JP3508185B2 - Method for producing stable aqueous nitrite solution - Google Patents

Method for producing stable aqueous nitrite solution

Info

Publication number
JP3508185B2
JP3508185B2 JP29674193A JP29674193A JP3508185B2 JP 3508185 B2 JP3508185 B2 JP 3508185B2 JP 29674193 A JP29674193 A JP 29674193A JP 29674193 A JP29674193 A JP 29674193A JP 3508185 B2 JP3508185 B2 JP 3508185B2
Authority
JP
Japan
Prior art keywords
aqueous solution
nitrite
lithium
weight
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29674193A
Other languages
Japanese (ja)
Other versions
JPH07149506A (en
Inventor
孝廣 堀
美喜夫 土田
英生 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP29674193A priority Critical patent/JP3508185B2/en
Publication of JPH07149506A publication Critical patent/JPH07149506A/en
Application granted granted Critical
Publication of JP3508185B2 publication Critical patent/JP3508185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/085Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • C04B2103/0006Alkali metal or inorganic ammonium compounds
    • C04B2103/0008Li

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】 本発明は、亜硝酸カルシウムと
亜硝酸リチウムとが溶解している安定な水溶液に関す
る。この安定な亜硝酸塩水溶液は、セメント用混和剤、
塗布剤、コンクリート補修剤などに用いられる。 【0002】 【従来の技術】 従来より、亜硝酸カルシウム水溶液
は、補強鋼材を内蔵するコンクリートの鋼材の防錆剤、
セメント硬化促進剤、コンクリート防凍剤などに使用さ
れ、そして亜硝酸リチウム水溶液も、補強鋼材を内蔵す
るコンクリートの鋼材の防錆剤、コンクリート中でのア
ルカリ骨剤反応防止剤などに使用されている。 【0003】特開昭 50-96621 号公報には、ナトリウ
ム、カリウム、カルシウム、マグネシウム、亜鉛などの
亜硝酸塩の単独又は混合物をコンクリート用の防錆剤と
して使用することが記載されている。特公平 5-41595号
公報にも、亜硝酸のカルシウム塩、ナトリウム塩、リチ
ウム塩などの水溶液を鉄筋コンクリートの防錆剤として
使用することが記載されている。 【0004】 【発明が解決しようとする課題】 亜硝酸のナトリウム
塩、カリウム塩などは、コンクリート中でそれに含まれ
るある種の骨材に作用して、アルカリ骨材反応と呼ばれ
る化学反応を起こし、コンクリートに膨張によるひびわ
れを引き起こすことがある。マグネシウム、亜鉛などの
亜硝酸塩の水溶液は、飽和溶解度が低く、複塩の生成や
分解などが起こることもあり、一般に高濃度水溶液とし
ては使用できない。 【0005】これに対して、亜硝酸カルシウムの水溶液
にはこのような問題がなく、一般に約30重量%以下の濃
度を有する水溶液として用いられている。しかし、他の
コンクリート用混和剤、例えば、流動化剤、AE剤など
と併用したり、或いはコンクリート表面に塗布してコン
クリート内の鉄筋の防錆を図ろうとする場合には、十分
に目的が達成されなかったり、多くの作業回数を必要と
するなど、かかる濃度でも実用上は決して十分なもので
はない。更に、亜硝酸カルシウムは、コンクリート中で
起こるアルカリ骨材反応を防ぐ能力にも乏しい。 【0006】亜硝酸リチウムは、コンクリート中で起こ
るアルカリ骨材反応を防止する能力が高いばかりか、コ
ンクリート内の鉄筋の防錆能力をも有し、その水溶液も
高い濃度で安定であるから、濃度約40重量%程度の水溶
液として用いられることが多い。けれども、コンクリー
トに添加したときに、コンクリートの硬化を促進させる
能力は有しない。 【0007】コンクリートに亜硝酸カルシウムと亜硝酸
リチウムとを併用して添加することが好ましい場合は多
いけれども、その使用の便を図って、上記の如き亜硝酸
カルシウムの高濃度水溶液と亜硝酸リチウムの高濃度水
溶液とを混合して使用に供すると、その混合液中に沈澱
が生じ、特に工業製品としては実用に供し難い。本発明
は、水中高濃度に亜硝酸カルシウムと亜硝酸リチウムと
が溶解していても、その水溶液中に沈澱を生じないよう
な、これら亜硝酸塩の安定な水溶液を効率よく製造する
方法を提供しようとするものである。 【0008】 【課題を解決するための手段】 本発明の亜硝酸カルシ
ウムと亜硝酸リチウムの安定な水溶液の製造方法は、水
酸化リチウムの含有率を0.1 重量%以下に調整した亜硝
酸リチウム水溶液と、亜硝酸カルシウム水溶液とを混合
することを特徴とする。本発明に用いられる亜硝酸カル
シウムの水溶液としては、亜硝酸カルシウム濃度5重量
%以上のものが好ましく、特に20〜60重量%程度のもの
が好ましい。このような亜硝酸カルシウムの水溶液は、
市販の工業製品として容易に入手することができる。亜
硝酸リチウムの水溶液としては、濃度5重量%以上のも
のが好ましく、特に10〜50重量%程度のものが好まし
い。通常の市販工業製品の亜硝酸リチウム水溶液には、
水酸化リチウムが 0.1〜0.3 重量%程度含有されている
ので、このような亜硝酸リチウムの水溶液を使用すると
きには、この含有水酸化リチウム濃度を 0.1重量%以下
に調整することにより、本発明に供することができる。 【0009】亜硝酸リチウムの水溶液中の水酸化リチウ
ム量を0.1 重量%以下に調整するための方法としては、
無機酸、有機酸などを亜硝酸リチウムの水溶液中に攪拌
下導入することにより容易に行うことができる。好まし
い酸の例としては、硝酸、炭酸、スルファミン酸などの
無機酸、或いは酢酸、クエン酸、グルコン酸、マレイン
酸などの有機酸が挙げられる。 【0010】これら酸の亜硝酸リチウム水溶液への添加
は、亜硝酸リチウムの水溶液のpH値が局部的に酸性にな
ることを避けながら行うのがよい。その好ましい方法と
しては、炭酸ガスを攪拌下の亜硝酸リチウムの水溶液中
に導入する方法が挙げられる。上記酸の添加量は、亜硝
酸リチウム水溶液中の水酸化リチウム量が 0.1重量%以
下となる量でよく、この水酸化リチウム量が達成される
限り過剰に添加することは避けるのがよい。 【0011】上記の如く水酸化リチウム量が 0.1重量%
以下に調整された亜硝酸リチウム水溶液と、上記亜硝酸
カルシウム水溶液との混合は、通常の攪拌によって容易
に行うことができ、亜硝酸リチウムと亜硝酸カルシウム
の混合比率は所望に応じ任意でよい。この混合により、
濃度約50重量%もの含有率で亜硝酸リチウムと亜硝酸カ
ルシウムが溶解し、そして沈澱は含まない水溶液が得ら
れる。 【0012】 【作用】市販工業製品の約30重量%の亜硝酸カルシウム
水溶液と、市販工業製品の約40重量%の亜硝酸リチウム
水溶液とを混合したときに生ずる少量の沈澱は、水酸化
リチウムと亜硝酸カルシウムの複塩であることが見出さ
れた。更に研究したところ、亜硝酸リチウム水溶液を製
造する際に、生成亜硝酸リチウム水溶液中の水酸化リチ
ウム量を0.1 重量%以下に抑えると、その液中には副生
物の硝酸リチウム分が多くなり、その水溶液は長期安定
性に乏しいものとなるが、0.1 重量%以上の含有率で存
在する水酸化リチウム分は亜硝酸リチウム水溶液液を安
定ならしめていることが判明した。 【0013】この水酸化リチウム分を0.1 重量%以下に
調整した亜硝酸リチウム水溶液と、亜硝酸カルシウムの
水溶液とを混合すると、沈澱が生ずることなく安定な水
溶液が得られることは意外なことである。恐らく、この
液中では、亜硝酸リチウムが亜硝酸カルシウムによって
安定化されているものと考えられる。亜硝酸リチウム水
溶液中の水酸化リチウム分を減少させるのに添加される
酸としては、なるべく好ましいものを使用するのがよ
く、例えば、塩酸を使用すると、これを含有する亜硝酸
塩の水溶液をコンクリートに添加したとき、この塩酸が
コンクリート中に同伴し、コンクリート中の鉄筋腐食の
原因となる。硫酸の添加は、これを含有する亜硝酸リチ
ウム水溶液と亜硝酸カルシウム水溶液との混合の際、液
中に硫酸カルシウムの沈殿を生じさせる。亜硝酸リチウ
ム水溶液中の水酸化リチウム分を 0.1重量%以下まで減
少させるのに添加された有機酸は、セメントに同伴して
も、セメントの凝結には殆ど影響を与えない。 【0014】亜硝酸リチウム水溶液中の水酸化リチウム
分を減少させるために添加される酸は、液中均一な添加
が起こるように添加することが好ましく、そうしないと
褐色のNOX ガスの発生が起こり易い。 【0015】 【実施例】 水酸化リチウムを0.3 重量%含有する市販
の亜硝酸リチウムの40重量%水溶液に、ガラス電極によ
りpHを測定しながら炭酸ガスを吹き込むことにより、液
のpHを8.5 に調整した。この調整した水溶液中の水酸化
リチウム量は0.02重量%であった。次いで、この調整し
た水溶液を50℃で蒸発濃縮することにより、亜硝酸リチ
ウムの60重量%水溶液を得た。 【0016】別途、亜硝酸カルシウムの30重量%水溶液
を同様に蒸発濃縮することにより、亜硝酸カルシウムの
40重量%水溶液を得た。次いで、この亜硝酸リチウムの
60重量%水溶液と、亜硝酸カルシウムの40重量%水溶液
を1:3の比率に混合することにより、亜硝酸リチウム
を15重量%と亜硝酸カルシウムを30重量%含有する混合
水溶液を得た。 【0017】この混合水溶液は、0℃での保存によって
も、沈澱を生ずることなく、透明な溶液状態を維持し
た。一方、比較対照のために、上記調整前の市販の亜硝
酸リチウムの40重量%水溶液27重量部と上記調整前の市
販の亜硝酸カルシウムの30重量%水溶液73重量部を混合
したところ、その混合液中に沈澱が生じた。更に、参考
のために、上記市販品の亜硝酸リチウム水溶液を45重量
%濃度まで濃縮したものと、上記市販品の亜硝酸カルシ
ウム水溶液を45重量%濃度まで濃縮したものそれぞれに
ついて、0 ℃で保存テストを行ったところ、いずれも結
晶の析出が起こったことを認めた。 【0018】 【発明の効果】 本発明によれば、亜硝酸カルシウムと
亜硝酸リチウムを含有する高濃度亜硝酸塩の安定な水溶
液を簡便に、かつ、効率よく製造することができる。こ
の水溶液は、高い亜硝酸の濃度を有しながら、カルシウ
ム分とリチウム分のそれぞれの濃度は低いから、亜硝酸
カルシウム水溶液単独又は亜硝酸リチウム水溶液単独を
使用したときよりも、セメントの凝結に対する影響が少
ない。 【0019】この水溶液は、目的、用途に応じて各種の
添加剤、助剤などを加えて使用してもよい。例えば、コ
ンクリート用流動化剤、AE剤などと併用してコンクリ
ートの混和剤として使用することができる。また、鉄筋
コンクリート等の表面に適用される内部鉄筋の防錆処理
剤として有用もである。特に濃度の高いこの水溶液を使
用するときは、作業能率の改善をもたらすのみならず、
改良されたコンクリート、鉄筋コンクリート等を得るこ
とができる。
Description: TECHNICAL FIELD The present invention relates to a stable aqueous solution in which calcium nitrite and lithium nitrite are dissolved. This stable nitrite aqueous solution is used as an admixture for cement,
It is used as a coating agent and concrete repair agent. [0002] Conventionally, an aqueous solution of calcium nitrite has been used as a rust preventive for concrete steel containing a reinforcing steel.
It is used as a cement hardening accelerator, a concrete antifreeze, and the like, and an aqueous solution of lithium nitrite is also used as a rust preventive for concrete steel containing a reinforcing steel material, an alkali aggregate reaction preventive in concrete, and the like. [0003] Japanese Patent Application Laid-Open No. 50-96621 describes that a nitrite such as sodium, potassium, calcium, magnesium, zinc or the like, alone or in combination, is used as a rust preventive for concrete. Japanese Patent Publication No. 5-41595 discloses that an aqueous solution of a calcium salt, a sodium salt or a lithium salt of nitrite is used as a rust preventive for reinforced concrete. [0004] The sodium and potassium salts of nitrite act on a certain kind of aggregate contained in concrete to cause a chemical reaction called an alkali-aggregate reaction. May cause cracking of concrete due to expansion. Aqueous solutions of nitrites such as magnesium and zinc have low saturation solubility, and may cause formation and decomposition of double salts, so that they cannot be generally used as high-concentration aqueous solutions. On the other hand, an aqueous solution of calcium nitrite does not have such a problem, and is generally used as an aqueous solution having a concentration of about 30% by weight or less. However, the purpose is sufficiently achieved when used in combination with other admixtures for concrete, for example, a fluidizing agent, an AE agent, etc., or when applied to the concrete surface to prevent rust of reinforcing steel in concrete. Such a concentration is not practically sufficient, for example, it is not performed or requires a large number of operations. In addition, calcium nitrite has poor ability to prevent alkali-aggregate reactions that occur in concrete. [0006] Lithium nitrite not only has a high ability to prevent alkali-aggregate reaction occurring in concrete, but also has a rust-preventing ability for reinforcing steel in concrete, and its aqueous solution is stable at a high concentration. It is often used as an aqueous solution of about 40% by weight. However, when added to concrete, it does not have the ability to promote concrete hardening. Although it is often preferable to add calcium nitrite and lithium nitrite together to concrete, it is often convenient to use the same in the above-mentioned manner, by using a high-concentration aqueous solution of calcium nitrite and lithium nitrite as described above. When mixed with a high-concentration aqueous solution for use, a precipitate is formed in the mixed solution, and it is particularly difficult to practically use it as an industrial product. The present invention provides a method for efficiently producing a stable aqueous solution of these nitrites such that even if calcium nitrite and lithium nitrite are dissolved at a high concentration in water, no precipitation occurs in the aqueous solution. It is assumed that. [0008] The method for producing a stable aqueous solution of calcium nitrite and lithium nitrite according to the present invention comprises an aqueous solution of lithium nitrite having a lithium hydroxide content adjusted to 0.1% by weight or less. And an aqueous solution of calcium nitrite. The aqueous solution of calcium nitrite used in the present invention preferably has a calcium nitrite concentration of 5% by weight or more, particularly preferably about 20 to 60% by weight. Such an aqueous solution of calcium nitrite is
It can be easily obtained as a commercial industrial product. The aqueous solution of lithium nitrite preferably has a concentration of 5% by weight or more, particularly preferably about 10 to 50% by weight. The aqueous solution of lithium nitrite, which is an ordinary commercial industrial product, contains:
Since lithium hydroxide is contained in an amount of about 0.1 to 0.3% by weight, when such an aqueous solution of lithium nitrite is used, the concentration of the contained lithium hydroxide is adjusted to 0.1% by weight or less to provide the present invention. be able to. A method for adjusting the amount of lithium hydroxide in an aqueous solution of lithium nitrite to 0.1% by weight or less includes:
It can be easily carried out by introducing an inorganic acid, an organic acid or the like into an aqueous solution of lithium nitrite with stirring. Examples of preferred acids include inorganic acids such as nitric acid, carbonic acid, and sulfamic acid, and organic acids such as acetic acid, citric acid, gluconic acid, and maleic acid. The addition of these acids to the aqueous solution of lithium nitrite is preferably performed while avoiding the pH value of the aqueous solution of lithium nitrite from becoming locally acidic. As a preferable method, a method of introducing carbon dioxide gas into an aqueous solution of lithium nitrite under stirring is mentioned. The amount of the acid to be added may be such that the amount of lithium hydroxide in the aqueous solution of lithium nitrite is 0.1% by weight or less, and it is preferable to avoid excessive addition as long as the amount of lithium hydroxide is achieved. As described above, the amount of lithium hydroxide is 0.1% by weight.
The mixing of the aqueous solution of lithium nitrite and the aqueous solution of calcium nitrite adjusted as described below can be easily performed by ordinary stirring, and the mixing ratio of lithium nitrite and calcium nitrite may be arbitrary as desired. With this mixing,
Lithium nitrite and calcium nitrite are dissolved with a content of as high as about 50% by weight, and a precipitate-free aqueous solution is obtained. A small amount of precipitate formed when an approximately 30% by weight aqueous solution of calcium nitrite of a commercial industrial product is mixed with an approximately 40% by weight aqueous solution of lithium nitrite of a commercially available industrial product is formed by lithium hydroxide and lithium hydroxide. It was found to be a double salt of calcium nitrite. Further studies have shown that, when producing an aqueous solution of lithium nitrite, if the amount of lithium hydroxide in the produced aqueous solution of lithium nitrite is suppressed to 0.1% by weight or less, the by-product lithium nitrate content increases in the solution, The aqueous solution was poor in long-term stability, but it was found that the lithium hydroxide component present at a content of 0.1% by weight or more stabilized the aqueous solution of lithium nitrite. It is surprising that when an aqueous solution of lithium nitrite whose lithium hydroxide content is adjusted to 0.1% by weight or less and an aqueous solution of calcium nitrite are mixed, a stable aqueous solution can be obtained without precipitation. . Possibly, in this solution, lithium nitrite was stabilized by calcium nitrite. As the acid added to reduce the lithium hydroxide content in the aqueous solution of lithium nitrite, it is preferable to use a preferable acid.For example, when hydrochloric acid is used, an aqueous solution of nitrite containing the same is used for concrete. When added, the hydrochloric acid is entrained in the concrete and causes corrosion of reinforcing steel in the concrete. Addition of sulfuric acid causes precipitation of calcium sulfate in the solution when the aqueous solution containing lithium nitrite and the aqueous solution of calcium nitrite are mixed. The organic acid added to reduce the content of lithium hydroxide in the aqueous solution of lithium nitrite to 0.1% by weight or less has almost no effect on the setting of the cement even if it is accompanied by the cement. [0014] nitrite acid added to reduce the lithium hydroxide content of lithium nitrate in the aqueous solution is preferably added as a uniform addition in liquid occurs, is otherwise the occurrence of brown of the NO X gas Easy to happen. EXAMPLE A carbon dioxide gas was blown into a commercially available 40% by weight aqueous solution of lithium nitrite containing 0.3% by weight of lithium hydroxide while measuring the pH with a glass electrode to adjust the pH of the solution to 8.5. did. The amount of lithium hydroxide in the adjusted aqueous solution was 0.02% by weight. Next, this adjusted aqueous solution was evaporated and concentrated at 50 ° C. to obtain a 60% by weight aqueous solution of lithium nitrite. Separately, a 30% by weight aqueous solution of calcium nitrite is similarly concentrated by evaporation to obtain a calcium nitrite solution.
A 40% by weight aqueous solution was obtained. Then, the lithium nitrite
A 60% by weight aqueous solution and a 40% by weight aqueous solution of calcium nitrite were mixed at a ratio of 1: 3 to obtain a mixed aqueous solution containing 15% by weight of lithium nitrite and 30% by weight of calcium nitrite. This mixed aqueous solution maintained a clear solution state without precipitation even after storage at 0 ° C. On the other hand, for comparison, 27 parts by weight of a 40% by weight aqueous solution of commercially available lithium nitrite before the above adjustment and 73 parts by weight of a 30% by weight aqueous solution of a commercially available calcium nitrite before the above adjustment were mixed. A precipitate formed in the liquid. For reference, the commercially available lithium nitrite aqueous solution concentrated to 45% by weight and the commercially available calcium nitrite aqueous solution concentrated to 45% by weight were stored at 0 ° C for reference. As a result of the tests, it was confirmed that the precipitation of the crystal occurred in each case. According to the present invention, a stable aqueous solution of high-concentration nitrite containing calcium nitrite and lithium nitrite can be easily and efficiently produced. Since this aqueous solution has a high concentration of nitrite and a low concentration of each of the calcium and lithium components, the influence on the cement setting of the cement is higher than when the aqueous solution of calcium nitrite alone or the aqueous solution of lithium nitrite alone is used. Less is. This aqueous solution may be used after adding various additives and auxiliaries according to the purpose and use. For example, it can be used as a concrete admixture in combination with a concrete fluidizer, an AE agent, and the like. Further, it is also useful as a rust preventive agent for internal rebar applied to the surface of reinforced concrete or the like. Especially when using this highly concentrated aqueous solution, it not only improves the working efficiency, but also
Improved concrete, reinforced concrete, etc. can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 21/50 CA(STN)──────────────────────────────────────────────────の Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C01B 21/50 CA (STN)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 水酸化リチウムの含有率を0.1 重量%以
下に調整した亜硝酸リチウム水溶液と、亜硝酸カルシウ
ム水溶液とを混合することを特徴とする亜硝酸リチウム
と亜硝酸カルシウムの安定な水溶液の製造方法。
(57) [Claim 1] Lithium nitrite characterized by mixing an aqueous solution of lithium nitrite adjusted to a content of lithium hydroxide of 0.1% by weight or less with an aqueous solution of calcium nitrite. For producing a stable aqueous solution of calcium nitrite and calcium nitrite.
JP29674193A 1993-11-26 1993-11-26 Method for producing stable aqueous nitrite solution Expired - Lifetime JP3508185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29674193A JP3508185B2 (en) 1993-11-26 1993-11-26 Method for producing stable aqueous nitrite solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29674193A JP3508185B2 (en) 1993-11-26 1993-11-26 Method for producing stable aqueous nitrite solution

Publications (2)

Publication Number Publication Date
JPH07149506A JPH07149506A (en) 1995-06-13
JP3508185B2 true JP3508185B2 (en) 2004-03-22

Family

ID=17837511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29674193A Expired - Lifetime JP3508185B2 (en) 1993-11-26 1993-11-26 Method for producing stable aqueous nitrite solution

Country Status (1)

Country Link
JP (1) JP3508185B2 (en)

Also Published As

Publication number Publication date
JPH07149506A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
US4337094A (en) Additive composition for Portland cement materials
CA1197370A (en) Corrosion inhibiting additive for cement compositions
US7435766B2 (en) Method of delivery of agents providing freezing and thawing resistance to cementitious compositions
KR100439603B1 (en) Solidification and hardening accelerator for hydraulic binders
JP4920440B2 (en) Admixture
US7182808B2 (en) Accelerator admixture
TWI413628B (en) Setting accelerator for sprayed concrete
US4142909A (en) Method and composition for controlling contraction in setting cementitious systems through the addition of gas generating agents
JP4723452B2 (en) Alkalinity reducing agent
US4151098A (en) Acidizing subterranean well formations containing deposits of metal compounds
AU4774999A (en) Anti-corrosion agent
JP3508185B2 (en) Method for producing stable aqueous nitrite solution
JPH10102058A (en) Grout
EP0791565B1 (en) Admixture for cement
JP2508101B2 (en) Admixture for concrete
JPS5832189B2 (en) Hardening agent for water glass soil stabilizer
JPH10218687A (en) Carbonation-suppressant for concrete or mortar
JPH01176255A (en) Admixture for hydraulic cement
JPH013039A (en) Admixture for concrete
SU893938A1 (en) Concrete mix
JP3751085B2 (en) Soil stabilization method
JP2629252B2 (en) Stabilization method of calcium nitrite aqueous solution
JPS61155236A (en) Manufacture of cement set accelerator aqueous solution
JPS63144154A (en) Hardened matter
JPS58141284A (en) Ground conditioner

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term