JP3498806B2 - New restriction enzyme - Google Patents

New restriction enzyme

Info

Publication number
JP3498806B2
JP3498806B2 JP32345993A JP32345993A JP3498806B2 JP 3498806 B2 JP3498806 B2 JP 3498806B2 JP 32345993 A JP32345993 A JP 32345993A JP 32345993 A JP32345993 A JP 32345993A JP 3498806 B2 JP3498806 B2 JP 3498806B2
Authority
JP
Japan
Prior art keywords
restriction enzyme
dna
strain
enzyme
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32345993A
Other languages
Japanese (ja)
Other versions
JPH07143874A (en
Inventor
佳子 野村
房夫 君塚
良純 石野
郁之進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Bio Inc
Original Assignee
Takara Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc filed Critical Takara Bio Inc
Priority to JP32345993A priority Critical patent/JP3498806B2/en
Priority to EP94308348A priority patent/EP0655496A3/en
Priority to US08/348,961 priority patent/US5496717A/en
Publication of JPH07143874A publication Critical patent/JPH07143874A/en
Application granted granted Critical
Publication of JP3498806B2 publication Critical patent/JP3498806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二重鎖デオキシリボ核
酸(DNA)中の特定の7塩基配列を特異的に認識、切
断するII型制限酵素に関する。
TECHNICAL FIELD The present invention relates to a type II restriction enzyme that specifically recognizes and cleaves a specific 7-base sequence in a double-stranded deoxyribonucleic acid (DNA).

【0002】[0002]

【従来の技術】制限酵素とはある特定のDNA塩基配列
を特異的に認識し、切断することのできるエンド型ヌク
レアーゼであり、数多くの制限酵素が見出されている。
分子遺伝学や、生化学の発展により、DNAが遺伝をつ
かさどる本体であることが明らかになって以来、制限酵
素は遺伝病解明のための利用や、遺伝子操作での利用等
現在幅広く用いられている有用な酵素である。このうち
特にDNA塩基配列を特異的に認識し、特異的にDNA
を切断するII型制限酵素が重要かつ必要とされて用いら
れてきている。現在までにII型制限酵素は300種類以
上単離されているが、これらのII型制限酵素が認識でき
ないDNA塩基配列の組合せはまだまだ存在する。すな
わち、実験者が目的とする位置でDNAを切断する機会
を更に増やすためには、新規のII型制限酵素が継続的に
必要とされている。更には、近年の各種ゲノム解析プロ
ジェクト等のように巨大なDNAを解析する場合、DN
Aの切断部位の出現頻度があまり多くないことが望まし
く、そのためには6塩基より長いDNA塩基配列を特異
的に認識し、特異的に切断するII型制限酵素(レアカッ
ター)が要望されている。
2. Description of the Related Art A restriction enzyme is an endo-type nuclease capable of specifically recognizing and cleaving a specific DNA base sequence, and many restriction enzymes have been found.
Since the development of molecular genetics and biochemistry has revealed that DNA is the main body that controls heredity, restriction enzymes are now widely used for elucidating genetic diseases and for genetic engineering. It is a useful enzyme. Of these, the DNA base sequence is specifically recognized and the DNA is specifically recognized.
Type II restriction enzymes, which cleave, are important and needed. To date, more than 300 types II restriction enzymes have been isolated, but there are still combinations of DNA base sequences that cannot be recognized by these type II restriction enzymes. That is, in order to further increase the chances of the experimenter to cleave DNA at a desired position, a new type II restriction enzyme is continuously required. Furthermore, when analyzing a huge DNA such as various genome analysis projects in recent years, DN
It is desirable that the frequency of the cleavage site of A is not so high. For that purpose, a type II restriction enzyme (rare cutter) that specifically recognizes a DNA base sequence longer than 6 bases and specifically cuts is required. .

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、新規
のDNA塩基配列を特異的に認識し、かつ特異的に切断
する能力を有し、巨大なDNAの解析等の遺伝子工学の
分野で有用な新規II型制限酵素を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to have a capability of specifically recognizing and cleaving a novel DNA base sequence, and in the field of genetic engineering such as analysis of huge DNA. It is to provide a useful novel type II restriction enzyme.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は制限酵素に関する発明であって、二重鎖デオキシ
リボ核酸中の下記式(化1):
Means for Solving the Problems The present invention will be summarized. The present invention relates to a restriction enzyme, which is represented by the following formula (Formula 1) in a double-stranded deoxyribonucleic acid:

【0005】[0005]

【化1】 [Chemical 1]

【0006】(式中、Aはアデニン、Gはグアニン、T
はチミン、Cはシトシンを示す)で表される塩基配列を
特異的に認識し、かつこれを矢印の位置で特異的に切断
する能力、及び下記の理化学的性質を有することを特徴
とする、ストレプトミセス エスピー AH1825株
(FERM BP−4836)又はその変異株より得る
ことができる制限酵素に関する。(イ)至適温度:約37℃ (ロ)至適pH:pH7.0〜9.0 また、本発明の第2の発明は遺伝子工学用試薬に関し、
第1の発明の制限酵素を含有することを特徴とする。更
に、本発明の第3の発明は、第1の発明の制限酵素の製
造方法に関し、ストレプトミセス エスピー AH18
25株(FERM BP−4836)又はその変異株
培養し、培養物より該制限酵素を採取することを特徴と
する。そして、本発明の第4の発明は、第1の発明の制
限酵素生産菌に関し、第1の発明の制限酵素を生産する
能力を有することを特徴とするストレプトミセス エス
ピー AH1825株(FERM BP−4836)又
はその変異株に関する。
(Where A is adenine, G is guanine, T
Is a thymine and C represents cytosine), and has the ability to specifically recognize the base sequence represented by thymine and C to specifically cleave it at the position of the arrow , and the following physicochemical properties : Streptomyces sp. AH1825 strain
(FERM BP-4836) or its mutant strain
It relates to a restriction enzyme that can . (A) Optimum temperature: about 37 ° C. (b) Optimum pH: pH 7.0 to 9.0 The second invention of the present invention relates to a genetic engineering reagent,
It is characterized by containing the restriction enzyme of the first invention. Further, a third invention of the present invention relates to a method for producing the restriction enzyme of the first invention, which is Streptomyces sp. AH18.
25 strain (FERM BP-4836) or its mutant strain is cultured, and the restriction enzyme is collected from the culture. The fourth invention of the present invention relates to the restriction enzyme-producing bacterium of the first invention, which produces the restriction enzyme of the first invention.
Streptomyces S., characterized by have the ability
P AH1825 strain (FERM BP-4836)
Relates to the mutant strain.

【0007】本発明のII型制限酵素としては上記塩基配
列を特異的に認識し、かつ切断する能力を有する酵素で
あれば良く、これらの酵素は上記二重鎖DNAの7塩基
を認識する制限酵素生産能を有する菌株、あるいは、こ
れらの菌株の変異株、あるいはこれら菌株より、通常の
遺伝子操作手法を用いて、本酵素生産能をコードする遺
伝子を単離し、他の生物に導入した組換体のいずれによ
っても生産することができる。
The type II restriction enzyme of the present invention may be any enzyme capable of specifically recognizing and cleaving the above-mentioned base sequence, and these enzymes can recognize the seven bases of the above double-stranded DNA. A recombinant strain having enzyme-producing ability, or a mutant strain of these strains, or a gene encoding the present enzyme-producing ability is isolated from these strains by using a normal gene manipulation method and introduced into another organism. Can be produced by any of the following.

【0008】上記7塩基認識制限酵素生産能を有する菌
株の具体例としては、例えば、ストレプトミセス エス
ピーAH1825( Streptomyces sp. AH1825 )が挙げ
られる。本菌は、土壌中より本発明者らが新たに検索し
て得た菌株で、その菌学的性質は下記表1に示すとおり
である。
Specific examples of the above-mentioned strain having the ability to produce a 7-base recognition restriction enzyme include Streptomyces sp. AH1825. The present bacterium is a strain newly obtained by the present inventors from soil, and its mycological properties are shown in Table 1 below.

【0009】[0009]

【表1】 表 1 ─────────────────────────────────── 細胞壁タイプ I 型 LL−ジアミノピメリン酸 + meso−ジアミノピメリン酸 − ジアミノ酪酸 − グリシン + アスパラギン酸 − オルニチン − リジン − アラビノース*1 − ガラクトース*1 + キノン系 MK−9(H8 )、MK−9(H6 ) 気生菌糸の存在*2 + 胞子連鎖の有無*2 + ───────────────────────────────────[Table 1] Table 1 ─────────────────────────────────── Cell wall type I type LL-diaminopimelic acid + meso- diaminopimelic acid - diaminobutyric acid - glycine + aspartic acid - ornithine - lysine - arabinose * 1 - galactose * 1 + quinone MK-9 (H 8), MK-9 (H 6) the presence of aerial hyphae * 2 + Presence or absence of spore linkage * 2 + ───────────────────────────────────

【0010】*1 全菌体の硫酸加水分解物を用いて推
定。 *2 顕微鏡観察による。
* 1 Estimated using sulfuric acid hydrolyzate of all bacterial cells. * 2 Based on microscopic observation.

【0011】細胞壁成分の分析は、下記3つの刊行物、
日本放線菌研究会編:“放線菌の同定実験法”、(第1
版)(1985)日本放線菌研究会事務局発行、駒形和
男編:“微生物の化学分類実験法”、(初版)(198
2)学会出版センター発行、及び藪内英子ほか共著:
“新しい分類学に伴走する細菌同定法”、(第1版)
(1987)菜根出版に従い行い、本菌株の細胞壁タイ
プはI型である。キノン系分析では、マルチプレニール
側鎖の飽和水素数が6又は8でイソプレノイド側鎖のイ
ソプレンユニットの数が9であるメナキノンを有してい
る。更に形態学的観察により、気生菌糸の存在と、胞子
連鎖が観察され、以上の結果より、本菌株はストレプト
ミセス属に属する放線菌と同定される。
The analysis of cell wall components is carried out by the following three publications,
Japan Society for Actinomycetes Study: “Experimental method for identifying actinomycetes”, (1st
(1985) Published by Japan Actinomycetes Society Secretariat, edited by Kazuo Komagata: "Methods for chemical classification of microorganisms", (first edition) (198)
2) Published by Academic Publishing Center and co-authored by Eiko Yabuuchi and others:
"Bacterial identification method that accompanies new taxonomy", (1st edition)
(1987) Nane Shuppan, and the cell wall type of this strain is type I. The quinone-based analysis has menaquinone having 6 or 8 saturated hydrogen atoms in the multiprenyl side chain and 9 isoprene units in the isoprenoid side chain. Further, the presence of aerial hyphae and spore linkage were observed by morphological observation. From the above results, this strain is identified as an actinomycete belonging to the genus Streptomyces.

【0012】本菌株はStreptomyces s
p.AH1825と命名、表示され、工業技術院生命工
学工業技術研究所にFERM BP−4836として寄
託されている。
This strain is Streptomyces s
p. It is named and displayed as AH1825, and has been deposited as FERM BP-4836 at the Institute of Biotechnology, Institute of Biotechnology, AIST.

【0013】ストレプトミセス エスピー AH182
5株の生産する7塩基認識制限酵素は、前記の酵素作用
を有し、Sse 1825Iと命名されている。
Streptomyces sp. AH182
The 7-base recognition restriction enzyme produced by 5 strains has the above-mentioned enzymatic action and is named Sse 1825I.

【0014】本発明による制限酵素Sse 1825I
の製造方法について更に詳細に説明する。まず、培養の
際、培地に加える栄養源は使用する菌株が利用し、Ss
e 1825Iを生産するものであればよく、炭素源と
しては、例えばグルコース、マルトース、グリセリンな
どが利用でき、窒素源としては、酵母エキス、ペプト
ン、コーンスチープリカー、肉エキスなどが適当であ
る。そのほかにリン酸塩、カリウム塩、マグネシウム塩
などの無機質及び金属塩類を加えても良い。Sse 1
825Iの生産量は、培養条件により変動するが、一般
に培養温度20〜35℃、培地のpH6〜8が良く、1
〜3日間の通気かくはん培養で制限酵素Sse 182
5Iの生産は最高に達する。培養条件は使用する菌株、
培地組成などに応じ、生産量が最大になるよう設定する
のは当然のことである。本発明の菌株の培養によって生
成された制限酵素Sse 1825Iは主に菌体内に存
在する。培養液からの菌体の分離は、例えば遠心分離に
よって行うことができる。本酵素の抽出、精製は、一般
の制限酵素精製法に従った方法で実施しうる。例えば菌
体を緩衝液に懸濁後、超音波処理により破砕し、細胞内
酵素の抽出を行う。次に、細胞残渣を超遠心分離により
除去後、抽出液を硫酸アンモニウムで塩析する。沈殿物
を、緩衝液A(10mM リン酸カリウム、pH7.
5、10mM2−メルカプトエタノール、5%グリセリ
ン)に溶解し、同緩衝液にて透析後、イオン交換クロマ
ト方法、分子ふるいクロマト方法、及びアフィニティー
クロマト方法等による精製を行い、本制限酵素を得るこ
とができる。
Restriction enzyme Sse 1825I according to the invention
The manufacturing method will be described in more detail. First, when culturing, the nutrient source added to the medium is used by the strain to be used, and Ss
As long as it produces e 1825I, glucose, maltose, glycerin and the like can be used as the carbon source, and yeast extract, peptone, corn steep liquor, meat extract and the like are suitable as the nitrogen source. In addition, inorganic salts such as phosphates, potassium salts, magnesium salts and metal salts may be added. Sse 1
Although the production amount of 825I varies depending on the culture conditions, generally, the culture temperature is 20 to 35 ° C., and the pH of the medium is 6 to 8.
Restriction enzyme Sse 182 in aerated stirred culture for ~ 3 days
The production of 5I reaches the maximum. The culture conditions are the strain used,
It is natural to set the maximum production amount according to the medium composition and the like. The restriction enzyme Sse 1825I produced by culturing the strain of the present invention is mainly present in the cells. The cells can be separated from the culture solution by centrifugation, for example. This enzyme can be extracted and purified by a method according to a general restriction enzyme purification method. For example, after suspending the bacterial cells in a buffer solution, the cells are disrupted by ultrasonication to extract the intracellular enzyme. Next, after removing cell debris by ultracentrifugation, the extract is salted out with ammonium sulfate. The precipitate was added to buffer A (10 mM potassium phosphate, pH 7.
5, 10 mM 2-mercaptoethanol, 5% glycerin), dialyzed against the same buffer, and purified by ion exchange chromatography, molecular sieve chromatography, affinity chromatography, etc. to obtain the restriction enzyme. it can.

【0015】制限酵素Sse 1825Iの活性測定法
を以下に示す。下記表2に示す組成の反応液48μlを
あらかじめ37℃で予熱した後、本酵素2μlを加え全
量50μlにし酵素反応を進める。10分後に酵素反応
停止液(1%SDS、50%グリセリン、0.02%ブ
ロムフェノールブルー)を5μl添加して反応を停止さ
せる。
The method for measuring the activity of the restriction enzyme Sse 1825I is shown below. 48 μl of a reaction solution having the composition shown in Table 2 below is preheated at 37 ° C. in advance, and then 2 μl of the present enzyme is added to bring the total amount to 50 μl, and the enzyme reaction is allowed to proceed. After 10 minutes, 5 μl of an enzyme reaction stop solution (1% SDS, 50% glycerin, 0.02% bromphenol blue) was added to stop the reaction.

【0016】[0016]

【表2】 表 2 ─────────────────────────────────── 10mM トリス−HCl pH 8.0 10mM MgCl2 7mM 2−メルカプトエタノール 100mM KCl 1.0μg λ−DNA ───────────────────────────────────[Table 2] Table 2 ─────────────────────────────────── 10 mM Tris-HCl pH 8.0 10 mM MgCl 2 7 mM 2-mercaptoethanol 100 mM KCl 1.0 μg λ-DNA ────────────────────────────────────

【0017】反応液を0.7%アガローススラブゲルに
重層し、10V/cmの定電圧下で約1時間から2時
間、電気泳動を行う。電気泳動用緩衝液は90mM ト
リス−ほう酸緩衝液(pH8.3)2.5mM EDT
Aを用いる。ゲルに前もって0.5μg/mlのエチジ
ウムブロマイドを含ませておくことにより、UV照射で
DNAのバンドが検出可能である。DNAフラグメント
のバンドの数と量が変化しなくなった時を終点とする。
活性の定義は37℃で1時間に1μgのλ−DNAを完
全に切断する酵素活性を1単位とする。
The reaction solution is layered on a 0.7% agarose slab gel and electrophoresed under a constant voltage of 10 V / cm for about 1 to 2 hours. Electrophoresis buffer is 90 mM Tris-borate buffer (pH 8.3) 2.5 mM EDT
A is used. By including 0.5 μg / ml of ethidium bromide in the gel in advance, a DNA band can be detected by UV irradiation. The end point is when the number and amount of bands of the DNA fragment do not change.
The activity is defined as 1 unit of enzyme activity that completely cleaves 1 μg of λ-DNA at 37 ° C. for 1 hour.

【0018】制限酵素Sse 1825Iは、以下のよ
うな理化学的性質を持っている。
The restriction enzyme Sse 1825I has the following physicochemical properties.

【0019】(1)作用及び基質特異性 本酵素は二本鎖DNA配列中の式(化1)で表される塩
基配列を認識し、かつ矢印の位置で切断する酵素であ
る。本発明の制限酵素Sse 1825Iの認識部位の
決定は以下のように行った。制限酵素Sse 1825
Iは、λ−DNAを1カ所、AD−2DNAを8カ所切
断した。しかし、pUC18DNA、M13mp18D
NA、SV40DNA、Col EI DNA、pBR
322DNA、φX174DNAは切断しなかった。こ
の結果、及び得られたDNA断片の鎖長を検索したとこ
ろ、この酵素は、DNA配列中の下記式(化2):
(1) Action and Substrate Specificity The present enzyme is an enzyme which recognizes the base sequence represented by the formula (Formula 1) in the double-stranded DNA sequence and cleaves at the position of the arrow. The recognition site of the restriction enzyme Sse 1825I of the present invention was determined as follows. Restriction enzyme Sse 1825
For I, λ-DNA was cut at 1 site and AD-2 DNA was cut at 8 sites. However, pUC18DNA, M13mp18D
NA, SV40 DNA, Col EI DNA, pBR
The 322 DNA and φX174 DNA were not cleaved. As a result of this, and when the chain length of the obtained DNA fragment was searched, this enzyme was found to have the following formula (Formula 2) in the DNA sequence:

【0020】[0020]

【化2】 [Chemical 2]

【0021】を認識していることが示唆された。この7
塩基配列には、内部に、5塩基認識制限酵素AvaII
〔式(化3)〕:
It was suggested that they were recognizing This 7
The base sequence contains a 5-base recognition restriction enzyme AvaII inside.
[Formula (Formula 3)]:

【0022】[0022]

【化3】 [Chemical 3]

【0023】を含んでいることにより、λ−DNA、A
D−2DNAそれぞれを、AvaIIで切断後、更にSs
e 1825Iで切断を行ったが、得られるDNA断片
のパターンに全く変化がなく、制限酵素Sse 182
5Iは、式(化2)を認識していると結論された。
The inclusion of λ-DNA, A
Cleavage of each D-2 DNA with AvaII followed by Ss
Digested with e 1825I showed no change in the pattern of the obtained DNA fragment, and the restriction enzyme Sse 182
It was concluded that 5I recognizes formula (Formula 2).

【0024】制限酵素Sse 1825Iの切断部位の
決定のため、該酵素の認識配列を有するデオキシオリゴ
ヌクレオチド
Deoxyoligonucleotide having a recognition sequence for the restriction enzyme Sse 1825I for determining the cleavage site

【0025】[0025]

【化4】5′−AATTCCTCGAGAAGGGAC
CCAACCATGGA−3′
Embedded image 5′-AATTCCTCGAGAAGGGAC
CCAACCATGGA-3 '

【0026】[0026]

【化5】5′−GGAGCTCTTCCCTGGGTT
GGTACCTTCGA−3′
Embedded image 5′-GGAGCTCTTCCCTGGGGTT
GGTACCTTCGA-3 '

【0027】をDNA合成機で合成し、両者をアニール
させた後、pUC118及びpUC119に挿入して使
用した。両切断決定用プラミスドから、通常の方法を用
いて一本鎖DNAをそれぞれ調製した。マルチクローニ
ングサイトの隣接部位に結合するプライマー:
Was synthesized with a DNA synthesizer, annealed both, and then inserted into pUC118 and pUC119 for use. Single-stranded DNAs were prepared from both cleavage-determining plasmids by a conventional method. Primers that bind to adjacent sites of the multiple cloning site:

【0028】[0028]

【化6】 5′−GTTTTCCCAGTCACGAC−3′[Chemical 6] 5'-GTTTTCCCAGTCACGAC-3 '

【0029】の5′末端を蛍光標識したものを調製し
た。上記プライマーを、両切断決定用プラスミドより調
製した一本鎖DNAとそれぞれアニールさせた後、バチ
ルス カルドテナックス(Bacillus caldotenax)DNA
ポリメラーゼ(BcaBEST DNA polymerase、宝酒造社製)
により、二本鎖を合成し、その二本鎖DNAを本酵素に
より切断し、変性ポリアクリルアミドゲル電気泳動によ
り、切断断片の鎖長を測定する方法を用い行った。この
時、生成物として得られた鎖長は下記式(化7):
Fluorescently labeled 5'-end was prepared. The above-mentioned primers were annealed with single-stranded DNA prepared from both cleavage-determining plasmids, and then Bacillus caldotenax DNA was obtained.
Polymerase (BcaBEST DNA polymerase, Takara Shuzo)
Was used to synthesize a double-stranded DNA, the double-stranded DNA was cleaved with the present enzyme, and the chain length of the cleaved fragment was measured by denaturing polyacrylamide gel electrophoresis. At this time, the chain length obtained as a product is represented by the following formula (Formula 7):

【0030】[0030]

【化7】 [Chemical 7]

【0031】の矢印の所で切断されたバンドとして検出
され、またT4DNAポリメラーゼ(T4DNA Poly
merase、宝酒造社製) によるブランティング処理により
3bp長いバンドとして検出されたことより、本酵素
は、式(化1)で表される塩基配列を認識し、矢印の位
置で切断していると結論された。
Detected as a band cleaved at the arrow mark of T4 DNA polymerase (T4 DNA Poly
merase, manufactured by Takara Shuzo Co., Ltd.), it was detected as a 3 bp long band by blunting treatment, and it was concluded that this enzyme recognizes the base sequence represented by the formula (Formula 1) and cleaves at the position of the arrow. Was done.

【0032】(2)至適酵素活性条件 I) 至適温度 Sse 1825Iの至適温度は約37℃であった。 II) 至適pH Sse 1825Iの至適pHは、pH7.0〜9.0
の範囲にある。 III) 塩濃度 Sse 1825Iの至適塩濃度は、KClの場合、0
〜150mMであった。 IV) MgCl2 濃度 Sse 1825IはMgCl2 濃度が5mM〜20m
Mの存在下で酵素反応が活性化された。
(2) Optimal enzyme activity condition I) Optimal temperature The optimal temperature of Sse 1825I was about 37 ° C. II) Optimum pH Sse 1825I has an optimum pH of 7.0 to 9.0.
Is in the range. III) Salt concentration The optimum salt concentration of Sse 1825I is 0 in the case of KCl.
Was ~ 150 mM. IV) MgCl 2 concentration Sse 1825I has a MgCl 2 concentration of 5 mM to 20 m.
The enzymatic reaction was activated in the presence of M.

【0033】[0033]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれら実施例に限定されるものではな
い。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited to these examples.

【0034】実施例1 50ml容の三角フラスコに下記表3に示す培地100
mlを仕込み常法により培地を滅菌した。上記と同じ培
地で30℃で48時間振とう培養したストレプトミセス
エスピーAH1825(FERM BP−4836)
の培養液100mlから冷却遠心分離により3.5gの
菌体を得た。
Example 1 A medium 100 shown in Table 3 below was placed in a 50 ml Erlenmeyer flask.
The medium was charged and the medium was sterilized by a conventional method. Streptomyces sp. AH1825 (FERM BP-4836) cultured by shaking in the same medium as above at 30 ° C for 48 hours.
From 100 ml of the culture broth, 3.5 g of cells were obtained by cooling and centrifugation.

【0035】[0035]

【表3】 表 3 グルコース 10g 酵母エキス 10g ポリペプトン 10g 食 塩 5g 脱イオン水 1リットル pH 7.2[Table 3]                           Table 3       Glucose 10g       Yeast extract 10g       Polypeptone 10g       5g of salt       1 liter of deionized water                                           pH 7.2

【0036】得られた3.5gの菌体を10mlの緩衝
液A(20mM トリス−HCl、pH7.5、10m
M 2−メルカプトエタノール)に懸濁し、超音波破砕
機を用いて破砕後、100000×Gで1時間遠心分離
を行い、残渣を除去、抽出液12mlを得た。得られた
上清に硫酸アンモニウムを80%飽和になるように加
え、沈殿物を遠心分離にて集め、緩衝液Aに溶解後、同
緩衝液で一晩透析を行った。次に透析内液をあらかじめ
緩衝液Aで平衡化させておいたホスホセルロースP11
(ワットマン社製)5mlのカラムに吸着させ、緩衝液
Aで洗浄後、0〜1.0M KClの直線濃度勾配を持
つ緩衝液Aで溶出させた。得られた活性画分を合せ緩衝
液Aで4時間透析後、透析内液をあらかじめ緩衝液Aで
平衡化したヘパリン−セファロース(ファルマシア社
製)2mlのカラムに吸着させ、緩衝液Aで十分洗浄
後、0〜1.0MのKClの直線濃度勾配を持つ緩衝液
Aで溶出し、本酵素の標品を得た。この酵素標品には非
特異的なDNA分解酵素及びホスファターゼは混入して
いなかった。以上述べた方法により3.5gの湿菌体よ
り600単位の活性が得られた。
The obtained 3.5 g of cells was added to 10 ml of buffer A (20 mM Tris-HCl, pH 7.5, 10 m).
M2-mercaptoethanol), and the mixture was crushed using an ultrasonic crusher and then centrifuged at 100,000 × G for 1 hour to remove the residue and obtain 12 ml of an extract. Ammonium sulfate was added to the resulting supernatant to 80% saturation, the precipitate was collected by centrifugation, dissolved in buffer A, and dialyzed overnight with the same buffer. Next, the dialysis solution was equilibrated with buffer solution A in advance, and phosphocellulose P11
It was adsorbed on a 5 ml column (manufactured by Whatman), washed with buffer solution A, and then eluted with buffer solution A having a linear concentration gradient of 0 to 1.0 M KCl. The obtained active fractions were combined and dialyzed with buffer A for 4 hours, and the dialyzed solution was adsorbed on a column of 2 ml of heparin-Sepharose (Pharmacia) equilibrated with buffer A in advance and washed thoroughly with buffer A. Then, it was eluted with buffer A having a linear concentration gradient of KCl of 0 to 1.0 M to obtain a preparation of this enzyme. This enzyme preparation was not contaminated with nonspecific DNA degrading enzyme and phosphatase. By the method described above, 600 units of activity was obtained from 3.5 g of wet cells.

【0037】[0037]

【発明の効果】以上詳細に説明したとおり、本発明によ
り二重鎖DNAの7塩基配列を認識し、切断する制限酵
素が提供された。本発明の酵素は遺伝子工学の分野にお
いて、長鎖DNAの解析等に非常に有用である。
INDUSTRIAL APPLICABILITY As described in detail above, the present invention provides a restriction enzyme that recognizes and cleaves the 7-base sequence of double-stranded DNA. INDUSTRIAL APPLICABILITY The enzyme of the present invention is very useful in the field of genetic engineering for analysis of long chain DNA and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:465) (72)発明者 加藤 郁之進 滋賀県大津市瀬田3丁目4番1号 寳酒 造株式会社中央研究所内 (56)参考文献 Gene, 1991, Vol.109, No.1, pages 121−3 (58)調査した分野(Int.Cl.7,DB名) C12N 9/14 - 9/46 JSTPlus(JOIS) BIOSIS/WPI(DIALOG) CA(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C12R 1: 465) (72) Inventor Ikuno Kato 3-4-1 Seta 3-chome, Otsu City, Shiga Prefecture Central Research Institute In-house (56) References Gene, 1991, Vol. 109, No. 1, pages 121-3 (58) Fields investigated (Int.Cl. 7 , DB name) C12N 9/14-9/46 JSTPlus (JOIS) BIOSIS / WPI (DIALOG) CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二重鎖デオキシリボ核酸中の下記式(化
1): 【化1】 (式中、Aはアデニン、Gはグアニン、Tはチミン、C
はシトシンを示す)で表される塩基配列を特異的に認識
し、かつこれを矢印の位置で特異的に切断する能力、及
び下記の理化学的性質を有することを特徴とする、スト
レプトミセス エスピー AH1825株(FERM
BP−4836)又はその変異株より得ることができる
制限酵素。(イ)至適温度:約37℃ (ロ)至適pH:pH7.0〜9.0
1. The following formula (Formula 1) in the double-stranded deoxyribonucleic acid: (In the formula, A is adenine, G is guanine, T is thymine, and C is
Represents the cytosine) , and the ability to specifically recognize the base sequence represented by
And having the following physicochemical properties fine following list
Leptomyces sp. AH1825 strain (FERM
A restriction enzyme obtainable from BP-4836) or a mutant strain thereof . (A) Optimum temperature: about 37 ° C. (b) Optimum pH: pH 7.0 to 9.0
【請求項2】 請求項1に記載の制限酵素を含有してい
ることを特徴とする遺伝子工学用試薬。
2. A reagent for genetic engineering, comprising the restriction enzyme according to claim 1.
【請求項3】 ストレプトミセス エスピー AH18
25株(FERM BP−4836)又はその変異株
培養し、培養物より請求項1に記載の制限酵素を採取す
ることを特徴とする制限酵素の製造方法。
3. Streptomyces sp. AH18
A method for producing a restriction enzyme, which comprises culturing 25 strains (FERM BP-4836) or a mutant strain thereof, and collecting the restriction enzyme according to claim 1 from the culture.
【請求項4】 請求項1に記載の制限酵素を生産する能
力を有することを特徴とするストレプトミセス エスピ
ー AH1825株(FERM BP−4836)又は
その変異株。
4. The ability to produce the restriction enzyme according to claim 1.
Streptomyces espi characterized by having power
-AH1825 strain (FERM BP-4836) or
That mutant strain.
JP32345993A 1993-10-01 1993-11-30 New restriction enzyme Expired - Fee Related JP3498806B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32345993A JP3498806B2 (en) 1993-10-01 1993-11-30 New restriction enzyme
EP94308348A EP0655496A3 (en) 1993-11-30 1994-11-11 Restriction endonuclease Sse 1825I.
US08/348,961 US5496717A (en) 1993-11-30 1994-11-28 Restriction endonuclease

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-267793 1993-10-01
JP26779393 1993-10-01
JP32345993A JP3498806B2 (en) 1993-10-01 1993-11-30 New restriction enzyme

Publications (2)

Publication Number Publication Date
JPH07143874A JPH07143874A (en) 1995-06-06
JP3498806B2 true JP3498806B2 (en) 2004-02-23

Family

ID=26548036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32345993A Expired - Fee Related JP3498806B2 (en) 1993-10-01 1993-11-30 New restriction enzyme

Country Status (1)

Country Link
JP (1) JP3498806B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Gene, 1991, Vol.109, No.1, pages 121−3

Also Published As

Publication number Publication date
JPH07143874A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JP3498806B2 (en) New restriction enzyme
JP3017019B2 (en) New restriction enzyme
EP0464990B1 (en) New restriction enzyme
EP0060465B1 (en) Novel endo-deoxyribonuclease and process for the production thereof
US4886756A (en) Novel restriction endonuclease SplI and process for the production of the same
US5496717A (en) Restriction endonuclease
US6238904B1 (en) Type II restriction endonuclease, HpyCH4III, obtainable from Helicobacter pylori CH4 and a process for producing the same
US4833082A (en) New restriction enzyme and process for producing the same
JP3092817B2 (en) Method for producing restriction enzyme
US4588689A (en) Restriction endonuclease XcyI
US5470732A (en) Restriction enzyme from Brevibacterium linens
US6238901B1 (en) Type II restriction endonuclease, HPY 188 III, obtainable from Helicobacter pylori J188 and a process for producing the same
JPH10127279A (en) Restriction enzyme
JPH0667318B2 (en) Class II-restriction enzymes, methods for making them and methods for recognizing and cleaving complementary double-stranded DNA sequences
US6194188B1 (en) Type II restriction endonuclease, HpyCH4IV, obtainable from Helicobacter pylori CH4 and a process for producing the same
US4724209A (en) Process for producing restriction enzyme
GB2183657A (en) New restriction enzyme and process for producing the same
JPS6357038B2 (en)
JPH04258290A (en) Ii type restriction endonuclease, method for obtaining same and method for recognizing and severing sequence of double-strand complementary dna
JPS6262152B2 (en)
US5441881A (en) NSP7524V restriction-modification genes
KR0147778B1 (en) Restriction enzyme
Ishino et al. Sse 8647l, a new type II restriction endonuclease from a Streptomyces species cutting at 5'-AG/GWCCT-3'
Yarrow Isolation and characterization of site-specific endonucleases from oral bacteria
JPH074260B2 (en) Novel multicopy plasmid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees