohydrin resin, polyamide polyamine epichlorohydrin resin, glycerol polyglycidyl ether resin,
Examples thereof include polyethyleneimine resin, and these paper-strengthening agents may be used alone or in combination of two or more kinds as appropriate. With these paper strength agents,
At the same time as the strength in the dry state is improved, the strength in the water-wet state is also increased, and it is possible to obtain a molded product having higher compression resistance or a sheet having excellent strength.

【0018】[0018]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明するが、勿論本発明はこれらによって限定されるも
のではない。尚、実施例及び比較例において%とあるの
は特に断わらない限り重量%を示す。
The present invention will be described in more detail with reference to the following examples, but of course the present invention is not limited thereto. In Examples and Comparative Examples,% means% by weight unless otherwise specified.

【0019】実施例1 固形分濃度1%の広葉樹の晒クラフトパルプの水スラリ
ーを、ガラスビーズを充填した1.5リットル容のダイ
ノミル(型式:KDL−PILOT型、シンマル・エン
タープライゼス社製)装置に350ml/分で導入、通
過させることにより微細繊維化パルプを製造した。この
パルプの保水度は280%で、このパルプ10%と、湿
潤カールファクター0.65と保水度50%を有するカ
ールドファイバー(商品名:HBA−FF、米国ウェア
ーハウザー社製)90%からなる混合物を固形分1%の
水スラリーとし、十分に撹拌した後、このスラリー30
0mlを直径11cmのブフナー漏斗で濃縮、脱液し、
次いで濃縮物を80メッシュのステンレスワイヤー製の
3cm×3cm×3cmの一方向が開放された正立方体
容器の中に緩く手で均一に押し込みながら充填し、その
容器ごと105℃の熱風循環式乾燥器に入れ、3時間で
乾燥させ、成型体を得た。成型体の密度は、0.09g
/cm3であった。更に、成型体について圧縮試験を行
い、圧縮特性を評価した。本発明で用いた保水度、湿潤
カールファクター及び圧縮試験の試験法は以下に示すと
おり。
Example 1 A 1.5 liter Dynomill (type: KDL-PILOT type, manufactured by Simmar Enterprises Co., Ltd.) apparatus in which a water slurry of bleached kraft pulp of hardwood having a solid content of 1% was filled with glass beads. Was introduced at a rate of 350 ml / min and passed through to produce a fine fiberized pulp. This pulp has a water retention of 280%, and is composed of 10% of this pulp and 90% of a curled fiber (HBA-FF, trade name: American Weehauser Co., Ltd.) having a wet curl factor of 0.65 and a water retention of 50%. The mixture was made into a water slurry having a solid content of 1%, and after sufficiently stirring, the slurry 30
0 ml was concentrated and deliquored with a Buchner funnel with a diameter of 11 cm,
Then, the concentrate was filled into an 80-mesh stainless wire 3 cm x 3 cm x 3 cm cubic container open in one direction by gently pushing it uniformly by hand, and the container was filled with a hot air circulation dryer at 105 ° C. It was put into a container and dried for 3 hours to obtain a molded body. The density of the molded body is 0.09g
/ Cm 3 . Further, a compression test was conducted on the molded body to evaluate the compression characteristics. The test methods for water retention, wet curl factor and compression test used in the present invention are as follows.

【0020】試験法(1)保水度 保水度は、JAPAN TAPPI No.26ー78
に準じて測定した。カールドファイバーが乾燥状態にあ
る場合は、次のようにした。試料を絶乾0.5g採取
し、蒸留水100ml中に十分分散させ、そのまま24
時間室温で放置して十分水を含浸させ、その後試料を濾
過器上で捕集し、次いでG2のガラスフィルターを有す
る遠心分離機(型式:H−103N、国産遠心器社製)
の遠心管に入れ、遠心力3000Gで15分間遠心脱水
した。遠心脱水処理した試料を遠心管より取り出し、湿
潤状態の重量を測定し、その後105℃の乾燥器で恒量
になるまで乾燥し、乾燥重量を測定し、保水度は式
(1)により算出した。微細繊維化パルプの場合は、固
形分濃度を6〜9%の範囲に調製し、試料を絶乾重量で
0.7gとなるように採取し、G3のガラスフィルター
を有する遠心管に入れ、前記と同様にして遠心脱水処理
を行い、湿潤重量と乾燥重量から式(1)によって保水
度を算出した。 保水度(%)={(W−D)/D}×100・・・(1) 但し、Wは、遠心脱水後の試料湿潤重量(g)、Dは、
その試料の乾燥重量(g)である。
Test method (1) Water retention The water retention is based on JAPAN TAPPI No. 26-78
It was measured according to. If the carded fibers were dry, then: A sample of 0.5 g of absolute dry sample was taken, sufficiently dispersed in 100 ml of distilled water, and then left as it is.
After being left at room temperature for a long time to be sufficiently impregnated with water, the sample is collected on a filter, and then a centrifuge having a G2 glass filter (model: H-103N, manufactured by Domestic Centrifuge).
It was placed in a centrifuge tube of No. 1 and subjected to centrifugal dehydration for 15 minutes at 3000 G of centrifugal force. The centrifugally dehydrated sample was taken out from the centrifuge tube, weighed in a wet state, then dried in a drier at 105 ° C. until a constant weight was obtained, the dry weight was measured, and the water retention was calculated by the formula (1). In the case of fine fiberized pulp, the solid content concentration is adjusted to a range of 6 to 9%, a sample is collected so as to have an absolute dry weight of 0.7 g, and the sample is placed in a centrifuge tube having a G3 glass filter. Centrifugal dehydration treatment was carried out in the same manner as above, and the water retention was calculated from the wet weight and the dry weight by the formula (1). Water retention (%) = {(WD) / D} × 100 (1) However, W is the wet weight of the sample after centrifugal dehydration (g), and D is
It is the dry weight (g) of the sample.

【0021】(2)湿潤カールファクター 純水に室温で24時間浸漬した後の100本のカールド
ファイバーを顕微鏡用スライドガラス上に置き、画像解
析装置を利用して、繊維1本ごとの実際の(直線状の)
長さLA(μm)及び最大投影長さ(繊維を囲む長方形
の最長辺の長さに等しい)LB(μm)を測定し、湿潤
カールファクターを式(2)から求め、その平均値を用
いた。 湿潤カールファクター=(LA/LB)−1・・・(2)(3)圧縮特性 得られた成型体をカッターナイフで切取り、2cm×2
cm×2cmの立方体を得た。この立方体の圧縮特性
を、ストローグラフ引張試験機(型式:M2、東洋精機
製作所製)にて測定した。ロードセルとして100kg
用のもの、圧縮速度として20mm/分を用いて試験を
行った。試験体の圧縮特性としては、歪み(%)をx軸
とし圧縮応力をy軸としてグラフ化し、曲線のはじめの
直線部分の傾きからヤング率を計算で求めた。又、歪み
を60%(12mm)与えたときの圧縮応力を求め、更
に歪みを75%(15mm)与えた後、24時間経過さ
せたときの歪みの元の高さ(20mm)に対する割合を
永久歪みと定義し、式(3)から求めた。 永久歪み(%)={歪み(mm)/元の高さ(mm)}×100・・・(3)
(2) Wet curl factor 100 pieces of curled fiber after soaking in pure water at room temperature for 24 hours are placed on a microscope slide glass, and an actual image of each fiber is obtained by using an image analyzer. (Linear)
The length LA (μm) and the maximum projected length (equal to the length of the longest side of the rectangle surrounding the fiber) LB (μm) were measured, the wet curl factor was obtained from the equation (2), and the average value thereof was used. . Wet curl factor = (LA / LB) -1 (2) (3) Compression characteristics Cut the obtained molded body with a cutter knife, and 2 cm x 2
A cm × 2 cm cube was obtained. The compression characteristic of this cube was measured by a straw graph tensile tester (model: M2, manufactured by Toyo Seiki Seisakusho). 100kg as a load cell
The test was carried out using a compression rate of 20 mm / min. As the compression characteristics of the test body, strain (%) was plotted on the x-axis and compression stress was plotted on the y-axis, and Young's modulus was calculated from the slope of the first straight line portion of the curve. Also, the compressive stress when the strain is applied 60% (12 mm) is obtained, and after the strain is further applied 75% (15 mm), the ratio of the strain to the original height (20 mm) after 24 hours has elapsed is permanently set. It was defined as strain and calculated from equation (3). Permanent strain (%) = {strain (mm) / original height (mm)} × 100 ... (3)

【0022】実施例2 カールドファイバー40%と微細繊維化パルプ60%か
らなる混合物を用いたこと以外は、実施例1と同様にし
て成型体を作製し、密度を測定し、圧縮特性を評価し
た。密度は0.28g/cm3であった。
Example 2 A molded body was prepared in the same manner as in Example 1 except that a mixture of 40% carded fiber and 60% fine fiber pulp was used, and the density was measured to evaluate the compression characteristics. did. The density was 0.28 g / cm 3 .

【0023】比較例1 カールドファイバー90%と、広葉樹晒クラフトパルプ
を実験用ナイアガラビーター(容量23リットル、東西
精機社製)においてパルプ濃度2%で、カナダ標準ろ水
度100mlまで叩解した、保水度180%のパルプ1
0%との混合物を用いたこと以外は、実施例1と同様に
して成型体を作製し、密度を測定し、圧縮特性を評価し
た。得られた成型体をカッターナイフで2cm×2cm
×2cmの立方体に切り取る際に、型崩れを起こし、立
方体の表面が滑らかに切れず、表面に凹凸が生じた。密
度は0.09g/cm3であった。
Comparative Example 1 90% carded fiber and bleached hardwood kraft pulp were beaten in a laboratory Niagara beater (capacity: 23 liters, manufactured by Tozai Seiki) at a pulp concentration of 2% to a Canadian standard freeness of 100 ml. 180% pulp 1
A molded body was produced in the same manner as in Example 1 except that the mixture with 0% was used, the density was measured, and the compression characteristics were evaluated. The obtained molded body is 2 cm x 2 cm with a cutter knife.
When cut into a cube of × 2 cm, the shape of the cube collapsed, the surface of the cube could not be cut smoothly, and irregularities were generated on the surface. The density was 0.09 g / cm 3 .

【0024】比較例2 湿潤カールファクター0.33と保水度135%の、変
形を付与していない未処理の針葉樹晒クラフトパルプ9
0%と、広葉樹晒クラフトパルプをダイノミルで処理し
て作製した保水度280%の微細繊維化パルプ10%と
の混合物を用いたこと以外は、実施例1と同様にして成
型体を作製し、密度を測定し、圧縮特性を評価した。密
度は0.19g/cm3であった。
Comparative Example 2 Untreated unbleached softwood kraft pulp 9 having a wet curl factor of 0.33 and a water retention of 135%.
A molded product was prepared in the same manner as in Example 1 except that a mixture of 0% and 10% of fine fiberized pulp having a water retention of 280% prepared by treating a hardwood bleached kraft pulp with Dynomill was used. The density was measured and the compression characteristics were evaluated. The density was 0.19 g / cm 3 .

【0025】比較例3 湿潤カールファクター0.33と保水度135%を有す
る変形を付与されていない未処理の針葉樹晒クラフトパ
ルプ40%と、広葉樹漂白クラフトパルプをダイノミル
で処理して作製した保水度280%の微細繊維状パルプ
60%との混合物を用いたこと以外は、実施例1と同様
にして成型体を作製し、密度を測定し、圧縮特性を評価
した。密度は0.39g/cm3であった。
Comparative Example 3 40% of unmodified unbleached softwood kraft pulp having a wet curl factor of 0.33 and a water retention of 135% and a hardwood bleached kraft pulp were treated with a Dynomill to prepare a water retention. A molded body was prepared in the same manner as in Example 1 except that a mixture with 280% fine fibrous pulp 60% was used, and the density was measured and the compression characteristics were evaluated. The density was 0.39 g / cm 3 .

【0026】比較例4 市販の発泡スチロール(密度0.02g/cm3)を2
cm角の立方体にカッターナイフで切取り、これを試料
として圧縮特性を評価した。
Comparative Example 4 Two commercially available polystyrene foams (density 0.02 g / cm 3 ) were used.
A cubic cube of cm square was cut with a cutter knife, and this was used as a sample to evaluate the compression characteristics.

【0027】実施例3 針葉樹晒クラフトパルプ絶乾30gを容量が1リットル
の双腕型ニーダー(型式:S1−1、森山製作所製)に
入れ、更に非ホルムアルデヒド系架橋剤(商標:スミテ
ックスNFー500K、住友化学工業社製)とその架橋
助剤(商標:スミテックスACCELERATOR X
−60、住友化学工業社製)をそれぞれ絶乾パルプ重量
当り3.0%と0.25%を添加し、次いで水を添加し
て固形分濃度35%に調製した後、27℃で双腕をそれ
ぞれ60rpmと100rpmで回転させ、20分間撹
拌処理を施した。その後、パルプを前記ニーダーから取
り出し、パルプを手でよくほぐしてから実験用ワーレン
ブレンダーによりパルプ塊を離解してフラッフ化し、次
いでこのフラッフ化したパルプを温度150℃の送風式
乾燥機に入れ、無拘束の状態で2時間乾燥させ、この乾
燥パルプを乾燥機から取り出し、冷却した。得られたカ
ールドファイバーの湿潤カールファクターは、0.7
5、保水度は45%であった。
Example 3 30 g of dried coniferous bleached kraft pulp was placed in a double-arm kneader (model: S1-1, manufactured by Moriyama Seisakusho) having a capacity of 1 liter, and a non-formaldehyde-based crosslinking agent (trademark: Sumitex NF-). 500K, Sumitomo Chemical Co., Ltd. and its cross-linking aid (trademark: Sumitex ACCELERATOR X)
-60, manufactured by Sumitomo Chemical Co., Ltd.) and 3.0% and 0.25%, respectively, based on the weight of the absolutely dry pulp, and then water to adjust the solid content concentration to 35%, and then the double arms at 27 ° C. Were rotated at 60 rpm and 100 rpm, respectively, and stirred for 20 minutes. Then, the pulp was taken out from the kneader, and the pulp was well loosened by hand, and then the lump of pulp was disintegrated and fluffed by an experimental Warren blender, and then the fluffed pulp was put in a blast dryer at a temperature of 150 ° C. After being dried for 2 hours in a restrained state, the dried pulp was taken out from the dryer and cooled. The wet curl factor of the obtained curled fiber is 0.7.
5, the water retention was 45%.

【0028】このカールドファイバー40%と、広葉樹
晒クラフトパルプを用いて実施例1と同様にして作製し
た保水度280%の微細繊維化パルプ60%との混合物
をディスインテグレーターに入れ、固形分濃度2%で撹
拌し、十分に分散した繊維スラリーを得た。このスラリ
ーを紙料として80メッシュブロンズワイヤーを備えた
角型(25cm×25cm)手抄きシートマシンにより
坪量60g/m2のシートを作製し、105℃の熱風乾
燥器で乾燥し、シートを得た。得られたシートを用いて
JIS法により坪量(P−8124)、厚さと密度(P
−8118)及び引張り強度(裂断長、Pー8113)
を測定し、品質を評価した。
A mixture of 40% of this curled fiber and 60% of fine fiberized pulp having a water retention of 280% prepared by using hardwood bleached kraft pulp in the same manner as in Example 1 was placed in a disintegrator, and the solid content concentration was increased. Stirring at 2% gave a well dispersed fiber slurry. A sheet having a basis weight of 60 g / m 2 was prepared by a square (25 cm × 25 cm) hand-made sheet machine equipped with an 80 mesh bronze wire using this slurry as a paper material, and dried with a hot air dryer at 105 ° C. to form the sheet. Obtained. Using the obtained sheet, the basis weight (P-8124), the thickness and the density (P
-8118) and tensile strength (breaking length, P-8113)
Was measured and the quality was evaluated.

【0029】実施例4 湿潤カールファクターが0.65で保水度が50%のカ
ールドファイバー(米国ウェアハウザー社製、HBA−
FF)75%と、微細繊維化パルプを作製する際に送液
量を700ml/分とし、実施例1と同様にしてダイノ
ミルで処理して作製した保水度220%の微細繊維化パ
ルプ25%との混合物を紙料として用いたこと以外は、
実施例3と同様にしてシートを作製し、その品質を評価
した。
Example 4 Curled fiber having a wet curl factor of 0.65 and a water retention of 50% (HBA-manufactured by Warehauser, USA)
FF) 75% and 25% of fine fiberized pulp having a water retention of 220% and produced by treating with a Dynomill in the same manner as in Example 1 with a liquid feed rate of 700 ml / min when producing fine fiberized pulp. Except that a mixture of
A sheet was prepared in the same manner as in Example 3 and its quality was evaluated.

【0030】実施例5 実施例4で用いた紙料に紙力増強剤としてポリアクリル
アミド樹脂(商品名:AFー100、荒川化学工業社
製)を絶乾換算で絶乾繊維重量当り0.5%添加したこ
と以外は、実施例3と同様にしてシートを作製し、その
品質を評価した。
Example 5 Polyacrylamide resin (trade name: AF-100, manufactured by Arakawa Chemical Industry Co., Ltd.) as a paper strengthening agent was added to the paper material used in Example 4 in an amount of 0.5 per dry fiber weight. %, A sheet was prepared in the same manner as in Example 3 except that the content was added, and the quality was evaluated.

【0031】実施例6 湿潤カールファクター0.65で保水度50%のカール
ドファイバーを60%、実施例1と同様にして処理して
得られた保水度280%の微細繊維化パルプ20%、更
にろ水度650mlCSFに実験室ナイアガラビーター
で叩解した針葉樹晒クラフトパルプ20%との混合物を
紙料として用いたこと以外は、実施例3と同様にしてシ
ートを作製し、その品質を評価した。
Example 6 60% of a curled fiber having a wet curl factor of 0.65 and a water retention of 50%, and 20% of a fine fiberized pulp having a water retention of 280% obtained by treating in the same manner as in Example 1, Further, a sheet was prepared and the quality thereof was evaluated in the same manner as in Example 3 except that a mixture of 650 ml of freeness of 650 ml and 20% of bleached softwood kraft pulp beaten with a laboratory niagara beater was used as a paper material.

【0032】比較例5 架橋剤及び架橋助剤の添加率をそれぞれ0.2%と0.
1%とし、ニーダーでの処理時間を5分間としたこと以
外は実施例3と同様にして湿潤カールファクター0.4
で保水度70%のカールドファイバーを作製した。更
に、パルプ固形分濃度を0.5%、送液量を700ml
/分としたこと以外実施例1と同様にして保水度が18
0%の広葉樹パルプ繊維の微細繊維化パルプを作製し
た。次いで前記カールドファイバー75%と微細繊維化
パルプ25%との混合物を紙料として用いたこと以外
は、実施例3と同様にしてシートを作製し、その品質を
評価した。
Comparative Example 5 Addition rates of the cross-linking agent and the cross-linking aid were 0.2% and 0.
Wet curl factor 0.4 in the same manner as in Example 3 except that the treatment time in the kneader was 5 minutes.
A curled fiber having a water retention of 70% was produced. Furthermore, the pulp solid content concentration is 0.5%, and the liquid transfer amount is 700 ml.
The water retention is 18 in the same manner as in Example 1 except that the water retention rate is 18 minutes.
A fine fiberized pulp of 0% hardwood pulp fibers was prepared. Then, a sheet was prepared in the same manner as in Example 3 except that a mixture of the above-mentioned curled fiber 75% and fine fiberized pulp 25% was used as a paper material, and the quality thereof was evaluated.

【0033】比較例6 湿潤カールファクターが0.65で保水度が50%のカ
ールドファイバー(米国ウェアハウザー社製、HBA−
FF)75%と、微細繊維化パルプを製造する際に、送
液量を100ml/分とし、実施例1と同様にして作製
した保水度475%の微細繊維化パルプ25%との混合
物を紙料として用いたこと以外は、実施例3と同様にし
てシートを作製し、その品質を評価した。
Comparative Example 6 A curled fiber having a wet curl factor of 0.65 and a water retention of 50% (HBA-manufactured by Warehauser, USA).
FF) 75% and 25% of finely fibrillated pulp having a water retention of 475% and produced in the same manner as in Example 1 at the time of producing the finely fibrillated pulp at 100 ml / min. A sheet was prepared in the same manner as in Example 3 except that it was used as a material, and its quality was evaluated.

【0034】比較例7 ニーダーでの処理時間を60分間としたこと以外は、実
施例3と同様にして作製した湿潤カールファクター1.
1、保水度50%のカールドファイバー75%と、実施
例4で用いた保水度220%の微細繊維化パルプ25%
との混合物を紙料として用いたこと以外は、実施例3と
同様にしてシート作製し、その品質を評価した。
Comparative Example 7 Wet curl factor 1. prepared in the same manner as in Example 3 except that the treatment time in the kneader was 60 minutes.
1. 75% of curled fiber having a water retention of 50% and 25% of fine fiberized pulp having a water retention of 220% used in Example 4
A sheet was prepared in the same manner as in Example 3 except that the mixture of and was used as a paper material, and the quality was evaluated.

【0035】実施例1〜2及び比較例1〜4で得られた
成型体についての結果を表1に示す。
Table 1 shows the results of the molded products obtained in Examples 1 and 2 and Comparative Examples 1 to 4.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例3〜6及び比較例5〜7で得られた
シートについての結果を表2に示す。
The results of the sheets obtained in Examples 3 to 6 and Comparative Examples 5 to 7 are shown in Table 2.

【表2】 [Table 2]

【0038】表1より分かるように、本発明の成型体
は、密度が低く、カールドファイバーと微細繊維化パル
プの配合比を変えることで密度や、ヤング率をコントロ
ールすることができる(実施例1、2)。密度のもっと
も低い成型体(実施例1)は、発泡スチロール(比較例
4)と比較すると密度でやや劣るが、物性的にはほぼ同
等であり、緩衝材として優れた品質を持っている。微細
繊維化パルプの代わりに高叩解度のパルプを用いるとヤ
ング率や圧縮応力のような物性は遜色ないが、成型性が
悪く、型崩れが起こりやすい(比較例1)湿潤カールフ
ァクターが低いパルプ繊維を大量に用いるとヤング率が
高くなり、永久歪みも大きくなるので緩衝材としての特
性が悪くなる(比較例2)。更に、湿潤カールファクタ
ーが低いパルプ繊維との組合せで高叩解パルプ繊維の使
用量を増やすと、前記と同様に強度が発現し、ヤング
率、圧縮応力及び密度は高くなり、永久歪みも大きくな
るので緩衝材としての特性が劣る(比較例3)。
As can be seen from Table 1, the molded product of the present invention has a low density, and the density and Young's modulus can be controlled by changing the compounding ratio of the curled fiber and the fine fiberized pulp (Examples). 1, 2). The molded product having the lowest density (Example 1) is slightly inferior in density to the expanded polystyrene (Comparative Example 4), but has substantially the same physical properties and has excellent quality as a cushioning material. When a pulp having a high beating degree is used instead of the fine fiberized pulp, physical properties such as Young's modulus and compressive stress are comparable, but the moldability is poor and the shape is likely to be deformed (Comparative Example 1) Pulp having a low wet curl factor When a large amount of fibers is used, the Young's modulus increases and the permanent set also increases, so that the properties as a cushioning material deteriorate (Comparative Example 2). Furthermore, when the amount of the high-beaten pulp fiber used in combination with a pulp fiber having a low wet curl factor is increased, strength is developed in the same manner as described above, Young's modulus, compressive stress and density are increased, and permanent set is also increased. The characteristics as a cushioning material are inferior (Comparative Example 3).

【0039】表2より分かるように、本発明のシート
は、密度が小さく、その割には引張強度が大きい(実施
例3〜4)。本発明に使用される原料に、紙力増強剤を
加えると、更に裂断長を大きくすることができ(実施例
5)、変形が付与されていない未処理パルプを併用して
も密度を低い水準に維持しながら強度の強いシートが得
られる(実施例6)。これに対して、湿潤カールファク
ターが低いカールドファイバーを使用すると、密度が高
くなり、その割には強度が弱いシートとなる(比較例
5)。一方、保水度が高すぎる微細繊維化パルプを用い
ると、密度は比較的低いが、強度も低い(比較例6)。
逆に、湿潤カールファクターが高すぎると、密度は低く
できるが強度は改善できない(比較例7)。
As can be seen from Table 2, the sheet of the present invention has a low density and, on the other hand, a high tensile strength (Examples 3 to 4). When a paper strengthening agent is added to the raw material used in the present invention, the breaking length can be further increased (Example 5), and the density is low even when untreated pulp which is not deformed is used in combination. A strong sheet is obtained while maintaining the level (Example 6). On the other hand, when the curled fiber having a low wet curl factor is used, the density becomes high, and the sheet becomes weak in comparison with that (Comparative Example 5). On the other hand, when fine fiberized pulp having too high water retention is used, the density is relatively low, but the strength is also low (Comparative Example 6).
On the contrary, if the wet curl factor is too high, the density can be lowered but the strength cannot be improved (Comparative Example 7).

【0040】[0040]

【発明の効果】以上説明したように、本発明は、低密度
で圧縮強度と緩衝性の優れる成型体及び低密度で強度の
優れるシートの製造方法を提供するという効果を奏す
る。
INDUSTRIAL APPLICABILITY As described above, the present invention has the effect of providing a molded product having a low density and excellent compressive strength and cushioning properties, and a method for producing a sheet having a low density and excellent strength.

フロントページの続き (56)参考文献 特開 平5−71702(JP,A) 特開 平4−202895(JP,A) 特開 平4−18186(JP,A) 特開 平6−146195(JP,A) 特開 平6−10286(JP,A) 特公 昭62−33360(JP,B1) (58)調査した分野(Int.Cl.7,DB名) D21H 11/00 - 27/42 D21J 1/00 - 7/00 Continuation of front page (56) References JP-A-5-71702 (JP, A) JP-A-4-202895 (JP, A) JP-A-4-18186 (JP, A) JP-A-6-146195 (JP , A) JP-A-6-10286 (JP, A) JP-B-62-33360 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) D21H 11/00-27/42 D21J 1/00-7/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 保水度が210〜450%の微細繊維化
パルプを全繊維重量当り3〜65重量%と、保水度が2
5〜65%で湿潤カールファクターが0.5〜1.0の
範囲にあるカールドファイバーを全繊維重量当り35〜
97重量%含有する混合物を原料とする水スラリーを、
網を備えた成型機に導入し、脱液して成型、乾燥するこ
とを特徴とする低密度成型体の製造方法。
1. A fine fibrous pulp having a water retention of 210 to 450% and a water retention of 2 to 3 to 65% by weight based on the total fiber weight.
A curled fiber having a wet curl factor of 5 to 65% and a range of 0.5 to 1.0 is used in an amount of 35 to 35 based on the total fiber weight.
A water slurry using a mixture containing 97% by weight as a raw material,
A method for producing a low-density molded product, which comprises introducing into a molding machine equipped with a net, deliquoring, molding and drying.
【請求項2】 保水度が210〜450%の微細繊維化
パルプを全繊維重量当り3〜65重量%と、保水度が2
5〜65%で湿潤カールファクターが0.5〜1.0の
範囲にあるカールドファイバーを全繊維重量当り35〜
97重量%含有する混合物を原料とする水スラリーを、
湿式抄紙機で抄紙し、乾燥することを特徴とする低密度
シートの製造方法。
2. A fine fiberized pulp having a water retention of 210 to 450% and a water retention of 2 to 3 to 65% by weight based on the total fiber weight.
A curled fiber having a wet curl factor of 5 to 65% and a range of 0.5 to 1.0 is used in an amount of 35 to 35 based on the total fiber weight.
A water slurry using a mixture containing 97% by weight as a raw material,
A method for producing a low-density sheet, which comprises making a paper with a wet paper machine and drying.
JP19019795A 1995-07-26 1995-07-26 Method for producing low density molded article and low density sheet Expired - Fee Related JP3511742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19019795A JP3511742B2 (en) 1995-07-26 1995-07-26 Method for producing low density molded article and low density sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19019795A JP3511742B2 (en) 1995-07-26 1995-07-26 Method for producing low density molded article and low density sheet

Publications (2)

Publication Number Publication Date
JPH0941300A JPH0941300A (en) 1997-02-10
JP3511742B2 true JP3511742B2 (en) 2004-03-29

Family

ID=16254072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19019795A Expired - Fee Related JP3511742B2 (en) 1995-07-26 1995-07-26 Method for producing low density molded article and low density sheet

Country Status (1)

Country Link
JP (1) JP3511742B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212690A (en) * 1997-01-23 1998-08-11 Oji Paper Co Ltd Low-density body
EP1936032A1 (en) * 2006-12-18 2008-06-25 Akzo Nobel N.V. Method of producing a paper product

Also Published As

Publication number Publication date
JPH0941300A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
US6133170A (en) Low density body
CN109790681B (en) Method for converting high consistency pulp fibers into pre-dispersed semi-dry and dry fiber materials
JP5638001B2 (en) Cellulose nanofiber
EP2548917B1 (en) Molding material and manufacturing method therefor
JP2008169497A (en) Method for producing nanofiber, and nanofiber
RU2671320C2 (en) Method for the production of nanofibrillar cellulose gels
CN112399987A (en) Porous materials of cellulose fibres and gluten
US5346541A (en) Water dispersible formulations and materials and methods for influencing their water dispersibility
JP3558638B2 (en) Multiply cellulose products using bulky cellulose fibers
JPH0360958B2 (en)
CA3112547A1 (en) Cellulose fiber molded product and method for manufacturing the same
JPH10245792A (en) Low density body
JP3511742B2 (en) Method for producing low density molded article and low density sheet
JPH0410800A (en) Diaphragm for electroacoustic transducer
JP2000502150A (en) Soft, bulky absorbent paper containing chemi-thermomechanical pulp
JP7490053B2 (en) Wet-laid webs containing viscose fibers
JPH10216435A (en) Filter medium
CN116065415A (en) Preparation method of efficient filter paper for mask
JPH10217415A (en) Complex structure
JPH10218245A (en) Pulp mold packaging material
JP2021006666A (en) Cellulose fiber molded body and its manufacturing method
JP2000256986A (en) Low-density paper
Moya et al. Studies on the sound absorption properties of wood-based pulp fibre foams
JPH09285709A (en) Base paper for tea bag
JPH10219585A (en) Water-resistant low density structural material

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees