JP3510437B2 - Evaluation method for thin steel sheet products - Google Patents

Evaluation method for thin steel sheet products

Info

Publication number
JP3510437B2
JP3510437B2 JP33520496A JP33520496A JP3510437B2 JP 3510437 B2 JP3510437 B2 JP 3510437B2 JP 33520496 A JP33520496 A JP 33520496A JP 33520496 A JP33520496 A JP 33520496A JP 3510437 B2 JP3510437 B2 JP 3510437B2
Authority
JP
Japan
Prior art keywords
inclusions
particle size
product
steel
inclusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33520496A
Other languages
Japanese (ja)
Other versions
JPH10170502A (en
Inventor
貴宏 磯野
洋 永浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33520496A priority Critical patent/JP3510437B2/en
Publication of JPH10170502A publication Critical patent/JPH10170502A/en
Application granted granted Critical
Publication of JP3510437B2 publication Critical patent/JP3510437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は薄鋼板製品を製造す
る技術分野に於いて、製品での介在物に起因する欠陥の
発生を防止することを目的として、製品板中より採取し
たサンプル中の非金属介在物を評価する事により製品で
の欠陥発生を効率よく予測するとともに、品質上不充分
と予測された製品の出荷予定を変更することにより介在
物性の欠陥の発生を防止する方法に関するものである。 【0002】 【従来の技術】鋼中に含有される非金属介在物は、製品
における表面欠陥あるいは加工時の割れ欠陥などの品質
異常の原因となることから、その減少技術は製錬技術の
重要な位置を占めており、製鋼工程では介在物減少対策
に多大なコストをかけている。最近の薄鋼板製品に求め
られる加工性や表面性状の要求はますます厳しくなり、
鋼中介在物をその要求に応じて減少させることは製造コ
スト上の大きな負担となる。 【0003】介在物品位の厳格な製品を製造する場合、
ユーザーで介在物性欠陥が発生するのを防止するため、
圧延された薄鋼板の状態で鋼中の欠陥(介在物)を検出
し、検出された欠陥の量によって品質厳格材としての出
荷可否を判断する必要がある。 【0004】具体的には磁粉探傷法、超音波探傷法、漏
洩磁束型欠陥検出法等の手段で薄鋼板中の欠陥の量を検
査し、出荷可否を判定する方法が一般的に行われてい
る。しかしながら、これらの方法では、鋼中の非金属介
在物だけでなく、ロール疵や線状疵などの表面欠陥や疵
も、ほぼ同様に検出してしまい、検出信号による、それ
らと介在物との区別は実際上できない。 【0005】このため、これらの疵検出法による評価は
場合によっては検出誤差が大きく、精度良い欠陥発生予
測を行うには問題がある。これは、これらの方法では、
介在物と、その他の欠陥とを明確に区別する方法を持た
ない点に問題がある。 【0006】製品板中の介在物を直接評価する方法とし
ては、T[O]分析、EB法等がよく知られているが、
これらの評価方法は何れも比較的微小な介在物の総量を
評価対象としているため、欠陥の根本原因となる鋼の清
浄度の評価はできるが、比較的粒径の大きな介在物が原
因となる製品での実際の欠陥の発生との対応関係は必ず
しも高くないのが現状である。 【0007】製品板の介在物を評価する方法としては、
大型の粒径の介在物を評価する方法としては、軸受鋼の
場合には、特開平5−25587号や、特開平6−20
73号公報に開示されているように、鋼中に含まれる介
在物の最大径が寿命を規定するため、材料中の介在物の
最大径を評価する方法が知られている。 【0008】しかしながら、薄鋼板の場合、破壊のメカ
ニズムが疲労破壊とは異なり、最大の粒径を持つ介在物
だけが欠陥の原因になるわけではなく、軸受鋼と同じ取
り扱いはできない。 【0009】 【発明が解決しようとする課題】上述のように、薄鋼板
の製品に於いて介在物性の欠陥の起源となるものは比較
的大型の介在物と考えられるが、本発明はこのような大
型の介在物を選択的、かつ効率的に評価する指標を提供
することを目的とするものである。 【0010】 【課題を解決するための手段】上述の課題を解決するた
め、本発明の要旨とするところは、薄鋼板製品中の介在
物を評価して、製品における非金属介在物起因の欠陥の
発生を予測する方法に於いて、あらかじめ鋼種毎に明確
にした介在物最大粒径と成品品質との対応関係をもと
に、少量サンプルの介在物粒径測定結果から極値統計に
より簡便に鋼材中に含まれる介在物の最大粒径を推定
し、この推定値と、前述の介在物最大粒径と製品品質と
の対応関係とによって製品欠陥検出頻度を予測すること
を特徴とする薄鋼板製品の評価方法である。 【0011】 【発明の実施の形態】以下に本発明について詳細に説明
する。発明者らは、薄鋼板の製品板における介在物起因
の内部欠陥の発生を精度良く予測することができる鋼中
介在物評価指標を確立するため、種々の鋼中介在物評価
と、製品中の介在物起因欠陥の評価を繰り返した。製品
板での欠陥の発生頻度を、従来から用いられている溶鋼
清浄度評価指標で整理すると、特に清浄度の低い領域で
のバラツキが大きく、必ずしも清浄度と欠陥発生との間
の相関関係は高くない。 【0012】一般的に言って、鋼板中に単独に存在する
数μmの微小な介在物が欠陥の直接的な原因になってい
ることはほとんどない。鋼板中の介在物の粒径分布を詳
細に検討すると、全体の介在物の粒径分布は、図1に示
すように、粒径の増加に対して個数が対数的に急激に減
衰している。 【0013】このため、全介在物量に対して大型介在物
が占める比率は低く、介在物の総量を評価しても、その
大小が欠陥の原因となる大型介在物の大小を直接反映し
ない。従来から行われている介在物総量の評価を主眼に
おいた清浄度評価指標が製品欠陥との対応が悪いのは上
記の理由によるものである。 【0014】ただ、多くの場合、鋼中の介在物量(それ
が微小介在物主体のものであっても)が多いものでは、
それらの介在物の相互の合体によって、ある確率で大粒
径の介在物が存在するため、介在物量の多いものと、少
ないものとを比較すると、介在物量の多いもので欠陥の
発生率が大きくなるものである。 【0015】しかし、近年のように鋼中の介在物総量が
著しく減少し、その結果として介在物起因の欠陥発生率
も非常に少なくなっている状況下では、元々の評価すべ
き介在物総量が少ない中で、直接に大型介在物量の多寡
を評価するための評価技術が必要となっている。 【0016】製品で検出された介在物性欠陥の大きさか
ら、原因となった介在物の大きさを推定することは一般
的に行われているが、発明者らがこのような調査をもと
に鋼中介在物と製品欠陥との対応を調査した結果、20
μm以上の粒径の大きな介在物がそのほとんどを占める
ことを確認すると共に、図2に示すように、製品から見
つかる最大の欠陥の大きさ(介在物の最大粒径)と、当該
製品の欠陥の検出個数(100μm以上の介在物個数)と
の間に相関関係を見いだした。 【0017】すでに述べたように、薄鋼板製品の介在物
起因の欠陥は最大粒径の介在物が原因として発生するも
のではなく、欠陥として発生する限界粒径を越える大き
な介在物はすべて欠陥の原因となる可能性がある。 【0018】このため、介在物起因の欠陥を予測するた
めには、厳密には臨界粒径を越えたすべての介在物の個
数を評価する必要があるが、上述の相関関係を用いれ
ば、大粒径介在物の個数を評価する代わりに、最大の介
在物の粒径を知れば大粒径介在物の個数に相当する情報
が得られ、欠陥の発生頻度を予測することができる。 【0019】鋼材中の介在物の最大粒径を評価する方法
としては、実際に鋼材中の介在物の粒径を測定し、その
最大径を評価する方法が考えられるが、実際問題として
評価したい鋼材中の全ての介在物の粒径を測定すること
は不可能である。 【0020】そこで、鋼中に存在する介在物の最大径を
推定する手法として、鋼中から抽出した限られた量のサ
ンプル中の最大介在物径を評価することにより、対象と
する鋼材中に含有する介在物の最大粒径を推定する極値
統計法の適用を検討した。 【0021】極値統計による鋼材中最大介在物径の測定
方法は、「機械学会論文A、55(1989)509、
p.58」に示されるように、鋼材から採取した複数の
サンプル中に観察される介在物の最大粒径を測定し、そ
こから母材の鋼材中に含まれる介在物の最大粒径を推定
するものである。 【0022】この方法を用いれば、必ずしもすべての評
価対象を調査することなく、母集団の中の特性値の最大
値を推定することが可能である。発明者らの検討の結
果、このような極値統計法を用いて介在物の最大粒径を
推定した結果を採用した場合でも、介在物最大径推定値
と、製品品質との間には相関関係があることを確認し
た。 【0023】個々の介在物の粒径を評価する方法として
も、観察視野内で、特定の方向に見たときの最大粒径を
採用する方法、方向にこだわらず、その介在物の最大の
粒径を採用する方法、介在物の面積を評価し、同じ面積
を有する円の直径として介在物径を評価する方法など様
々な方法が考えられる。 【0024】粒径評価方法として何れの方法を用いるか
によって、得られる介在物粒径の絶対値は変化するが、
評価方法としていずれかの方法に統一すれば、粒径の大
小の相対関係はさほど変化しないため、目的とする介在
物の最大粒径と、大粒径介在物の個数との相関関係は維
持され、最大粒径により欠陥の発生頻度の判定指標とす
ると言う目的は達せられる。 【0025】ところで、欠陥発生頻度と鋼中の大粒径介
在物量との相関関係は、実際上は評価対象とする鋼材の
使用形態によって大きく異なる。例えば、殆ど加工を受
けずに平板として使用される材料については、表面に露
出していない限り、鋼中に大粒径の介在物が存在しても
欠陥とはなり得ない。 【0026】これに引き替え、引っ張り加工やしごき加
工のような強加工を受ける鋼材については、20〜30
μmの介在物でも鋼板の加工部が破れるなどの欠陥が発
生する。この為、上述したような介在物最大径と品質欠
陥との対応関係は、鋼材の用途によって異なることは当
然である。従って、これらの対応関係は鋼種毎に、その
対応関係のデータを蓄積することにより判定基準を作成
すべきものである。 【0027】 【実施例】本発明の実施例について説明する。 (実施例1)飲料缶用に加工されるブリキ材の製品板の
サンプルを採取し、顕微鏡下で試料中の介在物の粒径を
評価した。ここで、測定は、視野内の全ての介在物粒径
ではなく、視野内に観察される最も大きな介在物の粒径
とした。顕微鏡観察の測定倍率は400倍で行い、一視
野の大きさは顕微鏡視野の中心から上下・左右に100
μmづつの40000μm2である。 【0028】100視野の測定を一組とし、100視野
の中で最も大きな介在物の粒径を、当該100視野の代
表最大径とした。同様の評価を40回繰り返し、40個
の代表最大径を得たところで、これらの代表最大径を極
値統計確率紙にプロットした。測定した全測定面積は1
60mm2となった。極値統計により母材に含有する介
在物の最大径を評価するに当たり、製品1kgあたりに存
在が予測される介在物の最大径として推定した。 【0029】このようにして測定した様々な製造ロット
の材料の推定最大介在物粒径と、当該ロットの内部欠陥
発生率との対応関係を図3に示す。推定最大径の増加に
より、急激に欠陥発生率が立ち上がる事がわかる。これ
を用いて、製品から採取したサンプルから介在物の最大
粒径を求めて、図3に示すような相関図に当てはめれ
ば、欠陥の発生を精度良く予測することが出来る。 【0030】同じサンプルのT[O]分析値と内部欠陥
発生率との対応関係を図4に示す。全体的に見ると大き
な相関関係があるようにも見えるが、バラツキが大き
く、T[O]値をもとにした欠陥発生の予測は推定精度
が高くないことがわかる。 【0031】(実施例2)一般加工用ブリキの製品板の
サンプルを採取し、顕微鏡下で試料中の介在物の粒径を
評価した。評価方法は実施例1に示す方法と同じであ
る。様々な製造ロットの材料の推定最大介在物粒径と、
当該ロットの内部欠陥発生率との対応関係を図5に示
す。 【0032】実施例1と同様に内部欠陥発生率が上昇す
る臨界の介在物最大径が存在することがわかる。但し、
臨界最大介在物粒径の絶対値は、実施例1のものに比較
して大きい。これは、実施例1に示した飲料缶用の材料
に比べて、一般の加工用ブリキでは加工量が少なく、欠
陥が発生しにくい為と考えられる。 【0033】 【発明の効果】以上のように、本発明の方法によれば、
予め鋼種毎に明確にした介在物最大粒径と製品品質との
対応関係を元に、少量の製品サンプルの介在物粒径測定
結果から極値統計により簡便に鋼材中に含まれる介在物
の最大粒径を推定し、この推定値と、前述の介在物最大
粒径と製品品質との対応関係とによって当該製品板の製
品欠陥検出頻度を予測することができるため、当該製品
板の出荷予定を介在物による品質欠陥の発生しない用途
に変更し、顧客での介在物トラブルの発生を防止するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field of manufacturing a thin steel sheet product, and an object of the present invention is to prevent a defect caused by inclusions in the product. In addition to efficiently predicting the occurrence of defects in products by evaluating non-metallic inclusions in samples taken from product plates, and by changing the shipping schedule of products predicted to be insufficient in quality, And a method for preventing the occurrence of defects. [0002] Non-metallic inclusions contained in steel cause quality defects such as surface defects in products or crack defects during processing. Therefore, the reduction technology is important for smelting technology. In the steelmaking process, considerable costs are being spent on measures to reduce inclusions. The demands for workability and surface properties required for recent steel sheet products have become increasingly severe.
Decreasing the inclusions in steel according to the demands imposes a great burden on manufacturing costs. [0003] In the case of manufacturing a strict product with an intermediate product,
In order to prevent users from having inclusion defects,
It is necessary to detect defects (inclusions) in the steel in the state of the rolled thin steel sheet, and to judge whether or not it can be shipped as strict quality material based on the amount of detected defects. More specifically, a method of inspecting the amount of defects in a thin steel sheet by means such as a magnetic particle flaw detection method, an ultrasonic flaw detection method, a leakage magnetic flux type defect detection method, and the like to judge whether or not shipping is possible is generally performed. I have. However, in these methods, not only nonmetallic inclusions in steel, but also surface defects and flaws such as roll flaws and linear flaws are detected in substantially the same manner, and the detection signal causes a discrepancy between them and inclusions. No distinction is practically possible. [0005] For this reason, the evaluation by these flaw detection methods has a large detection error in some cases, and there is a problem in performing accurate defect occurrence prediction. This is because in these methods
The problem is that there is no way to clearly distinguish inclusions from other defects. As a method for directly evaluating inclusions in a product plate, T [O] analysis, EB method and the like are well known.
Since all of these evaluation methods evaluate the total amount of relatively small inclusions, it is possible to evaluate the cleanliness of steel, which is the root cause of defects, but the inclusions having relatively large particle diameters can be evaluated. At present, the correspondence with the actual occurrence of defects in products is not always high. As a method for evaluating inclusions on a product plate,
As a method for evaluating inclusions having a large particle size, in the case of bearing steel, JP-A-5-25587 and JP-A-6-20
As disclosed in Japanese Unexamined Patent Publication No. 73-73, there is known a method for evaluating the maximum diameter of inclusions in a material because the maximum diameter of inclusions contained in steel defines the life. However, in the case of a thin steel sheet, the mechanism of fracture is different from that of fatigue failure, and not only inclusions having the largest grain size cause defects, and the same handling as bearing steel cannot be performed. [0009] As described above, it is considered that the source of inclusion defect in a thin steel product is a relatively large inclusion. It is an object of the present invention to provide an index for selectively and efficiently evaluating a large large inclusion. [0010] In order to solve the above-mentioned problems, the gist of the present invention is to evaluate the inclusions in a thin steel sheet product and to determine the defects caused by non-metallic inclusions in the product. In the method of predicting the occurrence of pitting, based on the correspondence between the maximum particle size of inclusions and the quality of the product specified in advance for each steel type, the statistics of the inclusion size of a small sample are used to easily calculate extreme value statistics. Thin steel sheet characterized by estimating the maximum grain size of inclusions contained in steel, and predicting the frequency of detection of product defects based on the estimated value and the correspondence between the maximum grain size of inclusions and product quality described above. This is the product evaluation method. DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below in detail. The present inventors have evaluated various inclusions in steel to establish an inclusion evaluation index in steel that can accurately predict the occurrence of internal defects due to inclusions in a product sheet of a thin steel sheet. The evaluation of inclusion-induced defects was repeated. When the frequency of occurrence of defects in the product plate is organized by the conventionally used molten steel cleanliness evaluation index, the dispersion in the low cleanness area is particularly large, and the correlation between cleanliness and defect occurrence is not necessarily not high. Generally speaking, minute inclusions of a few μm alone existing in a steel sheet rarely directly cause defects. When the particle size distribution of the inclusions in the steel sheet is examined in detail, the particle size distribution of the whole inclusions, as shown in FIG. . For this reason, the ratio of large inclusions to the total amount of inclusions is low, and the size of the inclusions does not directly reflect the size of large inclusions that cause defects even when the total amount of inclusions is evaluated. It is for the above-mentioned reason that the cleanliness evaluation index, which has conventionally been performed with an emphasis on the evaluation of the total amount of inclusions, has poor correspondence with product defects. However, in many cases, when the amount of inclusions in steel is large (even if it is mainly composed of minute inclusions),
Due to the mutual coalescence of these inclusions, there is a certain size of inclusions with a large particle size.Therefore, when comparing the inclusions with a large amount of inclusions with those with a small amount of inclusions, the incidence of defects is large for those with a large amount of inclusions. It becomes. However, in a situation where the total amount of inclusions in the steel has been remarkably reduced as in recent years, and as a result, the incidence of defects caused by inclusions has become extremely small, the total amount of inclusions to be evaluated originally is small. An evaluation technique is needed to directly evaluate the amount of large inclusions in a small number. It is generally practiced to estimate the size of inclusions that caused a defect from the size of the inclusion defect detected in the product. As a result of investigating the correspondence between inclusions in steel and product defects,
In addition to confirming that most of the large inclusions having a particle size of μm or more occupy, as shown in FIG. 2, the size of the largest defect found in the product (the maximum particle size of the inclusion) and the defect of the product And the number of detected particles (the number of inclusions having a size of 100 μm or more). As described above, the defects caused by inclusions in a thin steel sheet product are not caused by inclusions having the maximum grain size. Can cause. For this reason, in order to predict the defects caused by inclusions, it is strictly necessary to evaluate the number of all inclusions exceeding the critical grain size. Instead of evaluating the number of particle inclusions, if the particle size of the largest inclusion is known, information corresponding to the number of large particle inclusions can be obtained, and the frequency of occurrence of defects can be predicted. As a method for evaluating the maximum particle size of inclusions in steel, a method of actually measuring the particle size of inclusions in steel and evaluating the maximum diameter can be considered, but it is desired to evaluate it as a practical problem. It is impossible to measure the particle size of all inclusions in steel. Therefore, as a method of estimating the maximum diameter of the inclusions present in the steel, the maximum inclusion diameter in a limited amount of sample extracted from the steel is evaluated to determine the maximum diameter of the inclusions in the steel. The application of the extreme value statistical method to estimate the maximum particle size of inclusions was investigated. The method of measuring the maximum inclusion diameter in steel by the extreme value statistics is described in “Papers A of the Japan Society of Mechanical Engineers, 55 (1989) 509,
p. As shown in "58", the maximum particle size of inclusions observed in a plurality of samples taken from steel material is measured, and the maximum particle size of inclusions contained in the base steel material is estimated therefrom. It is. By using this method, it is possible to estimate the maximum value of the characteristic value in the population without necessarily investigating all evaluation targets. As a result of the study by the inventors, even when the result of estimating the maximum particle size of inclusions using such an extreme value statistical method is adopted, there is a correlation between the estimated maximum particle size of inclusions and product quality. Confirmed that there is a relationship. As a method of evaluating the particle size of each inclusion, a method of adopting the maximum particle size when viewed in a specific direction in the observation visual field, the maximum particle size of the inclusion regardless of the direction Various methods are conceivable, such as a method of adopting a diameter, a method of evaluating the area of inclusions, and a method of evaluating the diameter of inclusions as the diameter of a circle having the same area. The absolute value of the obtained inclusion particle size changes depending on which method is used as the particle size evaluation method.
If the evaluation method is unified to any of the methods, since the relative relationship between the particle sizes does not change much, the correlation between the maximum particle size of the target inclusion and the number of large particle inclusions is maintained. In addition, the purpose of using the maximum grain size as an index for determining the frequency of occurrence of defects can be achieved. Incidentally, the correlation between the frequency of occurrence of defects and the amount of large-size inclusions in steel actually differs greatly depending on the usage of the steel material to be evaluated. For example, a material that is used as a flat plate with little processing cannot be a defect even if large-sized inclusions are present in steel unless it is exposed on the surface. On the other hand, in the case of a steel material which is subjected to a strong working such as a tensile working or an ironing work, 20 to 30
Defects such as breakage of the processed part of the steel sheet occur even with inclusions of μm. Therefore, it is natural that the correspondence between the maximum inclusion diameter and the quality defect as described above differs depending on the use of the steel material. Therefore, for these correspondences, judgment criteria should be created by accumulating data of the correspondences for each steel type. An embodiment of the present invention will be described. (Example 1) A sample of a tin plate product plate processed for a beverage can was sampled, and the particle size of inclusions in the sample was evaluated under a microscope. Here, the measurement was made not on the particle diameter of all the inclusions in the visual field but on the particle diameter of the largest inclusion observed in the visual field. The measurement magnification of the microscopic observation was 400 times, and the size of one visual field was 100 vertically and horizontally from the center of the visual field of the microscope.
40000 μm 2 in μm. The measurement of 100 visual fields was taken as one set, and the particle diameter of the largest inclusion in the 100 visual fields was taken as the representative maximum diameter of the 100 visual fields. The same evaluation was repeated 40 times, and when 40 representative maximum diameters were obtained, these representative maximum diameters were plotted on extreme value statistical probability paper. The total measured area is 1
It was 60 mm 2 . In evaluating the maximum diameter of the inclusions contained in the base material by the extreme value statistics, it was estimated as the maximum diameter of the inclusions expected to be present per 1 kg of the product. FIG. 3 shows the correspondence between the estimated maximum inclusion particle diameters of the materials of various production lots measured in this way and the internal defect occurrence rates of the lots. It can be seen that the defect occurrence rate rises sharply with an increase in the estimated maximum diameter. Using this, the maximum particle size of inclusions is determined from a sample collected from a product, and applied to a correlation diagram as shown in FIG. 3, it is possible to accurately predict the occurrence of defects. FIG. 4 shows the correspondence between the T [O] analysis value of the same sample and the internal defect occurrence rate. Although it seems that there is a large correlation as a whole, the variation is large, and it can be seen that the prediction accuracy of the defect occurrence based on the T [O] value is not high in estimation accuracy. (Example 2) A sample of a product plate of a tinplate for general processing was collected, and the particle size of inclusions in the sample was evaluated under a microscope. The evaluation method is the same as the method described in the first embodiment. Estimated maximum inclusion size for materials of various production lots,
FIG. 5 shows the correspondence between the lot and the internal defect occurrence rate. It can be seen that there is a critical inclusion maximum diameter at which the internal defect occurrence rate increases as in Example 1. However,
The absolute value of the critical maximum inclusion particle size is larger than that of Example 1. This is considered to be because the amount of processing is smaller and defects are less likely to occur in a general processing tin compared to the beverage can material shown in Example 1. As described above, according to the method of the present invention,
Based on the relationship between the maximum particle size of inclusions and product quality previously defined for each steel type, the maximum value of inclusions contained in steel can be easily determined by extreme value statistics from the results of measurement of the particle size of inclusions of a small sample of product. Since the particle size can be estimated, and the estimated value and the corresponding relationship between the above-described maximum inclusion particle size and product quality can be used to predict the product defect detection frequency of the product plate, the shipping schedule of the product plate can be estimated. It can be changed to an application that does not cause quality defects due to inclusions, and it is possible to prevent inclusion troubles at customers.

【図面の簡単な説明】 【図1】鋼中介在物の粒径分布を示す図 【図2】欠陥の大きさと検出頻度との関係を示す図 【図3】強加工を受ける鋼材の極値統計による推定最大
介在物粒径と内部欠陥発生率との関係を示す図 【図4】T[O]分析値と内部欠陥発生率との関係を示
す図 【図5】加工度合いの少ない鋼材の極値統計による推定
最大介在物粒径と内部欠陥発生率との関係を示す図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a particle size distribution of inclusions in steel. FIG. 2 is a diagram showing a relationship between a defect size and a detection frequency. FIG. 3 is an extreme value of a steel material subjected to heavy working. Diagram showing the relationship between the maximum inclusion particle size estimated by statistics and the internal defect occurrence rate. FIG. 4 shows the relationship between the T [O] analysis value and the internal defect occurrence rate. Diagram showing the relationship between the maximum inclusion particle size estimated by extreme value statistics and the internal defect occurrence rate

Claims (1)

(57)【特許請求の範囲】 【請求項1】 薄鋼板製品中の介在物を評価して、製品
における非金属介在物起因の欠陥の発生を予測する方法
に於いて、あらかじめ鋼種毎に明確にした介在物最大粒
径と成品品質との対応関係をもとに、少量サンプルの介
在物粒径測定結果から極値統計により簡便に鋼材中に含
まれる介在物の最大粒径を推定し、この推定値と、前述
の介在物最大粒径と製品品質との対応関係とによって製
品欠陥検出頻度を予測することを特徴とする薄鋼板製品
の評価方法。
(57) [Claims] [Claim 1] In a method of estimating inclusions in a thin steel sheet product and predicting the occurrence of defects due to non-metallic inclusions in the product, a method is specified in advance for each steel type. Based on the corresponding relationship between inclusion maximum particle size and product quality, the maximum particle size of inclusions contained in steel was easily estimated from extreme value statistics from the results of inclusion particle size measurement of a small sample, A method for evaluating a thin steel sheet product, comprising predicting a product defect detection frequency based on the estimated value and the correspondence between the above-described maximum inclusion particle size and product quality.
JP33520496A 1996-12-16 1996-12-16 Evaluation method for thin steel sheet products Expired - Fee Related JP3510437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33520496A JP3510437B2 (en) 1996-12-16 1996-12-16 Evaluation method for thin steel sheet products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33520496A JP3510437B2 (en) 1996-12-16 1996-12-16 Evaluation method for thin steel sheet products

Publications (2)

Publication Number Publication Date
JPH10170502A JPH10170502A (en) 1998-06-26
JP3510437B2 true JP3510437B2 (en) 2004-03-29

Family

ID=18285933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33520496A Expired - Fee Related JP3510437B2 (en) 1996-12-16 1996-12-16 Evaluation method for thin steel sheet products

Country Status (1)

Country Link
JP (1) JP3510437B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309474B1 (en) 1999-03-04 2001-10-30 Honda Giken Kogyo Kabushiki Kaisha Process for producing maraging steel
SE0004523L (en) * 2000-12-07 2002-06-08 Svante Bjoerk Ab Method and apparatus for determining the presence of contaminants in a material
JP4859713B2 (en) 2007-03-08 2012-01-25 トヨタ自動車株式会社 Method for measuring the number of non-metallic inclusions
JP2009031094A (en) * 2007-07-26 2009-02-12 Jfe Steel Kk Method and apparatus for deciding pass/fail of nonmetallic inclusion defect

Also Published As

Publication number Publication date
JPH10170502A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
US6606910B1 (en) Method and apparatus for evaluating damage of metal material
KR101157639B1 (en) Material information providing method for outgoing steel plate, and material information using method
Zawischa et al. Scratch resistance of superhard carbon coatings–A new approach to failure and adhesion evaluation
CN109883859A (en) Subregion strain testing method in heterogene structure's welding point During Low Cycle Fatigue
CN110763758B (en) Method for determining relation between defects and fatigue performance based on nondestructive testing
JP3510437B2 (en) Evaluation method for thin steel sheet products
CN111435121A (en) Method for detecting and analyzing edge crack defect of hot-rolled steel strip
CN108445008A (en) Method for detecting surface defects of strip steel
CN112577981A (en) Method for rapidly identifying source of large foreign impurities in steel
CN110609042A (en) Method for predicting maximum-size inclusions in steel
Wolter et al. Micromagnetic testing for rolled steel
JPH05346387A (en) Judging method for cleanliness of metal material
US6563309B2 (en) Use of eddy current to non-destructively measure crack depth
Carisetti et al. iLearn self-learning defect classifier
JP2010025835A (en) Acceptance decision method of steel strip
Pathak et al. A novel method to nondestructively measure the shear edge properties for edge cracking evaluation with advanced high strength steels
JP4345667B2 (en) Inclusion Identification Method, Identification Device, and Metal Material Manufacturing Method
CN113295327B (en) Zero-stress sample for ultrasonic stress measurement method and preparation method thereof
JP2009300369A (en) Cleanliness evaluation method for steel material
Bono et al. Resonant inspection applied to 100% testing of nodularity of cast ductile iron
CN114136823B (en) Method for discriminating steel grade by adopting portable Rockwell hardness tester
CN113588681B (en) Wire usage risk evaluation method based on inclusion distribution
JP3358134B2 (en) Method for evaluating inclusions in wires
JP2005024389A (en) Lifetime evaluation method and lifetime evaluation system of metal material
JP2023045506A (en) Evaluation method of hydrogen-induced cracking resistance of steel material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees