JP3496254B2 - Method and apparatus for vapor phase synthesis of diamond - Google Patents

Method and apparatus for vapor phase synthesis of diamond

Info

Publication number
JP3496254B2
JP3496254B2 JP28748993A JP28748993A JP3496254B2 JP 3496254 B2 JP3496254 B2 JP 3496254B2 JP 28748993 A JP28748993 A JP 28748993A JP 28748993 A JP28748993 A JP 28748993A JP 3496254 B2 JP3496254 B2 JP 3496254B2
Authority
JP
Japan
Prior art keywords
diamond
base material
gas
gas supply
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28748993A
Other languages
Japanese (ja)
Other versions
JPH07118092A (en
Inventor
進啓 太田
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28748993A priority Critical patent/JP3496254B2/en
Publication of JPH07118092A publication Critical patent/JPH07118092A/en
Application granted granted Critical
Publication of JP3496254B2 publication Critical patent/JP3496254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基材表面上に膜状のダ
イヤモンドを気相合成する方法及びその合成装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vapor-phase synthesizing film-like diamond on the surface of a substrate and a synthesizing apparatus therefor.

【0002】[0002]

【従来の技術】ダイヤモンドの気相合成方法には、熱フ
ィラメントCVD法やプラズマCVD法等のCVD法
(化学気相成長法)がある。その代表的なものは熱フィ
ラメントCVD法であり、松本らによる研究報告(Jp
n. J. Apnl. Phys.,21, L183 (198
2) 参照)以来活発な研究開発が進められ、種々の手法
が提案されている。
2. Description of the Related Art As a vapor phase synthesis method of diamond, there is a CVD method (chemical vapor deposition method) such as a hot filament CVD method and a plasma CVD method. A typical example of this is the hot filament CVD method, which is reported by Matsumoto et al.
n. J. Apnl. Phys., 21, L183 (198)
Since 2) (see 2), active research and development have been promoted and various methods have been proposed.

【0003】熱フィラメントCVD法では、基材表面近
くに配置したフィラメントを高温に加熱してメタン等の
炭素原子を含むガスと水素ガスとを加熱励起し、この加
熱励起により生成した励起状態のメタン等からダイヤモ
ンドを析出させる。この時ダイヤモンドと同時に黒鉛状
炭素が生成するが、この黒鉛状炭素は水素ガスの加熱励
起により生成した原子状水素によって除去され、基材表
面には主にダイヤモンドのみが成長する。かかる熱フィ
ラメントCVD法は、その装置構成が極めて簡単であ
り、生成するダイヤモンド膜の大面積化が比較的容易で
あるという利点を有している。
In the hot filament CVD method, a filament arranged near the surface of the substrate is heated to a high temperature to heat and excite a gas containing carbon atoms such as methane and hydrogen gas, and the excited state of methane produced by this heat excitation. Etc. to deposit diamond. At this time, graphite-like carbon is produced at the same time as the diamond, but this graphite-like carbon is removed by the atomic hydrogen produced by the heat excitation of hydrogen gas, and only diamond mainly grows on the surface of the base material. The hot filament CVD method has the advantages that the apparatus configuration is extremely simple and that the area of the diamond film to be produced can be increased relatively easily.

【0004】かかる熱フィラメントCVD法において、
炭素原子を含むガス及び水素ガスを加熱励起する加熱励
起部材として用いるフィラメントとしては、断面が円形
のタングステン等の線をコイル状に巻いたもの(NEW
DIAMOND, Vol.6, No.1, P9〜15参
照)、断面が円形の線をそのまま直線状に並列して複数
本配列したもの(特開平3−115576号公報参照)
等が知られている。しかし、知る限りでは、フィラメン
ト以外の形状の加熱励起部材については検討されていな
い。
In the hot filament CVD method,
As a filament used as a heating excitation member for heating and exciting a gas containing carbon atoms and hydrogen gas, a filament such as tungsten having a circular cross section is wound into a coil (NEW).
DIAMOND, Vol. 6, No. 1, p. 9 to 15), and a plurality of linearly arranged straight lines having a circular cross section (see JP-A-3-115576).
Etc. are known. However, to the best of our knowledge, no heat-exciting members having shapes other than filaments have been studied.

【0005】又、高速でダイヤモンドの気相合成を行う
ためには、炭素原子を含むガスと水素ガスとの混合ガス
の温度を高温にすること、及び高パワーを投入すること
が一般に必要と考えられている(DIAMOND AN
D RELATED MATERIALS, Vol.1,
P1〜12 (1991) 参照)。
Further, in order to carry out the vapor phase synthesis of diamond at a high speed, it is generally considered necessary to raise the temperature of a mixed gas of a gas containing carbon atoms and hydrogen gas and to input high power. (DIAMOND AN
D RELATED MATERIALS, Vol.1,
P1-12 (1991)).

【0006】従って、熱フィラメントCVD法において
も、ダイヤモンドの成長速度の増加及び高品質化を達成
するためには、フィラメント温度を上げたり、フィラメ
ント径を太くして投入電力を大きくすることが必要と考
えられている(「粉体および粉末冶金」、 第34巻、 第
9号、 395〜401頁:J. Appl. Phys.,7
1, (3) 1485〜1493:APPLID OPTI
CS, Vol.29,No.33, P4993〜4999
参照)。
Therefore, even in the hot filament CVD method, it is necessary to raise the filament temperature or increase the filament diameter to increase the input power in order to increase the growth rate and quality of diamond. Considered ("Powder and Powder Metallurgy", Vol. 34, No. 9, 395-401: J. Appl. Phys., 7).
1, (3) 1485-1493: APPLID OPTI
CS, Vol.29, No.33, P4993-4999
reference).

【0007】[0007]

【発明が解決しようとする課題】このように、従来の熱
フィラメントCVD法において、高品質のダイヤモンド
を高速で成長させるためには、フィラメントの温度を上
げ又フィラメントの径を太くして投入電力を大きくする
必要がある。しかしながら、コストに占める電力費の割
合は少なくないので、投入電力を大きくすることは望ま
しくない。
As described above, in the conventional hot filament CVD method, in order to grow high quality diamond at a high speed, the temperature of the filament is increased and the diameter of the filament is increased to increase the input power. Need to be bigger. However, it is not desirable to increase the input power because the ratio of the power cost to the cost is not small.

【0008】それに加え、投入電力を大きくしてフィラ
メント温度を上げると、成膜用の真空容器内で熱が多量
に発生するので、基材支持台や容器内壁等の冷却方法に
多くの工夫を要することとなる(特開平3−11557
6号公報参照)。又、ダイヤモンドが成長するための適
正な基材温度は800〜1000℃程度と言われている
が、熱フィラメントの温度を高くするほど、基材が非常
に高温の熱フィラメントと高効率冷却体との間に挟まれ
ることになるので、基材が極めて高い熱的歪を受けて亀
裂を生じたり、大きく反ったりする危険がある。
[0008] In addition, since a large amount of heat is generated in the vacuum container for film formation when the applied power is increased and the filament temperature is raised, many measures have been taken in the cooling method of the substrate support base and the inner wall of the container. This is required (Japanese Patent Laid-Open No. 3-11557).
No. 6 publication). It is said that the proper substrate temperature for diamond growth is about 800 to 1000 ° C., but the higher the temperature of the hot filament, the higher the temperature of the hot filament of the substrate and the high efficiency cooling body. Since the base material is sandwiched between the base material and the base material, there is a risk that the base material is subjected to extremely high thermal strain and cracks or warps greatly.

【0009】本発明は、かかる従来の事情に鑑み、気相
合成法により基材表面に高品質のダイヤモンドを、高速
で且つ大面積に、しかも低電力、低コストにて合成する
方法、並びにその装置を提供することを目的とする。
In view of the above conventional circumstances, the present invention is a method for synthesizing high-quality diamond on the surface of a substrate by a vapor phase synthesis method at a high speed, in a large area, at low power, and at low cost. The purpose is to provide a device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するダイヤモンドの気相合成方法は、
炭素原子を含むガスと水素ガスを加熱励起して基材表面
上にダイヤモンドを気相合成する方法において、水素ガ
スのみを加熱した多孔質体からなる発熱励起部材に接触
させた後、これを発熱励起部材と相対して配置され加熱
した基材の表面に供給し、同時に炭素原子を含むガスを
水素ガスとは別経路により前記基材の表面に供給するこ
とを特徴とする。
In order to achieve the above object, the method for vapor phase synthesis of diamond provided by the present invention comprises:
In the method of vapor phase synthesizing diamond on the surface of a substrate by heating and exciting a gas containing carbon atoms and hydrogen gas, after heating the hydrogen gas only, the exothermic excitation member made of a porous body is contacted It is characterized in that the gas is supplied to the surface of the heated substrate which is arranged opposite to the excitation member, and at the same time, the gas containing carbon atoms is supplied to the surface of the substrate through a route different from the hydrogen gas.

【0011】 又、上記方法を実施するための本発明に
よるダイヤモンド気相合成装置は、基材表面に水素ガ
スを供給する第1ガス供給路と炭素原子を含むガスを供
給する第2ガス供給路とを別々に具え、水素ガスを供給
する第1ガス供給路の基材側端部に多孔質体からなる発
熱励起部材を基材表面と相対して設けたことを特徴とす
る。
[0011] Further, a gas phase synthesizing apparatus of the diamond according to the invention for carrying out the above method, the second gas supply for supplying a gas containing a first gas supply passage and the carbon atoms supplying hydrogen gas to the substrate surface Separate passages, and a porous body is formed at the end of the first gas supply passage for supplying hydrogen gas on the substrate side.
The heat-exciting member is provided so as to face the surface of the base material.

【0012】[0012]

【作用】ダイヤモンドの気相合成においては、水素ガス
の加熱励起により生成する原子状水素がダイヤモンドの
生成に大きく関係していることが知られており、又それ
に関連したダイヤモンドの生成メカニズムも発表されて
いる(Appl. Phys. Lett., 56, (23)
P2298〜2300参照)。それによれば、高品質の
ダイヤモンドを高速で成長させるためには、原子状水素
の発生量を多くすることが重要である。
[Function] In the vapor phase synthesis of diamond, it is known that atomic hydrogen generated by heating and exciting hydrogen gas is greatly related to the formation of diamond, and the related mechanism of diamond formation was also announced. (Appl. Phys. Lett., 56, (23)
P2298-2300). According to it, in order to grow high quality diamond at high speed, it is important to increase the generation amount of atomic hydrogen.

【0013】本発明者らは、熱フィラメントCVD法に
おけるダイヤモンドの気相合成反応を検討し、特に原子
状水素の生成メカニズムの解析を行った結果、原子状水
素はほぼ100%フィラメントの表面上での不均一接触
反応により生成することを突き止め、その反応速度は通
常の気相中での反応の数十倍に達することを見いだし
た。更に、この原子状水素の生成反応に対して、水素ガ
スと共に供給される炭素原子を含むガス中に存在するメ
タン等の炭素化合物が触媒毒として作用し、原子状水素
の発生量を低下させることが解った。
The present inventors have studied the vapor phase synthesis reaction of diamond in the hot filament CVD method, and particularly analyzed the mechanism of atomic hydrogen generation. As a result, atomic hydrogen is almost 100% on the surface of the filament. It was found that the reaction was generated by the heterogeneous catalytic reaction of, and the reaction rate was found to reach several tens of times that of the reaction in the usual gas phase. Further, in the reaction of producing atomic hydrogen, carbon compounds such as methane existing in the gas containing carbon atoms supplied together with hydrogen gas act as catalyst poisons to reduce the amount of atomic hydrogen generated. I understand.

【0014】これらの知見に基づき、従来のフィラメン
トの代わりに表面積の大きな発熱励起部材を用いるこ
と、更に水素ガスと炭素原子を含むガスとを別々に基材
表面に導入して、前記発熱励起部材に炭素原子を含むガ
スは接触させず水素ガスのみを接触させることにより、
多量の原子状水素を生成させることができる結果、高品
質のダイヤモンドを高速で成長させ得ることを見いだ
し、本発明に至ったものである。
Based on these findings, the exothermic excitation member having a large surface area is used in place of the conventional filament, and the hydrogen gas and the gas containing carbon atoms are separately introduced to the surface of the base material to produce the exothermic excitation member. By contacting only hydrogen gas without contacting gas containing carbon atom with
As a result of being able to generate a large amount of atomic hydrogen, it was found that high quality diamond can be grown at high speed, and the present invention has been completed.

【0015】本発明においては、従来のフィラメントで
は表面積が小さいので、これに代わる表面積の大きな発
熱励起部材として、複数の連通孔を有する発熱励起部材
を使用する。複数の連通孔を有する発熱励起部材の好ま
しい具体例としては、箔又は網の複数の筒状体をその各
連通孔が基材表面近くに開口するよう並べた構造のもの
や、多孔質体からなるものがある。これらの複数の連通
孔を有する発熱励起部材の表面積は、直線状又はコイル
状をなす従来のフィラメントの表面積より遥かに大き
く、従って従来に比べて遥かに多量の原子状水素を生成
することが可能である。
In the present invention, since the surface area of the conventional filament is small, an exothermic excitation member having a plurality of communication holes is used as an alternative exothermic excitation member having a large surface area. As a preferred specific example of the heat generation excitation member having a plurality of communication holes, a structure in which a plurality of tubular bodies of foil or net are arranged so that each communication hole opens near the surface of the base material, or from a porous body There is something. The surface area of the exothermic excitation member having a plurality of communication holes is much larger than the surface area of a conventional filament having a linear or coil shape, and thus it is possible to generate a much larger amount of atomic hydrogen as compared with the conventional one. Is.

【0016】複数の連通孔を有する発熱励起部材の材質
は、レニウム、モリブデン、タングステン、ニオブ及び
タンタルからなる群より選ばれた少なくとも1種の金属
であることが好ましい。
The material of the heat generation excitation member having a plurality of communication holes is preferably at least one metal selected from the group consisting of rhenium, molybdenum, tungsten, niobium and tantalum.

【0017】本発明に係わる複数の連通孔を有する発熱
励起部材は、水素ガスを供給する第1ガス供給路の基材
側端部近くに設置することが好ましいが、原子状水素の
発生量が多いので通常のフィラメントよりも基材表面か
ら離して設置することも可能である。しかしながら、発
熱励起部材と基材表面との距離が離れ過ぎると原子状水
素の発生量が多くてもダイヤモンドの成長が阻害され、
近過ぎても基材に過大な熱応力がかかるので、反応圧力
及び水素ガス流量により影響は受けるが、発熱励起部材
の基材側端部と基材表面との距離は5〜100mmの範
囲とすることが好ましい。
The exothermic excitation member having a plurality of communication holes according to the present invention is preferably installed near the end of the first gas supply passage for supplying hydrogen gas on the base material side. Since the number of filaments is large, it is possible to install the filaments farther from the surface of the substrate than the ordinary filaments. However, if the distance between the exothermic excitation member and the substrate surface is too large, the growth of diamond is hindered even if the amount of atomic hydrogen generated is large,
If too close, excessive heat stress is applied to the base material, so that the reaction pressure and the flow rate of hydrogen gas affect it, but the distance between the base material side end of the heat generation excitation member and the base material surface is in the range of 5 to 100 mm. Preferably.

【0018】又、水素ガスと炭素原子を含むガスとは別
々のガス供給路により、基材表面に達するまで互いに混
合することなく運ばれる。即ち、炭素原子を含むガス
は、前記複数の連通孔を有する発熱励起部材の連通孔内
を通ることなく、基材表面に供給される。その結果、発
熱励起部材が炭素原子を含むガス中の炭素化合物により
汚染されることを防止でき、原子状水素の発生が妨げら
れることがなくなる。
Further, the hydrogen gas and the gas containing carbon atoms are carried by separate gas supply passages without being mixed with each other until reaching the surface of the substrate. That is, the gas containing carbon atoms is supplied to the surface of the base material without passing through the communication holes of the heat generation excitation member having the plurality of communication holes. As a result, the exothermic excitation member can be prevented from being contaminated with the carbon compound in the gas containing carbon atoms, and the generation of atomic hydrogen is not hindered.

【0019】ガス供給路の好ましい構成としては、水素
ガスを供給する第1ガス供給路の基材側端部に略ロート
状の筒体を設け、このロート状筒体内に複数の連通孔を
有する発熱励起部材を収納する。一方、炭素原子を含む
ガスを供給する第2ガス供給路の基材側端部は、基材を
取り囲み且つ内側にガス吹出口を有する円環状とし、こ
の円環状部の上に前記ロート状筒体を当接又は近接して
設置する。
As a preferable structure of the gas supply passage, a substantially funnel-shaped cylinder is provided at the end of the first gas supply passage for supplying hydrogen gas on the base material side, and a plurality of communication holes are provided in the funnel-shaped cylinder. Store the heat generation member. On the other hand, the base material side end portion of the second gas supply passage for supplying the gas containing carbon atoms is formed into an annular shape which surrounds the base material and has a gas outlet inside, and the funnel-shaped tube is provided on the annular portion. Place the body in contact with or close to it.

【0020】更に、第2ガス供給路からの炭素原子を含
むガスは、加熱することなくそのまま基材表面に供給し
ても良いし、加熱励起してから基材表面に供給しても良
い。この場合の発熱励起部材には特に制限はないが、第
2ガス供給路の円環状部近くに線状又はコイル状のフィ
ラメントを設けることが簡便であり好ましい。このフィ
ラメントの材質は、前記複数の連通孔を有する発熱励起
部材と同じく、レニウム、モリブデン、タングステン、
ニオブ及びタンタルからなる群より選ばれた少なくとも
1種の金属であることが好ましい。
Further, the gas containing carbon atoms from the second gas supply passage may be directly supplied to the surface of the base material without being heated, or may be heated and excited and then supplied to the surface of the base material. In this case, the heat generation excitation member is not particularly limited, but it is simple and preferable to provide a linear or coiled filament near the annular portion of the second gas supply passage. The material of this filament is rhenium, molybdenum, tungsten, similar to the heat generation excitation member having a plurality of communication holes.
It is preferably at least one metal selected from the group consisting of niobium and tantalum.

【0021】[0021]

【実施例】実施例1 図1に示すごとく、通常の真空容器1内に、水素ガスを
供給する第1ガス供給路2と炭素原子を含むガスを供給
する第2ガス供給路3とを別々に配置し、第1ガス供給
路2の基材側端部には耐熱性セラミックスよりなる最大
内径13mmのロート状筒体4を取り付けた。一方、第
2ガス供給路3の基材側端部には、内周に複数の吹出口
6を有する内径50mmの円環状部5を取り付けた。
Embodiment 1 As shown in FIG. 1, a normal vacuum container 1 is provided with a first gas supply passage 2 for supplying hydrogen gas and a second gas supply passage 3 for supplying gas containing carbon atoms. And a funnel-shaped cylindrical body 4 made of heat-resistant ceramics and having a maximum inner diameter of 13 mm was attached to the end portion of the first gas supply passage 2 on the base material side. On the other hand, an annular portion 5 having an inner diameter of 50 mm and having a plurality of outlets 6 on the inner circumference was attached to the base material side end portion of the second gas supply passage 3.

【0022】複数の連通孔を有する発熱励起部材とし
て、厚さ10μmのタンタル箔を直径3mm及び長さ1
00mmの円筒形に丸めた10個の筒状体7を各中心線
を平行に揃えて配列し、第1ガス供給路のロート状筒体
4の内側に収納固定した。尚、各筒状体7の上下両端部
にそれぞれ電極を取り付け、外部の電源8にそれぞれ接
続した(図1では接続線を1本だけ示した)。更に、基
材支持台10の上に直径50mmのシリコンの基材9を
載置し、この基材9の表面と前記10個の筒状体7から
なる発熱励起部材の下端との距離が20mmとなるよう
に設定した。
A tantalum foil having a thickness of 10 μm and a diameter of 3 mm and a length of 1 is used as the heat generation excitation member having a plurality of communication holes.
Ten cylindrical bodies 7 rolled into a cylindrical shape of 00 mm were arranged with their center lines aligned in parallel, and housed and fixed inside the funnel-shaped cylindrical body 4 of the first gas supply passage. Electrodes were attached to the upper and lower ends of each tubular body 7 and connected to an external power source 8 (only one connecting wire is shown in FIG. 1). Further, a silicon base material 9 having a diameter of 50 mm is placed on the base material support base 10, and the distance between the surface of the base material 9 and the lower end of the heat generation excitation member composed of the ten cylindrical bodies 7 is 20 mm. It was set so that

【0023】発熱励起部材である10個の筒状体7に2
8A、30Vの交流電流を通電して加熱したところ、発
熱励起部材の表面温度は2050℃になった。又、基材
9の温度は基材支持台10に内蔵したヒーターにより9
00℃に加熱した。この状態で、第1ガス供給路2から
水素ガスを3000sccm及び第2ガス供給路3から
メタンガスを30sccmの流量で供給し、全体の圧力
を40Torrに調整して、11時間の成膜を行った。
2 in 10 cylindrical bodies 7 which are heat generation excitation members
When heating was performed by applying an alternating current of 8 A and 30 V, the surface temperature of the heat generation excitation member became 2050 ° C. Further, the temperature of the base material 9 is set to 9 by a heater built in the base material support base 10.
Heated to 00 ° C. In this state, hydrogen gas was supplied from the first gas supply path 2 at a flow rate of 3000 sccm and methane gas was supplied from the second gas supply path 3 at a flow rate of 30 sccm, the total pressure was adjusted to 40 Torr, and film formation was performed for 11 hours. .

【0024】成膜後取り出した基材9には、直径50m
mの表面全面にダイヤモンドの膜が形成され、この膜は
ラマン分光法により同定したところ全面にわたり非晶質
/ダイヤモンドのピーク比が0.01程度であることか
ら、良好なダイヤモンド膜であることが判った。又、こ
のダイヤモンド膜の膜厚は最高95μmであり、膜厚の
バラツキは11%であった。
The substrate 9 taken out after the film formation had a diameter of 50 m.
A diamond film was formed on the entire surface of m, and the amorphous / diamond peak ratio was about 0.01 over the entire surface as identified by Raman spectroscopy. Therefore, it is a good diamond film. understood. The diamond film had a maximum film thickness of 95 μm, and the film thickness variation was 11%.

【0025】実施例2 実施例1の装置における第2ガス供給路3の円環状部5
の内側に、直径0.1mmのレニウム線をコイル状に巻
いた1本のフィラメントを円環状に設置し、これに1.
5A、53Vの交流電流を通電して、1600℃に加熱
した。その他の装置構成は実施例1と同一であり、成膜
条件は基材温度を850℃及び成膜時間を10時間とし
た以外は実施例1と同様とした。
Embodiment 2 The annular portion 5 of the second gas supply passage 3 in the device of Embodiment 1
Inside the, one filament of 0.1 mm diameter rhenium wire wound in a coil is placed in an annular shape.
An alternating current of 5 A and 53 V was applied to heat to 1600 ° C. Other configurations of the apparatus were the same as in Example 1, and the film forming conditions were the same as in Example 1 except that the substrate temperature was 850 ° C. and the film forming time was 10 hours.

【0026】成膜後取り出した基材には、直径50mm
の表面全面にダイヤモンドの膜が形成され、この膜はラ
マン分光法により同定したところ全面にわたり非晶質/
ダイヤモンドのピーク比が0.01程度であることか
ら、良好なダイヤモンド膜であることが判った。又、こ
のダイヤモンド膜の膜厚は最高105μmであり、膜厚
のバラツキは12%であった。
The substrate taken out after film formation had a diameter of 50 mm.
A diamond film was formed on the entire surface of the film, and this film was identified by Raman spectroscopy.
Since the peak ratio of diamond is about 0.01, it was found that the diamond film was good. The maximum thickness of this diamond film was 105 μm, and the variation in the thickness was 12%.

【0027】実施例3 通常の真空容器内に、水素ガスを供給する第1ガス供給
路と炭素原子を含むガスを供給する第2ガス供給路とを
別々に配置し、第1ガス供給路の基材側端部には耐熱性
セラミックスよりなる最大内径13mmのロート状筒体
を取り付けた。一方、第2ガス供給路の基材側端部に
は、内周に複数の吹出口を有する内径50mmの円環状
部を取り付けた。
Embodiment 3 In a normal vacuum container, a first gas supply passage for supplying hydrogen gas and a second gas supply passage for supplying gas containing carbon atoms are separately arranged, and the first gas supply passage A funnel-shaped cylindrical body made of heat-resistant ceramics and having a maximum inner diameter of 13 mm was attached to the end portion on the base material side. On the other hand, an annular portion having an inner diameter of 50 mm and having a plurality of outlets on the inner periphery was attached to the base material side end portion of the second gas supply passage.

【0028】複数の連通孔を有する発熱励起部材とし
て、線径10μmのタングステン線を100メッシュに
編んだ網を、直径3mm及び長さ100mmの円筒形に
丸めた10個の筒状体を中心線を平行に揃えて配列し、
第1ガス供給路のロート状筒体の内側に収納した。尚、
各筒状体の上下両端部にそれぞれ電極を取り付け、外部
の電源にそれぞれ接続した。
As a heat generation excitation member having a plurality of communication holes, a net obtained by knitting a tungsten wire having a wire diameter of 10 μm into 100 mesh is rolled into a cylindrical shape having a diameter of 3 mm and a length of 100 mm, and the center line is 10 cylinders. And arrange them in parallel,
It was housed inside the funnel-shaped cylindrical body of the first gas supply passage. still,
Electrodes were attached to the upper and lower ends of each tubular body and connected to external power sources.

【0029】第2ガス供給路の円環状部の内側には、直
径0.1mmのレニウム線をコイル状に巻いた1本のフ
ィラメントを円環状に設置し、これに1.5A、53V
の交流電流を通電して、1600℃に加熱した。更に、
基材支持台の上に直径50mmのシリコンの基材を載置
し、この基材の表面と前記10個の筒状体からなる発熱
励起部材の下端との距離が20mmとなるように設定し
た。
Inside the annular portion of the second gas supply passage, one filament of a rhenium wire having a diameter of 0.1 mm wound in a coil is installed in an annular shape, and 1.5 A, 53 V is attached to this filament.
And was heated to 1600 ° C. Furthermore,
A silicon base material having a diameter of 50 mm was placed on the base material support, and the distance between the surface of the base material and the lower end of the heat generation excitation member composed of the ten cylindrical bodies was set to 20 mm. .

【0030】発熱励起部材である10個の筒状体に13
A、30Vの交流電流を通電して加熱したところ、発熱
励起部材の表面温度は2000℃になった。又、基材の
温度は基材支持台に内蔵したヒーターにより850℃に
加熱した。この状態で、第1ガス供給路から水素ガスを
3000sccm及び第2ガス供給路からメタンガスを
25sccmの流量で供給し、全体の圧力を30Tor
rに調整して、10時間の成膜を行った。
13 heat-exciting members are provided in 10 cylindrical bodies.
When heating was performed by passing an alternating current of A and 30 V, the surface temperature of the exothermic excitation member reached 2000 ° C. The temperature of the base material was heated to 850 ° C. by a heater built in the base material support. In this state, hydrogen gas was supplied at a flow rate of 3000 sccm from the first gas supply path and methane gas was supplied at a flow rate of 25 sccm from the second gas supply path, and the total pressure was 30 Torr.
After adjusting to r, film formation was performed for 10 hours.

【0031】成膜後取り出した基材には、直径50mm
の表面全面にダイヤモンドの膜が形成され、この膜はラ
マン分光法により同定したところ全面にわたり非晶質/
ダイヤモンドのピーク比が0.01程度であることか
ら、良好なダイヤモンド膜であることが判った。又、こ
のダイヤモンド膜の膜厚は最高103μmであり、膜厚
のバラツキは13%であった。
The base material taken out after the film formation had a diameter of 50 mm.
A diamond film was formed on the entire surface of the film, and this film was identified by Raman spectroscopy.
Since the peak ratio of diamond is about 0.01, it was found that the diamond film was good. The film thickness of this diamond film was 103 μm at maximum, and the variation in film thickness was 13%.

【0032】実施例4 通常の真空容器内に、水素ガスを供給する第1ガス供給
路と炭素原子を含むガスを供給する第2ガス供給路とを
別々に配置し、第1ガス供給路の基材側端部には耐熱性
セラミックスよりなる最大内径13mmのロート状筒体
を取り付けた。一方、第2ガス供給路の基材側端部に
は、内周に複数の吹出口を有する内径50mmの円環状
部を取り付けた。
Example 4 In a normal vacuum container, a first gas supply path for supplying hydrogen gas and a second gas supply path for supplying gas containing carbon atoms are separately arranged, and the first gas supply path A funnel-shaped cylindrical body made of heat-resistant ceramics and having a maximum inner diameter of 13 mm was attached to the end portion on the base material side. On the other hand, an annular portion having an inner diameter of 50 mm and having a plurality of outlets on the inner periphery was attached to the base material side end portion of the second gas supply passage.

【0033】複数の連通孔を有する発熱励起部材とし
て、直径12mm及び長さ100mmの多孔質のモリブ
デン発泡体を用意し、その上下にそれぞれ電極を取り付
けて、第1ガス供給路のロート状筒体の内側に収納し
た。尚、このモリブデン発泡体の気孔率(単位体積中に
占める空孔の割合)は87%であった。更に、基材支持
台の上に直径50mmのシリコンの基材を載置し、この
基材の表面と前記モリブデン発泡体からなる発熱励起部
材の下端との距離を20mmに設定した。
A porous molybdenum foam having a diameter of 12 mm and a length of 100 mm is prepared as a heat-exciting member having a plurality of communication holes, and electrodes are attached to the upper and lower sides of the molybdenum foam, respectively, to form a funnel-shaped tubular body for the first gas supply passage. It was stored inside. The porosity of this molybdenum foam (the ratio of pores per unit volume) was 87%. Furthermore, a silicon base material having a diameter of 50 mm was placed on the base material support, and the distance between the surface of the base material and the lower end of the heat generation excitation member made of the molybdenum foam was set to 20 mm.

【0034】発熱励起部材であるモリブデン発泡体に2
8A、30Vの交流電流を通電して加熱したところ、発
熱励起部材の表面温度は1980℃になった。又、基材
の温度は基材支持台に内蔵したヒーターにより900℃
に加熱した。この状態で、第1ガス供給路から水素ガス
を3000sccm及び第2ガス供給路からメタンガス
を30sccmの流量で供給し、全体の圧力を40To
rrに調整して、11時間の成膜を行った。
2 in the molybdenum foam which is the heat generation excitation member
When heating was performed by passing an alternating current of 8 A and 30 V, the surface temperature of the exothermic excitation member became 1980 ° C. The temperature of the base material is 900 ° C by the heater built into the base material support.
Heated to. In this state, hydrogen gas was supplied at a flow rate of 3000 sccm from the first gas supply path and methane gas was supplied at a flow rate of 30 sccm from the second gas supply path, and the total pressure was 40 To.
After adjusting to rr, film formation was performed for 11 hours.

【0035】成膜後取り出した基材には、直径50mm
の表面全面にダイヤモンドの膜が形成され、この膜はラ
マン分光法により同定したところ全面にわたり非晶質/
ダイヤモンドのピーク比が0.01程度であることか
ら、良好なダイヤモンド膜であることが判った。又、こ
のダイヤモンド膜の膜厚は最高115μmであり、膜厚
のバラツキは12%であった。
The substrate taken out after film formation had a diameter of 50 mm.
A diamond film was formed on the entire surface of the film, and this film was identified by Raman spectroscopy.
Since the peak ratio of diamond is about 0.01, it was found that the diamond film was good. The maximum thickness of this diamond film was 115 μm, and the variation in the thickness was 12%.

【0036】実施例5 通常の真空容器内に、水素ガスを供給する第1ガス供給
路と炭素原子を含むガスを供給する第2ガス供給路とを
別々に配置し、第1ガス供給路の基材側端部には耐熱性
セラミックスよりなる最大内径13mmのロート状筒体
を取り付けた。一方、第2ガス供給路の基材側端部に
は、内周に複数の吹出口を有する内径50mmの円環状
部を取り付けた。
Embodiment 5 In a normal vacuum container, a first gas supply passage for supplying hydrogen gas and a second gas supply passage for supplying gas containing carbon atoms are separately arranged, and the first gas supply passage A funnel-shaped cylindrical body made of heat-resistant ceramics and having a maximum inner diameter of 13 mm was attached to the end portion on the base material side. On the other hand, an annular portion having an inner diameter of 50 mm and having a plurality of outlets on the inner periphery was attached to the base material side end portion of the second gas supply passage.

【0037】複数の連通孔を有する発熱励起部材とし
て、線径10μmのニオブ線を100メッシュに編んだ
網を、直径3mm及び長さ100mmの円筒形に丸めた
10個の筒状体を中心線を平行に揃えて配列し、第1ガ
ス供給路のロート状筒体の内側に収納した。尚、各筒状
体の上下両端部にそれぞれ電極を取り付け、外部の電源
にそれぞれ接続した。
As a heat-exciting member having a plurality of communicating holes, a net obtained by knitting a niobium wire having a wire diameter of 10 μm into 100 mesh was rolled into a cylindrical shape having a diameter of 3 mm and a length of 100 mm. Were arranged in parallel and housed inside the funnel-shaped cylindrical body of the first gas supply passage. Electrodes were attached to the upper and lower ends of each tubular body and connected to external power sources.

【0038】第2ガス供給路の円環状部の内側には、直
径0.1mmのレニウム線をコイル状に巻いた1本のフ
ィラメントを円環状に設置し、これに1.5A、53V
の交流電流を通電して、1600℃に加熱した。更に、
基材支持台の上に直径50mmのシリコンの基材を載置
し、この基材の表面と前記10個の筒状体からなる発熱
励起部材の下端との距離が20mmとなるように設定し
た。
Inside the annular portion of the second gas supply passage, one filament of a rhenium wire having a diameter of 0.1 mm wound in a coil is installed in an annular shape, and 1.5 A, 53 V is attached to this filament.
And was heated to 1600 ° C. Furthermore,
A silicon base material having a diameter of 50 mm was placed on the base material support, and the distance between the surface of the base material and the lower end of the exothermic excitation member composed of the ten cylindrical bodies was set to 20 mm. .

【0039】発熱励起部材である10個の筒状体に13
A、30Vの交流電流を通電して加熱したところ、発熱
励起部材の表面温度は2000℃になった。又、基材の
温度は基材支持台に内蔵したヒーターにより850℃に
加熱した。この状態で、第1ガス供給路から水素ガスを
3000sccm及び第2ガス供給路からメタンガスを
25sccmの流量で供給し、全体の圧力を30Tor
rに調整して、10時間の成膜を行った。
13 heat-exciting members are provided in 10 cylindrical bodies.
When heating was performed by passing an alternating current of A and 30 V, the surface temperature of the exothermic excitation member reached 2000 ° C. The temperature of the base material was heated to 850 ° C. by a heater built in the base material support. In this state, hydrogen gas was supplied at a flow rate of 3000 sccm from the first gas supply path and methane gas was supplied at a flow rate of 25 sccm from the second gas supply path, and the total pressure was 30 Torr.
After adjusting to r, film formation was performed for 10 hours.

【0040】成膜後取り出した基材には、直径50mm
の表面全面にダイヤモンドの膜が形成され、この膜はラ
マン分光法により同定したところ全面にわたり非晶質/
ダイヤモンドのピーク比が0.01程度であることか
ら、良好なダイヤモンド膜であることが判った。又、こ
のダイヤモンド膜の膜厚は最高113μmであり、膜厚
のバラツキは15%であった。
The substrate taken out after the film formation had a diameter of 50 mm.
A diamond film was formed on the entire surface of the film, and this film was identified by Raman spectroscopy.
Since the peak ratio of diamond is about 0.01, it was found that the diamond film was good. The film thickness of this diamond film was 113 μm at maximum, and the variation in film thickness was 15%.

【0041】比較例1 通常の真空容器内に、水素ガスと炭素原子を含むガスの
混合ガスを供給する混合ガス供給路を設け、この混合ガ
ス供給路の基材側端部に発熱励起部材として直径0.6
mmのタンタル線を直径3mm及び長さ100mmのコ
イル状に巻いた従来と同様のフィラメントを1本だけ配
置した。又、基材支持台には直径50mmのシリコンの
基材を載置し、基材表面とフィラメント下端との距離を
5mmに設定した。
Comparative Example 1 A mixed gas supply passage for supplying a mixed gas of hydrogen gas and a gas containing carbon atoms was provided in an ordinary vacuum container, and a heat generation excitation member was provided at the end of the mixed gas supply passage on the base material side. Diameter 0.6
A single filament similar to the conventional one in which a tantalum wire having a diameter of 3 mm was wound into a coil having a diameter of 3 mm and a length of 100 mm was arranged. Further, a silicon base material having a diameter of 50 mm was placed on the base material support, and the distance between the surface of the base material and the lower end of the filament was set to 5 mm.

【0042】前記フィラメントに29A、31Vの交流
電流を通電して加熱したところ、炭化が終了した時点で
の電圧は45Vで電流は29Aとなり、表面温度は20
50℃であった。又、基材の温度は基材支持台に内蔵し
たヒーターにより900℃に加熱した。この状態で、混
合ガス供給路から99体積%の水素ガスと1体積%のメ
タンガスの混合ガスを1000sccmの流量で供給
し、全体の圧力を40Torrに調整して、11時間の
成膜を行った。
When the filament was heated by applying an alternating current of 29 A and 31 V, the voltage at the end of the carbonization was 45 V, the current was 29 A, and the surface temperature was 20.
It was 50 ° C. Further, the temperature of the base material was heated to 900 ° C. by a heater built in the base material support. In this state, a mixed gas of 99 vol% hydrogen gas and 1 vol% methane gas was supplied from the mixed gas supply passage at a flow rate of 1000 sccm, the total pressure was adjusted to 40 Torr, and film formation was performed for 11 hours. .

【0043】成膜後取り出した基材には、フィラメント
に沿って峰状にダイヤモンドの膜が形成され、膜厚の最
高値は12μmであったが、フィラメントの直下より8
mm以上離れた場所にはダイヤモンドは全く形成されて
いなかった。又、この膜はラマン分光法により同定した
ところ、非晶質/ダイヤモンドのピーク比が0.1程度
であった。
On the substrate taken out after the film formation, a diamond film was formed in a peak shape along the filament, and the maximum value of the film thickness was 12 μm.
No diamond was formed at a place separated by more than mm. When the film was identified by Raman spectroscopy, the peak ratio of amorphous / diamond was about 0.1.

【0044】比較例2 通常の真空容器内に、水素ガスと炭素原子を含むガスの
混合ガスを供給する混合ガス供給路を設け、この混合ガ
ス供給路の基材側端部に発熱励起部材として直径1.0
mmのタングステン線を直径3mm及び長さ100mm
のコイル状に巻いた従来と同様のフィラメントを1本だ
け配置した。又、基材支持台には直径50mmのシリコ
ンの基材を載置し、基材表面とフィラメント下端との距
離を10mmに設定した。
Comparative Example 2 A mixed gas supply passage for supplying a mixed gas of hydrogen gas and a gas containing carbon atoms was provided in a normal vacuum container, and a heat generation excitation member was provided at the end of the mixed gas supply passage on the base material side. Diameter 1.0
mm tungsten wire with a diameter of 3 mm and a length of 100 mm
Only one filament similar to the conventional one wound in a coil shape was arranged. Further, a silicon base material having a diameter of 50 mm was placed on the base material support, and the distance between the surface of the base material and the lower end of the filament was set to 10 mm.

【0045】前記フィラメントに100A、35Vの交
流電流を通電して加熱したところ、炭化が終了した時点
での電圧は51Vで電流は100Aとなり、表面温度は
2250℃であった。又、基材の温度は基材支持台に内
蔵したヒーターにより900℃に加熱した。この状態
で、混合ガス供給路から99体積%の水素ガスと1体積
%のメタンガスの混合ガスを1000sccmの流量で
供給し、全体の圧力を40Torrに調整して、10時
間の成膜を行った。
When the filament was heated by passing an alternating current of 100 A, 35 V, the voltage at the end of the carbonization was 51 V, the current was 100 A, and the surface temperature was 2250 ° C. Further, the temperature of the base material was heated to 900 ° C. by a heater built in the base material support. In this state, a mixed gas of 99% by volume of hydrogen gas and 1% by volume of methane gas was supplied from the mixed gas supply path at a flow rate of 1000 sccm, the total pressure was adjusted to 40 Torr, and film formation was performed for 10 hours. .

【0046】成膜後取り出した基材には、フィラメント
に沿って峰状にダイヤモンドの膜が形成され、膜厚の最
高値は21μmであったが、フィラメントの直下より1
2mm以上離れた場所にはダイヤモンドは全く形成され
ていなかった。又、この膜はラマン分光法により同定し
たところ、非晶質/ダイヤモンドのピーク比が0.07
程度であった。
On the substrate taken out after the film formation, a diamond film was formed in a peak shape along the filament, and the maximum value of the film thickness was 21 μm.
No diamond was formed at a place separated by 2 mm or more. The film was identified by Raman spectroscopy and found to have an amorphous / diamond peak ratio of 0.07.
It was about.

【0047】[0047]

【発明の効果】本発明によれば、従来の熱フィラメント
CVD法と比較して、低エネルギー、低電力で、高品質
のダイヤモンド膜を高速にて、しかも大きな面積に形成
することができる。又、発熱励起部材の温度を必要以上
に上げることなく、且つ発熱励起部材と基材表面との距
離を比較的長くしても、ダイヤモンド膜の成長速度を速
めることができるので、基材及びダイヤモンド膜への熱
的歪を大幅に抑えることが可能となる。
According to the present invention, as compared with the conventional hot filament CVD method, it is possible to form a high quality diamond film with low energy and low power at a high speed and in a large area. In addition, the growth rate of the diamond film can be increased without raising the temperature of the heat generation excitation member more than necessary and even if the distance between the heat generation excitation member and the surface of the base material is relatively long. It is possible to significantly suppress the thermal strain on the film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるダイヤモンド合成装置の一具体例
を各部ごとに分解して示した概略の側面図である。
FIG. 1 is a schematic side view in which a specific example of a diamond synthesizing apparatus according to the present invention is disassembled and shown for each part.

【符号の説明】[Explanation of symbols]

1 真空容器 2 第1ガス供給路 3 第2ガス供給路 4 ロート状筒体 5 円環状部 6 吹出口 7 筒状体 8 電源 9 基材 10 基材支持台 1 vacuum container 2 First gas supply path 3 Second gas supply path 4 funnel-shaped cylinder 5 annular part 6 outlet 7 tubular 8 power supplies 9 Base material 10 Base material support

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−163195(JP,A) 特開 平5−890(JP,A) 特開 平1−203295(JP,A) 特開 昭60−221395(JP,A) 特開 昭63−159292(JP,A) 特開 平3−69593(JP,A) 特開 平3−112897(JP,A) 特開 平3−115576(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A 61-163195 (JP, A) JP-A 5-890 (JP, A) JP-A 1-203295 (JP, A) JP-A 60- 221395 (JP, A) JP 63-159292 (JP, A) JP 3-69593 (JP, A) JP 3-112897 (JP, A) JP 3-115576 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素原子を含むガスと水素ガスを加熱励
起して基材表面上にダイヤモンドを気相合成する方法に
おいて、水素ガスのみを加熱した多孔質体からなる発熱
励起部材に接触させた後、これを発熱励起部材と相対し
て配置され加熱した基材の表面に供給し、同時に炭素原
子を含むガスを水素ガスとは別経路により前記基材の表
面に供給することを特徴とするダイヤモンドの気相合成
方法。
1. A method of vapor-synthesizing diamond on the surface of a substrate by heating and exciting a gas containing carbon atoms and hydrogen gas, wherein a heat generated from a porous body heated only with hydrogen gas.
After contacting the excitation member , this is supplied to the surface of the heated base material that is arranged opposite to the exothermic excitation member, and at the same time, the gas containing carbon atoms is supplied to the surface of the base material through a route different from hydrogen gas. A method for vapor phase synthesis of diamond, which comprises:
【請求項2】 炭素原子を含むガスを加熱した線状又は
コイル状のフィラメントに接触させた後、加熱した基材
表面に供給することを特徴とする、請求項1に記載のダ
イヤモンドの気相合成方法。
2. The vapor phase of diamond according to claim 1, wherein a gas containing carbon atoms is brought into contact with a heated linear or coil filament and then supplied to the surface of the heated substrate. Synthesis method.
【請求項3】 炭素原子を含むガスと水素ガスを加熱励
起して基材表面上にダイヤモンドを気相合成する装置に
おいて、基材表面に水素ガスを供給する第1ガス供給路
と炭素原子を含むガスを供給する第2ガス供給路とを別
々に具え、水素ガスを供給する第1ガス供給路の基材側
端部に多孔質体からなる発熱励起部材を基材表面と相対
して設けたことを特徴とするダイヤモンドの気相合成装
置。
3. An apparatus for vapor-synthesizing diamond on a surface of a substrate by heating and exciting a gas containing carbon atoms and hydrogen gas, wherein a first gas supply path for supplying hydrogen gas to the surface of the substrate and a carbon atom are provided. A second gas supply path for supplying a containing gas is provided separately, and a heat generation excitation member made of a porous body is provided at the base material side end of the first gas supply path for supplying hydrogen gas, facing the surface of the base material. A vapor-phase synthesis apparatus for diamond, characterized in that
【請求項4】 水素ガスを供給する第1ガス供給路の基
材側端部に略ロート状の筒体を設け、このロート状筒体
内に複数の連通孔を有する発熱励起部材を収納すること
を特徴とする、請求項3に記載のダイヤモンドの気相合
成装置。
4. A base of a first gas supply path for supplying hydrogen gas.
A funnel-shaped tube is provided at the end on the material side.
The vapor phase synthesizing apparatus for diamond according to claim 3, wherein a heat generation excitation member having a plurality of communication holes is housed therein .
【請求項5】 複数の連通孔を有する発熱励起部材の材
質が、レニウム、モリブデン、タングステン、ニオブ及
びタンタルからなる群より選ばれた少なくとも1種の金
属であることを特徴とする、請求項3又は4に記載のダ
イヤモンドの気相合成装置。
5. A material for a heat generation excitation member having a plurality of communication holes.
Quality is rhenium, molybdenum, tungsten, niobium and
And at least one kind of gold selected from the group consisting of tantalum
The vapor phase synthesizer for diamond according to claim 3 or 4 , which is a genus .
【請求項6】 炭素原子を含むガスを供給する第2供給
路の基材側端部に基材を取り囲み内側にガス吹出口を有
する円環状部を設け、この円環状部の内周近くに線状又
はコイル状のフィラメントを設けたことを特徴とする、
請求項3に記載のダイヤモンドの気相合成装置。
6. A second supply for supplying a gas containing carbon atoms.
There is a gas outlet on the inner side of the path surrounding the base material on the base material side end.
A ring-shaped portion is provided, and a linear or
Is equipped with a coiled filament ,
The diamond vapor phase synthesizing apparatus according to claim 3 .
JP28748993A 1993-10-22 1993-10-22 Method and apparatus for vapor phase synthesis of diamond Expired - Fee Related JP3496254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28748993A JP3496254B2 (en) 1993-10-22 1993-10-22 Method and apparatus for vapor phase synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28748993A JP3496254B2 (en) 1993-10-22 1993-10-22 Method and apparatus for vapor phase synthesis of diamond

Publications (2)

Publication Number Publication Date
JPH07118092A JPH07118092A (en) 1995-05-09
JP3496254B2 true JP3496254B2 (en) 2004-02-09

Family

ID=17718008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28748993A Expired - Fee Related JP3496254B2 (en) 1993-10-22 1993-10-22 Method and apparatus for vapor phase synthesis of diamond

Country Status (1)

Country Link
JP (1) JP3496254B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822259B2 (en) * 2011-06-16 2015-11-24 国立研究開発法人物質・材料研究機構 Diamond crystal growth method and diamond crystal growth apparatus
AT519217B1 (en) 2016-10-04 2018-08-15 Carboncompetence Gmbh Apparatus and method for applying a carbon layer

Also Published As

Publication number Publication date
JPH07118092A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
JP3208792B2 (en) Method and apparatus for producing diamond
US5112643A (en) Gaseous phase synthesized diamond and method for synthesizing same
US7033650B2 (en) Method of producing a nanotube layer on a substrate
CA2557611C (en) Method of manufacturing carbon nanostructure
US8142568B2 (en) Apparatus for synthesizing a single-wall carbon nanotube array
CA2564421C (en) Method of producing carbon nanostructure
EP1061041A1 (en) Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
JPH05109625A (en) Polycrystalline cvd diamond substrate for epitaxially growing semiconductor single crystal
US20020150684A1 (en) Method of forming carbon nanotubes and apparatus therefor
US5147687A (en) Hot filament CVD of thick, adherent and coherent polycrystalline diamond films
EP0272418B1 (en) Apparatus and process to condensate diamond
JP2017019718A (en) Manufacturing method of carbon nano-tube
EP0320657B1 (en) Improved diamond growth process
JP3496254B2 (en) Method and apparatus for vapor phase synthesis of diamond
KR100372334B1 (en) Method of synthesizing carbon nanotubes using plasma-enhanced chemical vapor deposition
JP2969503B2 (en) How to make carbonaceous fiber
US5102689A (en) Method of depositing microcrystalline solid particles from the gas phase by means of chemical vapor deposition
KR100372333B1 (en) Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JP2003277031A (en) Method for manufacturing carbon nanotube
JPS6358798B2 (en)
JP2637177B2 (en) Synthesis method of vapor phase diamond
KR100779082B1 (en) Plasma enhanced chemical vapor deposition apparatus, and manufacturing method of nano-structured particles
JP2568542B2 (en) Low pressure synthesis of diamond
JP3691109B2 (en) CVD diamond synthesis equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees