JP3506405B2 - Optical element and display device - Google Patents

Optical element and display device

Info

Publication number
JP3506405B2
JP3506405B2 JP23394896A JP23394896A JP3506405B2 JP 3506405 B2 JP3506405 B2 JP 3506405B2 JP 23394896 A JP23394896 A JP 23394896A JP 23394896 A JP23394896 A JP 23394896A JP 3506405 B2 JP3506405 B2 JP 3506405B2
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
light
resin
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23394896A
Other languages
Japanese (ja)
Other versions
JPH1078569A (en
Inventor
宗和 伊達
謹矢 加藤
重信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23394896A priority Critical patent/JP3506405B2/en
Publication of JPH1078569A publication Critical patent/JPH1078569A/en
Application granted granted Critical
Publication of JP3506405B2 publication Critical patent/JP3506405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光強度により情報
を表示する光学素子及び該光学素子の駆動方法並びに表
示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for displaying information by light intensity, a method for driving the optical element, and a display device.

【0002】[0002]

【従来の技術】図16に従来例にかかるホログラフィッ
ク高分子分散液晶を用いた光学素子の概略を示す。
2. Description of the Related Art FIG. 16 shows an outline of an optical element using a holographic polymer dispersed liquid crystal according to a conventional example.

【0003】図16に示すように、表面に透明電極01
を有するガラス板02を用い、該電極01同志が対向す
るように樹脂03を挟んで、光学素子を構成している。
上記樹脂03中には、液晶粒04が周期的に分布された
構造となっている。上記電極01,01には電源(図示
せず)が電気的に接続されている。
As shown in FIG. 16, a transparent electrode 01 is formed on the surface.
An optical element is formed by using a glass plate 02 having a resin 03 sandwiching a resin 03 so that the electrodes 01 face each other.
The resin 03 has a structure in which liquid crystal particles 04 are periodically distributed. A power source (not shown) is electrically connected to the electrodes 01, 01.

【0004】上記構成において、光源からの入射光05
は、上記樹脂03中の液晶粒04によって散乱される
が、該液晶粒04が周期的に分布しているため、干渉効
果により、特定の波長の光のみが反射され、反射光06
となって、例えば眼球07に入るが、他の波長の光はそ
のまま透過し、透過光08となる。
In the above structure, the incident light 05 from the light source
Is scattered by the liquid crystal particles 04 in the resin 03, but since the liquid crystal particles 04 are periodically distributed, only the light of a specific wavelength is reflected due to the interference effect, and the reflected light 06
Then, for example, it enters the eyeball 07, but the light of other wavelengths is transmitted as it is and becomes the transmitted light 08.

【0005】上記電気素子の電極01,01間に電圧を
かけると、電界により液晶が配向し、高分子樹脂との屈
折率差がなくなるため、各液晶粒04による散乱光が消
え、反射光がなくなる。
When a voltage is applied between the electrodes 01 and 01 of the electric element, the liquid crystal is oriented by the electric field and the difference in the refractive index from the polymer resin disappears, so that the scattered light by each liquid crystal grain 04 disappears and the reflected light becomes Disappear.

【0006】従来では、この反射光の有無を光学素子の
素子動作として用いている(信学技報 EID 95-147,ED9
5-221,SDM96-261 pp.131-136参照) 。
Conventionally, the presence or absence of this reflected light is used as the element operation of the optical element (Study of Technical Bulletin EID 95-147, ED9
5-221, SDM96-261 pp.131-136).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図16
に示すような従来の光学素子においては、液晶の初期は
配向がランダムであるため、樹脂との屈折率差が0.06
程度しかとれず、反射スペクトル幅が狭いという問題が
ある。また、動作電圧が高いという問題もある。
However, as shown in FIG.
In the conventional optical element as shown in, since the orientation of the liquid crystal is random at the initial stage, the refractive index difference with the resin is 0.06.
However, there is a problem that the reflection spectrum width is narrow. There is also a problem that the operating voltage is high.

【0008】本発明は、光利用効率の高い情報を光によ
り表示する光学素子及び該光学素子の駆動方法並びに表
示装置を提供することを課題とする。
An object of the present invention is to provide an optical element for displaying information with high light utilization efficiency by light, a method of driving the optical element, and a display device.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の第1の光学素子は、それぞれに電極を設けた一組の
透明な基板に挟まれた透光性物質と屈折率可変物質とか
らなる微細周期構造からなる光学素子であって、前記屈
折率可変物質が前記基板とほぼ平行な方向に配向をそろ
えた電傾効果を有するスメクティック液晶からなり、前
記電極により前記スメクティック液晶に電界を加えると
その配向方向が基板と平行な面内で回転することを特徴
とする。
The first optical element of the present invention for solving the above-mentioned problems includes a set of electrodes each provided with an electrode.
What is claimed is: 1.An optical element having a fine periodic structure composed of a translucent material and a variable refractive index material sandwiched between transparent substrates , wherein the variable refractive index material is oriented in a direction substantially parallel to the substrate. Made of smectic liquid crystal with effect,
When an electric field is applied to the smectic liquid crystal by the electrode
It is characterized in that its orientation direction rotates in a plane parallel to the substrate .

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】本発明の第1の表示装置は、第1光学素
子を平面的に複数並べてなることを特徴とする。
The first display device of the present invention is characterized by comprising arranging a plurality of first optical element in a plane.

【0019】本発明の第2の表示装置は、第1光学素
子又は第1の表示装置を複数重ねてなることを特徴とす
る。
The second display device of the present invention is characterized by comprising superimposed plural first optical element or the first display device.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0021】図1は本実施の形態における光学素子の概
略構造である。図1に示すように、本実施の形態にかか
る光学素子は、透明電極11を設けた基板である二枚の
ガラス板12,12間に樹脂13を挟んでなり、該樹脂
13中には、上記ガラス板12と平行な方向(矢印X方
向)に配向を揃えた液晶からなる液晶粒14が周期的に
分布されてなるものである。
FIG. 1 is a schematic structure of an optical element according to this embodiment. As shown in FIG. 1, the optical element according to the present embodiment comprises a resin 13 sandwiched between two glass plates 12 and 12 which are substrates provided with a transparent electrode 11, and in the resin 13, Liquid crystal grains 14 made of liquid crystal aligned in a direction parallel to the glass plate 12 (direction of arrow X) are periodically distributed.

【0022】本実施の形態では、透光性物質として樹脂
13を用い、屈折率可変物質として配向を揃えた液晶粒
14を用い、これらにより微細周期構造を形成し、本実
施の形態の光学素子を構成している。
In the present embodiment, the resin 13 is used as the translucent material, and the liquid crystal grains 14 with uniform alignment are used as the refractive index variable material to form the fine periodic structure, and the optical element according to the present embodiment is formed. Are configured.

【0023】この光学素子10に光源からの入射光15
が入射されると、該樹脂13中の液晶粒14によって散
乱されるが、液晶領域が周期的に分布しているため、干
渉効果により、特定の波長の光のみが反射されて反射光
16となり眼球17に入る。一方、他の波長の光は樹脂
13中をそのまま透過して透過光18となる。
Incident light 15 from the light source enters the optical element 10.
Is scattered by the liquid crystal particles 14 in the resin 13, but since the liquid crystal region is periodically distributed, only the light of a specific wavelength is reflected by the interference effect to become the reflected light 16. Enter the eyeball 17. On the other hand, light of other wavelengths is transmitted through the resin 13 as it is and becomes transmitted light 18.

【0024】次に、上記光学素子の電極11,11間に
電圧をかけると、電界により液晶が配向し、高分子樹脂
との屈折率差が無くなるため、各液晶粒14による散乱
光が消え、反射光16が無くなり、全て透過光18とな
る。
Next, when a voltage is applied between the electrodes 11 of the optical element, the liquid crystal is oriented by the electric field and the difference in the refractive index with the polymer resin disappears, so that the scattered light from each liquid crystal particle 14 disappears. The reflected light 16 disappears and all becomes transmitted light 18.

【0025】本発明にかかる光学素子では、基板と平行
な方向(X方向)に配向を揃えた液晶からなる液晶粒1
4を周期的に分布しているため、反射状態における液晶
と樹脂との屈折率差が従来よりも3倍大きくなり、この
結果、反射波長幅が3倍広がり、反射効率が3倍以上向
上する。よって、同じ程度のピーク反射率を得るための
厚さが、従来の3分の1になるため、低電圧化が可能と
なる。
In the optical element according to the present invention, liquid crystal particles 1 made of liquid crystal aligned in a direction parallel to the substrate (X direction).
Since 4 is distributed periodically, the difference in refractive index between the liquid crystal and the resin in the reflective state becomes 3 times larger than the conventional one, and as a result, the reflection wavelength width spreads 3 times and the reflection efficiency improves 3 times or more. . Therefore, the thickness for obtaining the same degree of peak reflectance is one-third that of the conventional one, so that the voltage can be lowered.

【0026】上記反射状態における液晶と樹脂との屈折
率差が従来よりも3倍大きくなる理由を、以下に示す。
液晶の屈折率は、分子の長軸,短軸方向で異なる(これ
をne ,no と呼ぶ。)。配向がランダムな場合は、液
晶領域の屈折率は平均値である (ne +no )/3 ・・・(1) となる。ここで、配向を揃えることにより、液晶領域の
屈折率は、ne となる。また、通常は樹脂の屈折率はn
o と等しいものを用いる。したがって、樹脂と液晶との
屈折率差は、液晶の配向がランダムな場合は、 (ne −no )/3 ・・・(2) となる。一方、液晶の配向が揃っている場合は、 (ne −no ) ・・・(3) となり、3倍の屈折率差となる。
The reason why the difference in the refractive index between the liquid crystal and the resin in the reflective state becomes three times larger than that in the conventional case will be described below.
Refractive index of the liquid crystal, the long axis of the molecule, different in the short axis direction (referred to as n e, and n o.). When the orientation is random, the refractive index of the liquid crystal region is an average value (n e + n o ) / 3 (1). Here, by aligning the alignment, the refractive index of the liquid crystal region becomes n e . Also, the refractive index of resin is usually n.
Use something equal to o . Therefore, the difference in refractive index between the resin and the liquid crystal, when the orientation of the liquid crystal is random, the (n e -n o) / 3 ··· (2). On the other hand, if the orientation of the liquid crystal is aligned, the (n e -n o) ··· ( 3) , and the 3-fold difference in refractive index.

【0027】[0027]

【実施例】以下、本発明の効果を示す実施例を詳細に説
明する。 〔実施例1〕図2は本実施例にかかる光学素子を示す概
略図である。図2に示すように、本実施の形態にかかる
光学素子は、例えばITO(Indium Tin O
xide)のような透明電極11を設けたガラス板12
を二枚対向させ、そのガラス板12,12間に樹脂13
を挟んでなり、該樹脂13中には上記ガラス板12と平
行な方向(矢印X方向)に配向を揃えた液晶からなる液
晶粒14が周期的に分布されている。
EXAMPLES Examples showing the effects of the present invention will be described in detail below. [Embodiment 1] FIG. 2 is a schematic view showing an optical element according to the present embodiment. As shown in FIG. 2, the optical element according to the present embodiment is, for example, ITO (Indium Tin O).
glass plate 12 provided with a transparent electrode 11 such as
Between the two glass plates 12 and 12 and the resin 13
Liquid crystal grains 14 made of liquid crystal aligned in a direction parallel to the glass plate 12 (direction of arrow X) are periodically distributed in the resin 13.

【0028】この光学素子に光源からの入射光15が入
射されると、該樹脂13中の液晶粒14によって散乱さ
れるが、液晶領域が周期的に分布しているため、干渉効
果により、特定の波長の光のみが反射されて反射光16
となり眼球17に入る。一方、他の波長の光は樹脂13
中をそのまま透過して透過光18となる。
When the incident light 15 from the light source is incident on this optical element, it is scattered by the liquid crystal particles 14 in the resin 13, but since the liquid crystal region is periodically distributed, it is specified by the interference effect. Light of wavelength 16 is reflected and reflected light 16
Next enters the eyeball 17. On the other hand, the light of the other wavelengths is the resin
It passes through the inside as it is to become transmitted light 18.

【0029】上記光学素子の電極11,11間に電圧を
かけると、電界により液晶が配向し、高分子樹脂との屈
折率差が無くなるため、各液晶粒14による散乱光が消
え、反射光16が無くなり、全て透過光18となる。本
実施例にかかる光学素子では、液晶の配向を基板と平行
(X方向)に揃えてあるため、樹脂と液晶との屈折率差
を大きくとることができ、従来の配向を揃えなかった素
子に比べ3倍以上の反射効率の向上が可能となる。
When a voltage is applied between the electrodes 11 of the optical element, the liquid crystal is oriented by the electric field and the difference in the refractive index with the polymer resin is eliminated, so that the scattered light from each liquid crystal grain 14 disappears and the reflected light 16 Disappears and all becomes transmitted light 18. In the optical element according to the present embodiment, since the liquid crystal is aligned in parallel with the substrate (X direction), a large difference in refractive index between the resin and the liquid crystal can be obtained, and thus the conventional alignment is not aligned. It is possible to improve the reflection efficiency more than three times.

【0030】次に、本実施例の光学素子の作製方法につ
いて図3を参照して説明する。図3に示すように、電極
21を設けた基板22の間に、光硬化性樹脂の中に、例
えばネマティック液晶のような液晶を溶解させた樹脂原
料を入れて、高分子分散樹脂領域23を形成する。ここ
に、レーザ光源24より出た光25を二光束干渉させる
ことにより生じさせた干渉縞26を照射する。該干渉縞
26の電界の強い腹の部分で樹脂の重合が起こり、残り
の部分で相分離により析出した液晶領域を形成し、周期
的に分布された、図2に示すような所望の構造を得る。
Next, a method of manufacturing the optical element of this embodiment will be described with reference to FIG. As shown in FIG. 3, between the substrates 22 provided with the electrodes 21, a resin raw material in which a liquid crystal such as a nematic liquid crystal is dissolved in a photocurable resin is put to form a polymer dispersed resin region 23. Form. Interference fringes 26 generated by causing two beams of light 25 emitted from the laser light source 24 to interfere with each other are applied to this. Polymerization of the resin occurs in the antinode portion of the interference fringes 26 where the electric field is strong, and liquid crystal regions are formed by phase separation in the remaining portion, and a desired structure as shown in FIG. obtain.

【0031】次に、上記樹脂粒の配向の制御方法の一例
を以下に示すが、本発明はこれらに限定されるものでは
ない。 <ずり応力による配向> 図4に示すように、光照射後に、高分子分散樹脂領域2
3を挟んで対向する基板22,22に矢印で示すような
異なる方向の水平な力F1 ,F2 をかけることにより、
該高分子分散樹脂領域23にずり領域を加えて、配向を
揃える。なお、このずり領域は力を加えた状態であって
も、また力を加えた後にもとの状態に戻しても、配向が
維持されていればよい。
Next, an example of the method for controlling the orientation of the resin particles will be shown below, but the present invention is not limited to these. <Orientation due to shear stress> As shown in FIG. 4, after the light irradiation, the polymer dispersed resin region 2
By applying horizontal forces F 1 and F 2 in different directions as shown by the arrows to the substrates 22 and 22 that face each other with the 3 in between,
A shear region is added to the polymer dispersed resin region 23 to align the orientation. Note that it is sufficient that the orientation of the sheared region is maintained even when a force is applied or when the sheared region is returned to the original state after the force is applied.

【0032】 <磁場による配向> 図5に示すように、上述した図3と同様な操作におい
て、レーザ光照射中に、例えば磁石27を用い、磁場の
ような液晶の配向を制御する環境とすることにより、高
分子分散樹脂領域23における配向を揃えてもよい。
<Orientation by Magnetic Field> As shown in FIG. 5, in an operation similar to that of FIG. 3 described above, for example, a magnet 27 is used during laser light irradiation to provide an environment for controlling the orientation of liquid crystal such as a magnetic field. By doing so, the orientation in the polymer dispersed resin region 23 may be aligned.

【0033】 <液晶モノマーによる配向> 光硬化性樹脂として液晶モノマーを用い、レーザ光照射
以前に配向した状態にする。液晶モノマーと液晶との混
合物は、一般に液晶性を示す。そのため、この混合物を
配向処理した基板で挟むことにより、混合物は液晶と同
様に基板間で配向する。この状態で光照射を行うことに
より、配向状態で構造形成が可能となる。図6に形成さ
れた構造の概略を示す。図6に示すように、高分子分散
液晶領域31は、重合した液晶モノマー32中に、液晶
33が分散した構造となる。上記液晶33と液晶モノマ
ー32は共に同一方向に配向する。尚、図面中の矢印A
部分の楕円部分は、液晶分子の異方性を示したものであ
る。
<Alignment by Liquid Crystal Monomer> A liquid crystal monomer is used as a photo-curable resin, and is in an aligned state before laser light irradiation. A mixture of a liquid crystal monomer and liquid crystal generally exhibits liquid crystallinity. Therefore, by sandwiching this mixture between the substrates subjected to the alignment treatment, the mixture is aligned between the substrates like the liquid crystal. By irradiating with light in this state, the structure can be formed in the oriented state. FIG. 6 shows an outline of the formed structure. As shown in FIG. 6, the polymer dispersed liquid crystal region 31 has a structure in which a liquid crystal 33 is dispersed in a polymerized liquid crystal monomer 32. Both the liquid crystal 33 and the liquid crystal monomer 32 are aligned in the same direction. The arrow A in the drawing
The elliptical part of the part shows the anisotropy of liquid crystal molecules.

【0034】また、本実施例では、基板としてガラス板
を用いたが、本発明はこれに限定されるものではなく、
例えばアクリル樹脂のような有機物からなる板、フィル
ム等であってもよい。また、電極としてITOを用いた
がこれに限定されるものではない。
In this embodiment, the glass plate is used as the substrate, but the present invention is not limited to this.
For example, it may be a plate, a film or the like made of an organic material such as acrylic resin. Although ITO is used as the electrode, it is not limited to this.

【0035】また、光学素子として、図7に示すような
面内方向に周期構造を有する透過型回折格子構造34
を、電極21を設けた基板22,22の間に設けたもの
であってもよい。
Further, as an optical element, a transmission type diffraction grating structure 34 having a periodic structure in the in-plane direction as shown in FIG.
May be provided between the substrates 22 and 22 provided with the electrode 21.

【0036】また、構造は一般にホログラムであっても
よい。ここで、ホログラムとは、図8に示すように、レ
ーザ光の出力光25と、例えば図のような物体41から
の散乱光42のような任意の可干渉の光とからなる干渉
縞の照射により得られる構造をいう。
The structure may also generally be a hologram. Here, the hologram is, as shown in FIG. 8, irradiation of interference fringes composed of output light 25 of laser light and arbitrary coherent light such as scattered light 42 from an object 41 as shown in the figure. The structure obtained by

【0037】本実施例において、電極としてマトリック
ス状電極を用いることにより、ほぼ任意の画像情報を表
示可能である。ここで、マトリックス状電極とは、例え
ば図9(a)に示すように、基板43の上に帯状の電極
44を設けたものをいう。また、図9(b),(c)に
示すように、相対向する二枚の基板43−1,43−2
に設けた電極44−1,44−2が互いに交差するよう
に重ねて使用してもよい。なお、図9(c)は図(b)
を横方向から見た断面図である。
In this embodiment, by using a matrix-shaped electrode as the electrode, almost arbitrary image information can be displayed. Here, the matrix-like electrode means an electrode in which a strip-shaped electrode 44 is provided on a substrate 43 as shown in FIG. 9A, for example. Further, as shown in FIGS. 9B and 9C, two substrates 43-1 and 43-2 facing each other are provided.
The electrodes 44-1 and 44-2 provided in the above may be overlapped and used so as to intersect each other. Note that FIG. 9 (c) is shown in FIG. 9 (b).
It is the sectional view which looked at from the horizontal direction.

【0038】本実施例により、反射効率の高い単色表示
素子を実現できることができた。
According to this embodiment, it was possible to realize a monochromatic display device having high reflection efficiency.

【0039】特に、液晶として誘電率異方性が正である
液晶を用い、基板と平行な方向に配向させた場合、無電
界で高効率反射状態、電界下で透過状態となるような素
子を実現できる。
In particular, when a liquid crystal having a positive dielectric anisotropy is used as the liquid crystal and is oriented in a direction parallel to the substrate, an element that is in a highly efficient reflection state without an electric field and in a transmission state under an electric field is used. realizable.

【0040】また、液晶として誘電率異方性が負である
液晶を用い、基板と直交する方向に配向させた場合、無
電界で透過状態、電界下で高効率反射状態となるような
素子を実現できる。特に、分散している液晶粒の形状に
異方性を持たせることにより更なる透過率の向上ができ
る。
When a liquid crystal having a negative dielectric anisotropy is used as the liquid crystal and is oriented in a direction orthogonal to the substrate, an element that is in a transmissive state without a field and in a highly efficient reflective state under an electric field is provided. realizable. In particular, the transmittance can be further improved by making the shape of dispersed liquid crystal particles anisotropic.

【0041】〔実施例2〕図10は、本発明の光学素子
を示す概略図である。前述した図2に示す実施例1にか
かる光学素子から、電極11を有した基板であるガラス
板12を除いたものである。本実施例の素子により、樹
脂13中にX方向に配向を揃えた液晶からなる液晶粒1
4が周期的に分布された反射効率の高いフィルム状ホロ
グラムを実現できる。
[Embodiment 2] FIG. 10 is a schematic view showing an optical element of the present invention. This is obtained by removing the glass plate 12 which is the substrate having the electrodes 11 from the optical element according to the first embodiment shown in FIG. 2 described above. Liquid crystal particles 1 made of liquid crystal aligned in the X direction in the resin 13 by the device of this example.
It is possible to realize a film hologram in which 4 are periodically distributed and have high reflection efficiency.

【0042】〔実施例3〕図11は、本発明の他の実施
例にかかる光学素子の概略図である。本実施例では、例
えば櫛形電極51のような面内方向に電界をかけること
が可能であるような電極を用いるものである。ここで、
櫛形電極とは、図11(a)に示すように、基板上に櫛
のような形状の電極を設けたものであり、二つの電極5
1−1,51−2を櫛の歯が交互になるように基板52
上に配置してなるものである。二つの櫛形電極51−
1,51−2に電圧をかけることにより、櫛の歯の間に
基板表面とほぼ平行な電界を生じさせることができる。
図11(a)では複数の歯を持った櫛を示したが二本の
平行な電極間の電界などを用いてもよい。
[Embodiment 3] FIG. 11 is a schematic view of an optical element according to another embodiment of the present invention. In this embodiment, an electrode that can apply an electric field in the in-plane direction, such as the comb-shaped electrode 51, is used. here,
As shown in FIG. 11A, the comb-shaped electrode is a comb-shaped electrode provided on a substrate.
Substrate 52 with 1-1 and 51-2 so that the teeth of the comb alternate
It is arranged on top. Two comb-shaped electrodes 51-
By applying a voltage to 1, 51-2, an electric field almost parallel to the substrate surface can be generated between the teeth of the comb.
Although FIG. 11A shows a comb having a plurality of teeth, an electric field between two parallel electrodes may be used.

【0043】図11(b)は、櫛形電極51−1,51
−2を上下に配した基板52の両面に用いた場合を示す
光学素子の概略を示す。高分子分散液晶領域53を櫛形
電極で挟む。電極同志を接続した状態で、両者の間に電
圧をかかえると、基板に対して垂直な電界を生じるた
め、素子は透明状態となる。一方、電極と電極とを接続
した状態で両者に電圧をかけると基板の面に平行な電界
が発生するので、高効率な反射状態となる。
FIG. 11B shows the comb-shaped electrodes 51-1 and 51.
2 shows an outline of an optical element showing a case where -2 is used on both surfaces of a substrate 52 arranged above and below. The polymer dispersed liquid crystal region 53 is sandwiched by comb electrodes. When a voltage is applied between the electrodes while the electrodes are connected to each other, an electric field perpendicular to the substrate is generated, so that the element becomes transparent. On the other hand, when a voltage is applied to both electrodes while the electrodes are connected to each other, an electric field parallel to the surface of the substrate is generated, resulting in a highly efficient reflection state.

【0044】図11(c)は、櫛形電極51−1,51
−2を片面(図中下側の基板52)に、平面電極51−
3をもう一面(図中上側の基板52)に用いた場合を示
す。高分子分散液晶領域53を櫛形電極51−1,51
−2と平面電極51−3で挟み、電極と電極とを接続
し、電極同志に電圧をかけると、基板に対して垂直な電
界を生じるため、素子は透明状態となる。一方、電極と
電極との間に電圧をかけると基板の面に平行な電界が発
生するので、高効率な反射状態となる。
FIG. 11C shows the comb-shaped electrodes 51-1 and 51.
-2 on one surface (the substrate 52 on the lower side in the drawing) of the flat electrode 51-
The case where 3 is used for the other surface (the upper substrate 52 in the drawing) is shown. The polymer-dispersed liquid crystal region 53 is connected to the comb-shaped electrodes 51-1 and 51.
-2 and the planar electrode 51-3 are sandwiched between the electrodes, and the electrodes are connected to each other. When a voltage is applied to the electrodes, an electric field perpendicular to the substrate is generated, so that the element becomes transparent. On the other hand, when a voltage is applied between the electrodes, an electric field parallel to the surface of the substrate is generated, resulting in a highly efficient reflection state.

【0045】特に、高分子樹脂として液晶モノマーのよ
うに複屈折性を有する物質を用いることにより、電界を
かけない状態では、図6に示したように、同一方向に配
向しているため全体が一様な複屈折板として作用するの
で、全ての光を透過するが、電界を加えた状態では図1
2に示すように、高分子分散液晶領域31は、重合した
液晶モノマー32中に、液晶61が分散した構造とな
る。該液晶61の複屈折軸と樹脂の複屈折軸とが非平行
となるため全ての偏光の光を反射する。複屈折の軸のな
す角が90度であるとき、反射効率は最大となる。
In particular, by using a substance having a birefringence such as a liquid crystal monomer as the polymer resin, in the state where no electric field is applied, as shown in FIG. Since it acts as a uniform birefringent plate, it transmits all the light, but when an electric field is applied,
As shown in FIG. 2, the polymer dispersed liquid crystal region 31 has a structure in which the liquid crystal 61 is dispersed in the polymerized liquid crystal monomer 32. Since the birefringence axis of the liquid crystal 61 and the birefringence axis of the resin are not parallel to each other, all polarized light is reflected. When the angle formed by the axes of birefringence is 90 degrees, the reflection efficiency becomes maximum.

【0046】〔実施例4〕図13は、本発明の他の実施
例にかかる光学素子の概略図である。図13(a)に示
すように、光学素子は、例えばITOのような電極を設
けた例えばガラス板のような透明な基板に挟まれた樹脂
中に配向を基板とほぼ平行な方向に揃えた電傾効果を示
すスメクティック液晶粒19を周期的に分布させた構造
を有する。上記電傾効果とは、液晶に電界をかけたと
き、電界方向を軸として、液晶分子が電界に比例した角
度だけ傾斜する性質をいう。この電傾効果を示すスメク
ティック液晶粒を周期的に分布させた構造を有する光学
素子に、電界を加えると電傾効果により配向方向が基板
と平行な面内で回転する。入射光のうち、液晶の配向方
向と平行な光は、素子中の液晶粒によって散乱され、特
定の波長の光のみが反射され反射光となり、他の波長の
光は、そのまま透過し透過光となる。液晶の配向方向と
垂直に偏光した光は、液晶粒に散乱されないので、全て
透過する。本実施例の光学素子は、電界によって反射す
る光の偏光法屈折率及びを制御できる。
[Fourth Embodiment] FIG. 13 is a schematic view of an optical element according to another embodiment of the present invention. As shown in FIG. 13 (a), the optical element has an alignment in a direction substantially parallel to the substrate in a resin sandwiched between transparent substrates such as glass plates provided with electrodes such as ITO. It has a structure in which smectic liquid crystal grains 19 exhibiting an electroclinic effect are periodically distributed. The electroclinic effect refers to a property that, when an electric field is applied to liquid crystal, liquid crystal molecules are tilted by an angle proportional to the electric field with the electric field direction as an axis. When an electric field is applied to an optical element having a structure in which smectic liquid crystal particles exhibiting this electrotilt effect are periodically distributed, the orientation direction rotates in a plane parallel to the substrate due to the electrotilt effect. Of the incident light, the light parallel to the alignment direction of the liquid crystal is scattered by the liquid crystal grains in the element, only the light of a specific wavelength is reflected and becomes the reflected light, and the light of other wavelengths is transmitted as it is and the transmitted light. Become. Light polarized perpendicular to the alignment direction of the liquid crystal is not scattered by the liquid crystal particles, and therefore all of the light is transmitted. The optical element of the present embodiment can control the polarization method refractive index of light reflected by an electric field.

【0047】また、図13(b)に示すように、光学素
子に偏光板20を設けることにより、反射光強度を電界
によって制御できる光学素子を実現できる。特に、高分
子樹脂として、液晶モノマーのようにあ複屈折性を有す
る物質を用いることにより、電界をかけない状態では、
図6に示したように、同一方向に配向しているため全体
が一様な複屈折板として作用するので、全ての光を透過
するが、電界を加えた状態では、図12に示すように、
液晶61の複屈折軸と樹脂の複屈折実とが非平行となる
ため全ての偏光の光を反射する。複屈折の軸のなす角が
90度であるとき、反射効率は最大となる。
Further, as shown in FIG. 13B, by providing the polarizing plate 20 on the optical element, an optical element whose reflected light intensity can be controlled by an electric field can be realized. In particular, when a substance having birefringence such as a liquid crystal monomer is used as the polymer resin, in a state where no electric field is applied,
As shown in FIG. 6, since they are oriented in the same direction, the whole acts as a uniform birefringent plate, so that all light is transmitted, but when an electric field is applied, as shown in FIG. ,
Since the birefringent axis of the liquid crystal 61 and the birefringent real of the resin are not parallel to each other, all polarized light is reflected. When the angle formed by the axes of birefringence is 90 degrees, the reflection efficiency becomes maximum.

【0048】〔実施例5〕図2の構造の光学素子におい
て、液晶領域として二周波液晶を用いた他の実施例を示
す。なお、初期状態の配向は任意である。二周波液晶
は、加える電界の周波数により誘電率異方性の符号(正
・負)が変化する。このため、誘電率異方性が正になる
ような周波数の電界を加えることにより透明状態とな
り、一方、負になるような周波数の電界を加えることに
より高効率反射状態を実現できる。
[Embodiment 5] Another embodiment of the optical element having the structure shown in FIG. 2 is shown in which a dual frequency liquid crystal is used as the liquid crystal region. The orientation in the initial state is arbitrary. In the dual frequency liquid crystal, the sign (positive / negative) of the dielectric anisotropy changes depending on the frequency of the applied electric field. Therefore, it is possible to realize a transparent state by applying an electric field having a frequency such that the dielectric anisotropy becomes positive, and to realize a highly efficient reflection state by applying an electric field having a frequency such that the dielectric anisotropy becomes negative.

【0049】上述して全ての実施例において、実施例1
と同様に液晶粒の分布は、透過型回折格子やホログラム
であってもよい。
In all the embodiments described above, the first embodiment
Similarly to the above, the distribution of the liquid crystal particles may be a transmission type diffraction grating or a hologram.

【0050】全ての実施例において、周期構造は、球状
の液晶粒の分布で構成される必要はない。例えば図14
(a)に示すような、樹脂層62と液晶層63とが複数
層積層した多層周期構造であってもよい。また、図14
(b)に示すような、樹脂層64中に配される液晶粒6
5が扁平形状であってもよい。また、液晶が粒を構成す
るのではなく、透光性物質が液晶中に周期的に分さして
いてもよい。
In all the embodiments, the periodic structure does not have to be composed of a spherical liquid crystal particle distribution. For example, in FIG.
A multi-layered periodic structure in which a plurality of resin layers 62 and liquid crystal layers 63 are laminated as shown in (a) may be used. In addition, FIG.
Liquid crystal particles 6 arranged in the resin layer 64 as shown in FIG.
5 may have a flat shape. Further, the translucent substance may be periodically divided in the liquid crystal instead of forming the particles by the liquid crystal.

【0051】本発明の全て実施例の素子は、図15
(a)のように基板71上に複数の素子72を並べるこ
とにより、表示装置を形成できる。本発明の全て実施例
の素子は、図15(b)のように複数の素子(例えば
青)72−1,素子(例えば緑)72−2,素子(例え
ば赤)72−3を積層することにより、多色化が可能で
ある。
The elements of all the examples of the present invention are shown in FIG.
By arranging a plurality of elements 72 on the substrate 71 as shown in (a), a display device can be formed. In all of the elements of the present invention, as shown in FIG. 15B, a plurality of elements (for example, blue) 72-1, elements (for example, green) 72-2, and elements (for example, red) 72-3 are laminated. Thus, multicoloring is possible.

【0052】[0052]

【発明の効果】以上、実施の形態と共に、詳細に説明し
たように、本発明によれば、高い光の利用効率で情報を
表示する素子が実現できる。また、高分子樹脂を用いる
ことにより、素子に可変形(フレキシブル)性をもたせ
ることができる。本発明により素子の動作電圧を下げる
ことが可能となる。
As described above in detail with the embodiments, according to the present invention, an element for displaying information with high light utilization efficiency can be realized. Further, by using the polymer resin, it is possible to give the element variable form (flexibility). The present invention makes it possible to reduce the operating voltage of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学素子の概略図である。FIG. 1 is a schematic view of an optical element of the present invention.

【図2】本発明の実施例1にかかる光学素子の概略図で
ある。
FIG. 2 is a schematic view of an optical element according to Example 1 of the present invention.

【図3】実施例1にかかる光学素子の作製の概略図であ
る。
FIG. 3 is a schematic view of manufacturing an optical element according to Example 1.

【図4】実施例1にかかる光学素子に配向をかける一例
の概略図である。
FIG. 4 is a schematic view of an example in which the optical element according to Example 1 is oriented.

【図5】実施例1にかかる光学素子に配向をかける他の
一例の概略図である。
FIG. 5 is a schematic view of another example in which the optical element according to Example 1 is oriented.

【図6】本発明の実施例1にかかる光学素子の液晶状態
の概略図である。
FIG. 6 is a schematic view of a liquid crystal state of the optical element according to the first embodiment of the present invention.

【図7】本発明の実施例1にかかる光学素子の回折格子
の概略図である。
FIG. 7 is a schematic diagram of a diffraction grating of the optical element according to the first example of the present invention.

【図8】本発明の実施例1にかかる光学素子のホログラ
ムの概略図である。
FIG. 8 is a schematic diagram of a hologram of the optical element according to the first embodiment of the present invention.

【図9】本発明の実施例1にかかるマトリックス状電極
を用いた光学素子の概略図である。
FIG. 9 is a schematic view of an optical element using a matrix electrode according to the first embodiment of the present invention.

【図10】本発明の実施例2にかかる光学素子の概略図
である。
FIG. 10 is a schematic view of an optical element according to Example 2 of the present invention.

【図11】本発明の実施例3にかかる光学素子の概略図
である。
FIG. 11 is a schematic view of an optical element according to Example 3 of the present invention.

【図12】本発明の実施例3にかかる光学素子の概略図
である。
FIG. 12 is a schematic view of an optical element according to Example 3 of the present invention.

【図13】本発明の実施例4にかかる光学素子の概略図
である。
FIG. 13 is a schematic view of an optical element according to Example 4 of the present invention.

【図14】本発明の実施例5にかかる光学素子の概略図
である。
FIG. 14 is a schematic view of an optical element according to Example 5 of the present invention.

【図15】本発明の表示装置の概略図である。FIG. 15 is a schematic view of a display device of the present invention.

【図16】従来技術にかかる光学素子の概略図である。FIG. 16 is a schematic view of an optical element according to the related art.

【符号の説明】[Explanation of symbols]

11 透明電極 12 ガラス板 13 樹脂 14 液晶粒 15 入射光 16 反射光 17 眼球 18 透過光 11 Transparent electrode 12 glass plates 13 resin 14 Liquid crystal grains 15 incident light 16 reflected light 17 Eyeball 18 transmitted light

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−48605(JP,A) 特開 平10−68933(JP,A) 特開 平5−181403(JP,A) 特開 平5−181402(JP,A) 特開 平5−165009(JP,A) 特開 平6−294952(JP,A) 特開 平5−11235(JP,A) 特開 平5−142580(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/13 G02F 1/1347 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-10-48605 (JP, A) JP-A-10-68933 (JP, A) JP-A-5-181403 (JP, A) JP-A-5- 181402 (JP, A) JP 5-165009 (JP, A) JP 6-294952 (JP, A) JP 5-11235 (JP, A) JP 5-142580 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) G02F 1/13 G02F 1/1347

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 それぞれに電極を設けた一組の透明な基
板に挟まれた透光性物質と屈折率可変物質とからなる微
細周期構造からなる光学素子であって、前記屈折率可変
物質が前記基板とほぼ平行な方向に配向をそろえた電傾
効果を有するスメクティック液晶からなり、前記電極に
より前記スメクティック液晶に電界を加えるとその配向
方向が基板と平行な面内で回転することを特徴とする光
学素子。
1. A set of transparent substrates each provided with an electrode.
An optical element comprising a fine periodic structure consisting of a transparent material sandwiched plate with the index variable material, electroclinic said index variable material is aligned orientation in a direction substantially parallel to the substrate
Made of smectic liquid crystal that has an effect,
When an electric field is applied to the smectic liquid crystal, its orientation
An optical element whose direction rotates in a plane parallel to the substrate .
【請求項2】 請求項記載の光学素子を平面的に複数
並べてなることを特徴とする表示装置。
2. A display device comprising a plurality of the optical elements according to claim 1 arranged in a plane.
【請求項3】 請求項記載の光学素子又は請求項
表示装置を複数重ねてなることを特徴とする表示装置。
3. A display apparatus characterized by comprising superimposed plural display devices of the optical element or claim 2 of claim 1, wherein.
JP23394896A 1996-09-04 1996-09-04 Optical element and display device Expired - Fee Related JP3506405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23394896A JP3506405B2 (en) 1996-09-04 1996-09-04 Optical element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23394896A JP3506405B2 (en) 1996-09-04 1996-09-04 Optical element and display device

Publications (2)

Publication Number Publication Date
JPH1078569A JPH1078569A (en) 1998-03-24
JP3506405B2 true JP3506405B2 (en) 2004-03-15

Family

ID=16963136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23394896A Expired - Fee Related JP3506405B2 (en) 1996-09-04 1996-09-04 Optical element and display device

Country Status (1)

Country Link
JP (1) JP3506405B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819393B1 (en) 1998-07-28 2004-11-16 Nippon Telegraph And Telephone Corporation Optical device and display apparatus using light diffraction and light guide
US6618104B1 (en) 1998-07-28 2003-09-09 Nippon Telegraph And Telephone Corporation Optical device having reverse mode holographic PDLC and front light guide
JP2002156617A (en) * 2000-11-20 2002-05-31 Ricoh Co Ltd Image display device

Also Published As

Publication number Publication date
JPH1078569A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
US6317189B1 (en) High-efficiency reflective liquid crystal display
US7301601B2 (en) Optical switching device using holographic polymer dispersed liquid crystals
JP4651791B2 (en) Reflective liquid crystal display device, manufacturing method thereof, and driving method thereof
US6836314B2 (en) Optical device and display apparatus having a plate-shaped light guide and an optical control surface thereon
JP4638965B2 (en) Broadband reflective display
US6661495B1 (en) Pancake window display system employing one or more switchable holographic optical elements
US5872609A (en) Light control element method of manufacturing the same
US6678078B1 (en) Optical filter employing holographic optical elements and image generating system incorporating the optical filter
EP0856765B1 (en) Reflective-type liquid crystal display and methods of forming the same
JP3072513B2 (en) Polymer dispersed liquid crystal display panel
JP4889643B2 (en) Optical switch using holographic polymer dispersed liquid crystal
JPH08313923A (en) Liquid crystal display element
JP3506405B2 (en) Optical element and display device
JP3336934B2 (en) Polymer dispersed liquid crystal device and method of manufacturing the same
US20050259216A1 (en) Optical switching device using holographic polymer dispersed liquid crystals
JP2776351B2 (en) Display device and method of manufacturing the same
JP3203331B2 (en) Reflective liquid crystal display
JPH1090730A (en) Optical element, its drive method and display device
RU2695937C1 (en) Method of manufacturing a liquid crystal structure for a diffraction grating (versions), a liquid crystal diffraction grating, a dynamic diffraction grating
US20050237589A1 (en) Optical filter employing holographic optical elements and image generating system incorporating the optical filter
JP3090077B2 (en) Liquid crystal optical element and manufacturing method thereof
JP3197702B2 (en) Optical element, method for forming the same, and optical device
JP3371393B2 (en) Display element and method of manufacturing the same
JPH08248398A (en) Liquid crystal display element
JPH06301005A (en) Screen

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20031215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20031215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees