JP3498925B2 - Gliotoxin production by Gliocladium virens - Google Patents

Gliotoxin production by Gliocladium virens

Info

Publication number
JP3498925B2
JP3498925B2 JP4333394A JP4333394A JP3498925B2 JP 3498925 B2 JP3498925 B2 JP 3498925B2 JP 4333394 A JP4333394 A JP 4333394A JP 4333394 A JP4333394 A JP 4333394A JP 3498925 B2 JP3498925 B2 JP 3498925B2
Authority
JP
Japan
Prior art keywords
gliotoxin
strain
culture
medium
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4333394A
Other languages
Japanese (ja)
Other versions
JPH07227293A (en
Inventor
正幸 清澤
Original Assignee
日本肥糧株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本肥糧株式会社 filed Critical 日本肥糧株式会社
Priority to JP4333394A priority Critical patent/JP3498925B2/en
Publication of JPH07227293A publication Critical patent/JPH07227293A/en
Application granted granted Critical
Publication of JP3498925B2 publication Critical patent/JP3498925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はクリオグラディウム(Gli
ocladium)の新規株を用いて、固体培養により抗生物質
であるグリオトキシンを効率的に生産する方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a cryogradium ( Gli
ocladium ), and a method for efficiently producing the antibiotic gliotoxin by solid-state culture using a new strain .

【0002】[0002]

【従来の技術】グリオトキシン(gliotoxin) は真菌やグ
ラム染色陽性の細菌に活性を示す抗生物質であり、グリ
オクラディウム・ビレンス、グリオクラディウム・フィ
ンブリアタム、トリコデマ・ビリデ、アスペルギルス・
フミガタス、ペニシリウム属菌等が生産することが知ら
れている。しかしながら、これらグリオトキシン生産性
菌種の属する菌株の生産性を比較すると、全く生産が認
められない菌株や生産量が少ない菌株が多く存在してい
る。また、これらの菌によるグリオトキシン生産のため
に従来採用された生産方法は液体培地を用いたタンク培
養であり、絶対好気性である真菌の培養には最適とはい
えない。タンクでの液体培養法で真菌を培養する場合、
酸素要求量が大きいため過激な撹拌を必要とするが、撹
拌によって菌糸が損傷を受け物質生産性が低下すると
か、代謝異常を引き起こし目的物質を生産しないなどの
問題がある。栄養源の枯渇や生産物による自己抑制を回
避するための連続培養や流加培養においては、各種環境
の制御が難しいなどの問題もある。前述のようにグリオ
トキシン生産性菌種は多く知られているが、菌株ごとに
生産性は異なり、最も適する培養条件も異なる。以上の
ような理由から、グリオトキシンを低コスト且つ高濃度
に効率良く生産する技術レベルに達していないのが現状
である。
BACKGROUND OF THE INVENTION Gliotoxin is an antibiotic showing activity against fungi and Gram-staining positive bacteria, including Gliocladium virens, Gliocladium fimbriatum, Trichodema viride, Aspergillus
It is known to be produced by Fumigatus, Penicillium sp. However, when the productivity of the strains to which these gliotoxin-producing strains belong is compared, there are many strains in which no production is observed or strains with a small production amount. Further, the production method conventionally used for the production of gliotoxin by these bacteria is tank culture using a liquid medium, which is not optimal for the culture of absolutely aerobic fungi. When culturing a fungus by the liquid culture method in a tank,
Since the oxygen demand is large, it needs to be agitated violently, but there are problems that the hyphae are damaged by the agitation and the productivity of the substance is lowered, or the target substance is not produced due to abnormal metabolism. In continuous culture and fed-batch culture for avoiding depletion of nutrients and self-suppression by products, there are problems such as difficulty in controlling various environments. As described above, many gliotoxin-producing strains are known, but the productivity differs for each strain, and the most suitable culture conditions also differ. For the above reasons, it is the current situation that the technology level for efficiently producing gliotoxin at low cost and high concentration has not been reached.

【0003】[0003]

【発明が解決しようとする問題点】グリオトキシンを低
コスト且つ高濃度に効率良く生産するためには、既知の
培養技術の中から、運転コストが安く、環境制御や培地
組成が簡単な方法を採用することが第一条件であり、真
にグリオトキシン生産能力の高い菌株を選抜すると共
に、選抜菌株に最適な生産環境を開発する必要がある。
本発明は、従来知られているグリオトキシン生産性菌株
よりもはるかに生産能力の高い菌株を見出し、かかる問
題点の解決に対処しうる低コスト且つ簡単なグリオトキ
シンの生産方法を提供するものである。
[Problems to be Solved by the Invention] In order to efficiently produce gliotoxin at a low cost and a high concentration, among the known culturing techniques, a method having a low operating cost, a simple environmental control and a simple medium composition is selected. The first condition is to adopt it, and it is necessary to select strains with a truly high gliotoxin production capacity and to develop an optimal production environment for the selected strains.
The present invention finds a strain having a much higher production capacity than conventionally known gliotoxin-producing strains, and provides a low-cost and simple method for producing gliotoxin that can address the problem. is there.

【0004】[0004]

【問題を解決するための手段】本発明者らは、従来用い
られていた液体培養に比べ、装置コスト、運転コストが
安く、酸素移動が問題とならず、生産物の回収コストが
安い固体培養に着目し、固体培養でグリオトキシンを効
率良く生産する培地組成や培養条件を鋭意検討したとこ
ろ、培地の三次元構造をポーラスに保ち、培地中のガス
拡散効率を高く保つ担体と食品工業副産物基質とからな
る固体培地を用いて、25乃至27℃で4乃至5日間培
養することで極めて安価な原料と簡単な培養手段で高濃
度のグリオトキシンを生産することに成功した。ここで
用いる担体としては、グリオトキシンの抽出工程で用い
る溶剤に可溶な成分を含まない物で且つ培養菌の生育を
好適に保つものが好ましく、ピートモス、バーミキュラ
イト等が例示しうる。また、基質としては食品工業の副
産物である麸(ふすま)、米糠、菜種油粕等が例示さ
れ、炭水化物を主体とし若干の蛋白質を含有するものが
好ましい。担体と基質の配合割合は厳密には限定しない
が、基質割合が多すぎる場合には、酸素が不足し菌の生
育に悪影響を及ぼすと共に還元型のグリオトキシンが生
産される。従って経済的には担体70乃至90容量部に
対して基質30乃至10容量部が適当である。
[Means for Solving the Problems] The present inventors have proposed a solid culture in which the apparatus cost and the operating cost are lower, oxygen transfer does not pose a problem, and the product recovery cost is low, as compared with the conventionally used liquid culture. Focusing on the above, we conducted a diligent study of the medium composition and culture conditions for efficient production of gliotoxin in solid culture, and found that the carrier and the food industry by-product substrate that keep the three-dimensional structure of the medium porous and the gas diffusion efficiency in the medium high By culturing at 25 to 27 ° C. for 4 to 5 days using a solid medium consisting of, it was possible to produce a high concentration of gliotoxin with an extremely inexpensive raw material and a simple culturing means. The carrier used here is preferably a substance which does not contain a component soluble in the solvent used in the gliotoxin extraction step and which keeps the growth of the culture bacterium suitable, and examples thereof include peat moss and vermiculite. Examples of the substrate include rice bran, rice bran, and rapeseed meal, which are by-products of the food industry, and those containing mainly carbohydrates and a small amount of protein are preferable. The mixing ratio of the carrier and the substrate is not strictly limited, but when the ratio of the substrate is too large, oxygen is deficient and the growth of the bacteria is adversely affected, and reduced gliotoxin is produced. Therefore, 30 to 10 parts by volume of the substrate is economically suitable for 70 to 90 parts by volume of the carrier.

【0005】また、培養物からグリオトキシンを抽出す
る方法は特に限定されず、従来知られている方法を用い
ればよく、例えば酢酸エチルやクロロホルムの還流抽出
などが採用される。さらに、グリオトキシンを単離する
必要があれば従来用いられている種々の単離方法、例え
ばクロマトグラフィー、溶解度の差を利用した分別沈澱
法等を用いることができる。
The method for extracting gliotoxin from the culture is not particularly limited, and any conventionally known method may be used, such as reflux extraction of ethyl acetate or chloroform. Further, if it is necessary to isolate gliotoxin, various conventionally used isolation methods such as chromatography and fractional precipitation method utilizing the difference in solubility can be used.

【0006】かかる技術を用いれば抗生物質グリオトキ
シンが低コスト且つ効率良く生産されるが、従来知られ
ている菌株ではそのグリオトキシン生産能が十分でな
く、本発明をより有効ならしめるには、グリオトキシン
高生産性菌株の選抜が必要であった。そこで、日本全国
から集めた土壌を試料として、固体培養で効率良くグリ
オトキシンを生産しうる菌株の選抜について鋭意検討、
研究した。すなわち、真菌によってグリオトキシンが生
産される器官は栄養菌糸であり、栄養菌糸が極めて豊富
な菌株がその生産性が高いと考えた。また、多くの菌株
は菌糸がある程度伸長すると無性胞子を形成し、栄養菌
糸内での代謝活性は低下し、休眠状態へと移行しやがて
自己溶菌を始める。従って、無性胞子の形成時期が遅
く、且つ少ない菌株程グリオトキシン生産性が高いと考
えた。
[0006] Using such a technique, the antibiotic gliotoxin can be produced at low cost and efficiently, but the gliotoxin-producing ability of the conventionally known strain is not sufficient, and in order to make the present invention more effective, Selection of strains with high productivity of glyotoxin was necessary. Therefore, using soil collected from all over Japan as a sample, diligent examination on selection of strains capable of efficiently producing gliotoxin in solid culture,
Researched. That is, it was considered that the organ in which gliotoxin is produced by the fungus is a vegetative mycelium, and a strain having an extremely rich vegetative mycelium has high productivity. In addition, many strains form asexual spores when hyphae are elongated to a certain degree, their metabolic activity in vegetative hyphae is reduced, and they shift to a dormant state to start autolysis. Therefore, it was considered that the slower the asexual spore formation time and the less the strain, the higher the gliotoxin productivity.

【0007】こうした研究を継続した結果、上記条件を
満たす菌株としてグリオクラディウム・ビレンス(Glioc
ladium virens)NT-10株(FERM P-14123)を発見し、本発
明を完成するに至った。すなわち、本発明はグリオトキ
シンの生産のために固体培養の技術を用いること、およ
び生産菌株としてグリオクラディウム・ビレンス NT-10
株(FERM P-14123)を使うことにより、さらに有効な技術
となることを重要なポイントとするものである。
[0007] As a result of continuing these studies, as a strain satisfying the above-mentioned condition, Glioc
The present invention has been completed by discovering the strain ladium virens ) NT-10 (FERM P-14123). That is, the present invention uses the technique of solid culture for the production of gliotoxin, and the production strain Gliocladium virens NT-10.
It is an important point that it becomes a more effective technology by using the strain (FERM P-14123).

【0008】本発明の微生物は、青森県上北郡六戸町の
長芋連作土壌より分離した菌株である。この菌の土壌か
らの分離は、希釈平板法によって行った。すなわち、土
壌1gを99mlの滅菌希釈水(トリスバッファー)に分散
させ、同様の希釈水を用いて10倍及び 100倍に希釈し、
各々1mlを滅菌シャーレに分取し、これにクロラムフェ
ニコール含有のローズベンガル寒天培地10mlを流し込ん
で良く混合した後固化し、28℃で3日間培養して出現し
たコロニーの中から分離した。
The microorganism of the present invention is a strain isolated from a long potato continuous cropping soil in Rokunohe-cho, Kamikita-gun, Aomori Prefecture. The isolation of this fungus from soil was performed by the dilution plate method. That is, 1 g of soil is dispersed in 99 ml of sterile dilution water (Tris buffer) and diluted 10 times and 100 times with the same dilution water,
1 ml of each was dispensed into a sterile petri dish, 10 ml of rose bengal agar medium containing chloramphenicol was poured into this dish, mixed well, solidified, and cultured at 28 ° C. for 3 days to separate from colonies that appeared.

【0009】この菌株は、次のような性質を持つ。 各培地における生育状況オートミール寒天培地 生育旺盛(28.5℃3日間で d=67mm) 気生菌糸は初め少なく、コロニーは白色を呈するが、後
に綿毛状気生菌糸が豊富となる。5日以上の培養で緑色
の無性胞子を形成するが少ない。麦芽エキス寒天培地 生育旺盛(28.5℃3日間で d=79mm) 気生菌糸は比較的多く、コロニーは初め白色、後に飴色
を呈する。無性胞子を形成しない。バレイショ・ブドウ糖寒天培地 生育旺盛(28.5℃3日間で d=79mm) 気生菌糸は綿毛状で豊富、後にコロニー中央から溶菌が
始まり、コロニー裏面は飴色〜褐色となる。5日以上の
培養で緑色の無性胞子を形成するが極めて少なく、コロ
ニー最端の気生菌糸上にのみ形成される。サブロー寒天培地 生育やや旺盛(28.5℃3日間で d=55mm) 気生菌糸は少なく、コロニーは白色〜僅かに飴色を呈す
る。無性胞子を形成しない
This strain has the following properties. Growth status in each medium Oatmeal agar medium Vigorous growth (d = 67 mm at 28.5 ° C for 3 days) Initially few aerial mycelia, white colonies, but later fluffy aerial mycelia. There is little formation of green asexual spores in culture for 5 days or more. Malt extract agar medium Vigorous growth (d = 79 mm at 28.5 ° C for 3 days) There are relatively many aerial mycelia, and colonies initially appear white and then amber. Does not form asexual spores. Potato-Glucose agar medium Vigorous growth (d = 79mm for 3 days at 28.5 ℃) Abundant aerial hyphae are fluffy, and lysis starts from the center of the colony, and the colony backside becomes amber to brown. Green asexual spores are formed in the culture for 5 days or more, but it is extremely small, and is formed only on the aerial hyphae at the end of the colony. Sabouraud agar medium Slightly vigorous (d = 55 mm for 3 days at 28.5 ° C) There are few aerial mycelia, and colonies are white to slightly amber. Does not form asexual spores

【0010】生理生態的性質 生育適温:25〜32℃ 生育限界:10℃以下、40℃以上で生育しない 最適pH:5〜7 pH範囲:少なくとも3〜10の範囲で生育可能Physiological and ecological properties Suitable growth temperature: 25-32 ° C Growth limit: Not grow above 10 ℃ or above 40 ℃ Optimum pH: 5-7 pH range: Can grow in at least 3-10 range

【0011】本発明菌株の種別Trichoderma 属及びGliocladium 属の種分類が記載され
たK.H.DOMSH, W. GAMSAND T.H.ANDERSON : COMPENDIUM
OF SOIL FUNGI, ACADEMIC PRESS,LONDON,U. K.VOLUME 1
, 859pp. (1980)、およびM.A.RIFI : A REVISION OF G
ENUS TRICHODERMA, mycological Paper,No.116,COMMONW
EALTH MYCOLOGICAL INSTITUTE, KEW,SURREY,U.K. 56pp.
(1969) におけるGliocladium virensに関する特徴を
本発明菌株と比較した。オートミール寒天培地での生育
は極めて速く(20℃・5日間コロニー直径 5.8cm) 、フ
ィアライドは互いに狭い角度で輪生体を形成し、緑色の
大きなボール状無性胞子塊を作る。無性胞子は短楕円形
4.5-6×3.5-4 μm で、表面は滑面である。これらの形
態学的特徴が文献記載事項と一致することから、本発明
菌株はGliocladium virensと種別されるが、富栄養培
地では高濃度のグリオトキシンを生産して自己溶菌する
性質や、無性胞子の形成量が極めて少ない性質を有する
点、天然物を基質とする固体培地では菌糸量が極めて多
く、無性胞子形成が遅いなどの性質は同種の菌では認め
られない。このため、本発明菌株は工業技術院生命工学
工業技術研究所に受託番号FERM P-14123として受託され
ている。本発明における変異株には、前記菌株が自然変
異または放射線あるいは化学薬品により突然変異され、
高濃度のグリオトキシンを生産する菌株も包含される。
Type of strain of the present invention KHDOMSH, W. GAMSAND THANDERSON: COMPENDIUM in which the species classification of the genus Trichoderma and the genus Gliocladium is described
OF SOIL FUNGI, ACADEMIC PRESS, LONDON, UKVOLUME 1
, 859pp. (1980), and MARIFI: A REVISION OF G
ENUS TRICHODERMA, mycological Paper, No.116, COMMONW
EALTH MYCOLOGICAL INSTITUTE, KEW, SURREY, UK 56pp.
The characteristics of Gliocladium virens in (1969) were compared with the strain of the present invention. Growth on oatmeal agar is extremely fast (colon diameter 5.8 cm at 20 ° C for 5 days), and phialides form halos at narrow angles to each other, forming a large green ball-like asexual spore mass. Asexual spores are oblong
It is 4.5-6 × 3.5-4 μm and the surface is smooth. Since these morphological characteristics are consistent with those described in the literature, the strain of the present invention is classified as Gliocladium virens , but in a rich medium, the property of producing high concentration of gliotoxin and autolyzing, and asexual spores In the solid medium having a natural product as a substrate, the amount of mycelia is extremely large and the asexual spore formation is slow. For this reason, the strain of the present invention has been entrusted to the Institute of Biotechnology, Institute of Biotechnology, with the accession number FERM P-14123. The mutant strain in the present invention, the strain is mutated by natural mutation or radiation or chemicals,
Strains producing high concentrations of gliotoxin are also included.

【0012】以下に実施例を示して本発明の効果を具体
的に説明する。
The effects of the present invention will be specifically described below with reference to examples.

【実施例1】本発明菌株の土壌からの分離方法を説明す
る。生土1gを滅菌希釈水(トリスバッファー)99mlに
加え、15分間往復振盪して分散させ一次希釈とした。こ
れを良く撹拌した後、殺菌したピペットで10ml取り、90
mlの滅菌希釈水に入れる。これを二次希釈とし、同時に
三次希釈まで作った。殺菌したシャーレに二次希釈液及
び三次希釈液より1mlずつをそれぞれ5枚に入れた。こ
れに50℃前後に保温したローズベンガル寒天培地10mlず
つを分注した。培地が固まった後28℃の室温器内で3日
間培養し、出現した糸状菌コロニーの中から本発明菌株
を分離した。滅菌希釈水は次の組成で調製した。 トリスアミノメタン 1.21g 蒸留水 1000ml pH 7.2 (塩酸で矯正) ローズベンガル寒天培地の組成は次の通りとした。 KH2PO4 1.0 g MgSO4 ・7H2O 0.5 g ペプトン 5.0 g グルコース 10.0 g ローズベンガル 0.033g 寒天 20.0 g クロラムフェニコール 50.0 mg 蒸留水 1000 ml
Example 1 A method for separating the strain of the present invention from soil will be described. 1 g of raw soil was added to 99 ml of sterilized dilution water (Tris buffer), and the mixture was shaken reciprocally for 15 minutes to disperse, to obtain primary dilution. After stirring this well, take 10 ml with a sterilized pipette and
Add to ml of sterile dilution water. This was used as a secondary dilution, and at the same time, a tertiary dilution was made. Five pieces of each 1 ml were put into the sterilized petri dish from the second and third dilution solutions. To this, 10 ml of each rose bengal agar medium, which was kept warm at around 50 ° C, was dispensed. After the medium was solidified, it was cultured in a room temperature chamber at 28 ° C. for 3 days, and the strain of the present invention was isolated from the filamentous fungal colonies that appeared. Sterile dilution water was prepared with the following composition. Trisaminomethane 1.21 g Distilled water 1000 ml pH 7.2 (corrected with hydrochloric acid) The composition of the Rose Bengal agar medium was as follows. KH 2 PO 4 1.0 g MgSO 4 · 7H 2 O 0.5 g Peptone 5.0 g Glucose 10.0 g rose bengal 0.033g agar 20.0 g Chloramphenicol 50.0 mg Distilled water 1000 ml

【0013】[0013]

【実施例2】固体培養によるグリオトキシン生産性につ
いて上記方法によって得られたグリオクラディウム・ビ
レンス NT-10株(FERM P-14123)(本発明菌株)と既知菌
株(表1参照)の比較をした。培地はピートモスを主体
とする土壌改良資材76容量部に麸12容量部及び水12容量
部を混合し、三角フラスコに充填し、120 ℃で高圧蒸気
殺菌した。得られた殺菌培地に供試菌株を無性胞子懸濁
液の状態で接種し、25℃で5日間培養後クロロホルム還
流法で抽出し、グリオトキシン生産量を測定した。尚、
グリオトキシンの定量はTLC面積法を用い、標品のグ
リオトキシンで作成した検量曲線によりRf値確認とス
ポット面積から定量した。結果は表1に記載の通りであ
り、本発明菌株の生産性がはるかに高いことが証明され
た。
[Example 2] Gliotoxin productivity in solid culture Comparison of Gliocladium virens NT-10 strain (FERM P-14123) (strain of the present invention) obtained by the above method with known strains (see Table 1) Did. The medium was prepared by mixing 76 parts by volume of soil improving material mainly composed of peat moss with 12 parts by volume of malt and 12 parts by volume of water, filling an Erlenmeyer flask, and sterilized by high pressure steam at 120 ° C. The test strain was inoculated into the obtained sterilized medium in the state of asexual spore suspension, cultured at 25 ° C. for 5 days and extracted by the chloroform reflux method to measure the amount of gliotoxin produced. still,
The quantification of gliotoxin was carried out using the TLC area method, and the Rf value was confirmed and quantified from the spot area by a calibration curve prepared with standard gliotoxin. The results are shown in Table 1, and it was proved that the strain of the present invention had much higher productivity.

【0014】[0014]

【表1】 グリオトキシン生産比較 ──────────────────────────── 菌 株 mg/培地生鮮重100g ──────────────────────────── 本 発 明 菌 株 35.7 Gliocladium virens (IFO 06355) 0.0 Gliocladium virens (IFO 09166) 15.7 Gliocladium virens (IFO 09169) 0.0 Trichoderma viride (IFO 05720) 0.0 Aspergillus fumigatus (土壌) 7.0 ────────────────────────────[Table 1] Gliotoxin production comparison ──────────────────────────── strain mg / medium fresh weight 100g ────── ────────────────────── The present strain 35.7 Gliocladium virens (IFO 06355) 0.0 Gliocladium virens (IFO 09166) 15.7 Gliocladium virens (IFO 09169) 0.0 Trichoderma viride (IFO 05720) 0.0 Aspergillus fumigatus (soil) 7.0 ─────────────────────────────

【0015】[0015]

【実施例3】本発明菌株によるグリオトキシンの生産時
期を調査した。培地はピートモスを主体とする土壌改良
資材76容量部に麸12容量部及び水12容量部を混合
し、通気フィルター付きのポリプロピレン製袋に充填
し、120℃で高圧蒸気殺菌した。殺菌培地に本発明菌株
を無性胞子懸濁液の状態で接種し、26.5℃で培養した。
グリオトキシンの定量は実施例1同様とした。結果は図
1に示した通りで培養2日目からグリオトキシン生産が
確認され、4日目に最高濃度に達した。
Example 3 The production period of gliotoxin by the strain of the present invention was investigated. The medium was prepared by mixing 76 parts by volume of soil improving material mainly composed of peat moss with 12 parts by volume of water and 12 parts by volume of water, filling a polypropylene bag with a ventilation filter, and sterilizing with high pressure steam at 120 ° C. The bactericidal medium was inoculated with the strain of the present invention in the state of an asexual spore suspension and cultured at 26.5 ° C.
The quantification of gliotoxin was the same as in Example 1. The results are shown in FIG. 1, and gliotoxin production was confirmed from the second day of culture, and the maximum concentration was reached on the fourth day.

【0016】[0016]

【実施例4】食品工業副産物及び農業資材として一般流
通されている資材を基質として固体培地を調製し、実施
例1と同様の培養によって5日目のグリオトキシン生産
性比較を行った。但し、培地は担体として草炭主体の土
壌改良資材75容量部に対して基質25容量部を配合
し、本発明菌の生育に最も適する含水率となるよう、そ
れぞれ調製した。
[Example 4] A solid medium was prepared using the materials commonly distributed as food industry by-products and agricultural materials as substrates, and the same culture as in Example 1 was performed to compare the gliotoxin productivity on the 5th day. However, the medium was prepared by mixing 25 parts by volume of the substrate with 75 parts by volume of the soil-improving material mainly composed of grass charcoal as a carrier so that the water content is most suitable for the growth of the bacterium of the present invention.

【0017】[0017]

【表2】 ─────────────────────── 基 質 gliotoxin mg/d.m. 100g ─────────────────────── 麸 143 米 糠 186 コーヒー粕 < 9 お が 屑 < 9 鶏 糞 91 菜種油粕 118 スキムミルク 146 牛糞堆肥 < 9 バーク堆肥 < 9 ────────────────────────[Table 2]             ───────────────────────                 Substrate gliotoxin mg / d.m. 100g             ───────────────────────                   143               Rice bran 186               Coffee meal <9               Sawdust <9               Chicken droppings 91               Rapeseed meal 118               Skim milk 146               Cow dung compost <9               Burke compost <9             ────────────────────────

【0018】結果は表2に示した通りで、米糠・麸・ス
キムミルク・菜種油粕を基質とした場合の培養では培地
乾物100g当たり100mg 以上のグリオトキシンが生産され
ることが実証された。
The results are shown in Table 2, and it was proved that 100 mg or more of gliotoxin was produced per 100 g of the dry matter of the medium in the culture using rice bran, rice, skim milk, and rapeseed meal as a substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2による培養日数とグリオトキシン生産
量との関係を示す。
FIG. 1 shows the relationship between the number of culture days and the amount of gliotoxin production according to Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI (C12P 17/18 C12P 17/18 C12R 1:645) (56)参考文献 米国特許5268173(US,A) Phytopathology,Vo l.82,No.2(1992),p.230− 235 Phytopathology,Vo l.81,No.7(1991),p.738− 741 Mycol.Res.,Vol.95, No.10(1991)p.1242−1248 (58)調査した分野(Int.Cl.7,DB名) C12P 17/00 - 17/18 JSTPlus(JOIS) BIOSIS/WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI (C12P 17/18 C12P 17/18 C12R 1: 645) (56) Reference US Pat. No. 5268173 (US, A) Phytopathology, Vol. 82, No. 2 (1992), p. 230-235 Phytopathology, Vol. 81, No. 7 (1991), p. 738-741 Mycol. Res. , Vol. 95, No. 10 (1991) p. 1242-1248 (58) Fields surveyed (Int.Cl. 7 , DB name) C12P 17/00-17/18 JSTPlus (JOIS) BIOSIS / WPI (DIALOG)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 グリオトキシン生産能を有するグリオク
ラディウム・ビレンス(Gliocladium virens) NT-10株
(FERM P-14123)を固体培地に培養し、培養物からグリオ
トキシンを抽出することを特徴とするグリオトキシンの
生産方法。
1. A Gliocladium virens NT-10 strain capable of producing gliotoxin.
A method for producing gliotoxin, which comprises culturing (FERM P-14123) in a solid medium and extracting gliotoxin from the culture.
【請求項2】 固体培地が、麩、米糠及び菜種油粕より
なる群から選択される少なくとも1種の食品工業副産物
を基質とする請求項1記載のグリオトキシンの生産方
法。
2. The method for producing gliotoxin according to claim 1, wherein the solid medium uses as a substrate at least one by-product of the food industry selected from the group consisting of dough, rice bran and rapeseed meal.
【請求項3】 グリオトキシン生産能を有するグリオク
ラディウム・ビレンス(Gliocladium virens)NT-10株
(FERM P-14123)
3. Gliocladium virens NT-10 strain (FERM P-14123) capable of producing gliotoxin.
JP4333394A 1994-02-18 1994-02-18 Gliotoxin production by Gliocladium virens Expired - Lifetime JP3498925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4333394A JP3498925B2 (en) 1994-02-18 1994-02-18 Gliotoxin production by Gliocladium virens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4333394A JP3498925B2 (en) 1994-02-18 1994-02-18 Gliotoxin production by Gliocladium virens

Publications (2)

Publication Number Publication Date
JPH07227293A JPH07227293A (en) 1995-08-29
JP3498925B2 true JP3498925B2 (en) 2004-02-23

Family

ID=12660914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4333394A Expired - Lifetime JP3498925B2 (en) 1994-02-18 1994-02-18 Gliotoxin production by Gliocladium virens

Country Status (1)

Country Link
JP (1) JP3498925B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536230B2 (en) * 2000-08-11 2010-09-01 出光興産株式会社 Soil pest control agent and soil pest control method
AT502055B1 (en) 2005-06-21 2007-11-15 Univ Wien Med ANTI TUMOR MEDICAMENT

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Mycol.Res.,Vol.95,No.10(1991)p.1242−1248
Phytopathology,Vol.81,No.7(1991),p.738−741
Phytopathology,Vol.82,No.2(1992),p.230−235

Also Published As

Publication number Publication date
JPH07227293A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
Lewis et al. Production of chlamydospores and conidia by Trichoderma spp in liquid and solid growth media
Bae et al. Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils
Kurtzman et al. Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots
WO2001072968A1 (en) Chlamydospores and process for producing the same
Anastassiadis et al. Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans
CN107955794B (en) High-quality preservation method of cordyceps militaris strains
Pham et al. Production of blastospore of entomopathogenic Beauveria bassiana in a submerged batch culture
US4970163A (en) Process for producing diol and lactone and microorganisms capable of same
CN100400644C (en) Bacterial strain and its formulation for preventiong sting type trophi insect
CN102154127B (en) Genetically modified biocontrol fungus with high intestinal-toxin insecticidal activity and structuring method and application thereof
EP0547898B1 (en) Microbial process for the production of trans-4-hydroxy-L-proline
US5212078A (en) Process for producing a lactone
JP3498925B2 (en) Gliotoxin production by Gliocladium virens
CN115820438B (en) High-yield protein strain and application thereof
Hofsten et al. Submerged cultivation of a thermotolerant basidiomycete on cereal flours and other substrates
CA2025678C (en) Natural delta-lactones and process of the production thereof
DE2915108A1 (en) EPOXYDATION OF LOW ALPHA -OLEFINS
JPH0449396B2 (en)
Reddy et al. Evaluation of locally available substrates for conidial biomass production of Beauveria bassiana MCC0044 employing Solid Substrate Fermentation
Grajek Sporogenesis of the entomopathogenic fungus Verticillium lecanii in solid-state cultures
US5155029A (en) Process for producing a cyclic ether
Córdova et al. Identification of Mexican thermophilic and thermotolerant fungal isolates
Antropova et al. Report of Quambalaria cyanescens in association with the birch (Betula pendula)
JP2006151898A (en) Composition and method for biologically preventing infection with calonectria crotalariae
CN1415736A (en) Solidoid ferment method utilizing low value old rice as main material for fungal spore powder of hyphomycetales

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20111205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 11

EXPY Cancellation because of completion of term