JP3496153B2 - Method for producing active substance-containing fine particles comprising a hydrolyzable polymer - Google Patents

Method for producing active substance-containing fine particles comprising a hydrolyzable polymer

Info

Publication number
JP3496153B2
JP3496153B2 JP50204192A JP50204192A JP3496153B2 JP 3496153 B2 JP3496153 B2 JP 3496153B2 JP 50204192 A JP50204192 A JP 50204192A JP 50204192 A JP50204192 A JP 50204192A JP 3496153 B2 JP3496153 B2 JP 3496153B2
Authority
JP
Japan
Prior art keywords
active substance
polymer
preparation
loaded
hydrolyzable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50204192A
Other languages
Japanese (ja)
Other versions
JPH06504531A (en
Inventor
ハイケ ビスクプ,
エルケ ゴリセン,
ハネローレ シュナイダー,
Original Assignee
ネクター セラピューティクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネクター セラピューティクス filed Critical ネクター セラピューティクス
Publication of JPH06504531A publication Critical patent/JPH06504531A/en
Application granted granted Critical
Publication of JP3496153B2 publication Critical patent/JP3496153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • Y10T428/2987Addition polymer from unsaturated monomers only

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Saccharide Compounds (AREA)
  • Polyamides (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

PCT No. PCT/DE91/01002 Sec. 371 Date Jun. 22, 1993 Sec. 102(e) Date Jun. 22, 1993 PCT Filed Dec. 18, 1991 PCT Pub. No. WO92/11000 PCT Pub. Date Jul. 9, 1992.The invention concerns a method for the production of microscopic particles made of hydrolytically decomposable polymers, in particular copolymers, and containing active substances, using fluid gas with a uniform particle-size distribution and by the addition of biologically compatible amino acids. The microscopic particles produced by this method can be used as drugs for the treatment of humans or animals.

Description

【発明の詳細な説明】 本発明は、加水分解可能な重合体からなる作用物質含
有微粒子を製造する方法に関する。
The present invention relates to a method for producing active substance-containing microparticles composed of a hydrolyzable polymer.

多数の刊行物の記載から、被吸収性のポリエステル、
殊に乳酸またはグリコール酸を基礎とするもの、殊にそ
の共重合体は、ヒトまたは動物の組織中あるいはヒトま
たは動物の体液中で分解されて、完全に生態に特有の化
合物にされ、この場合、重合体の分解速度は、使用目的
に応じて、数時間ないし数か月に亘って変動することが
できることは公知である。
From the description of numerous publications, absorbable polyester,
In particular, those based on lactic acid or glycolic acid, especially their copolymers, are decomposed in human or animal tissues or in human or animal body fluids to give compounds which are completely ecologically distinct, in which case It is known that the decomposition rate of a polymer can be varied over several hours to several months depending on the purpose of use.

分解生成物は、通常の生化学的物質交換で得られ、直
接排泄されるかまたは最終的に水および二酸化炭素に代
謝される。
Degradation products are obtained by normal biochemical exchanges and are either directly excreted or ultimately metabolized to water and carbon dioxide.

被吸収性のポリエステルは、生薬調製の場合に作用物
質の遅延された徐放性を有する貯蔵形を製造するのに、
特に有用かつ重要である。
Absorbable polyesters are used to produce storage forms with delayed and sustained release of the active substance in the case of galenical preparation,
Especially useful and important.

しかしながら、この種のポリエステルは、ヒトまたは
動物の臓器中では、該ポリエステルが、場合により刺激
を触発することができるような汚染物質を含まない場合
にのみ使用することができる。この汚染物質は、例えば
分解されなかった残留単量体、分子量調整剤または重合
触媒である。
However, polyesters of this kind can only be used in human or animal organs if they do not contain contaminants which can possibly trigger irritation. The pollutants are, for example, undegraded residual monomers, molecular weight regulators or polymerization catalysts.

この種の被吸収性のポリエステルを使用しながら製造
された遅延医薬形は、皮下注射または体内への移植とし
て導入されるのに適当なものであり、今日まで次の方法
により製造されている: − 有機溶剤を用いるマイクロカプセル剤化法(L.M.Sa
nders他、J.Contr.Release、2(1985年)187またはP.
B.Deasy、Microencapsulation and Related Drug Proce
sses、M.dekker Inc.、New York 1984年); − 乳化重合法および引き続く溶剤蒸発法(T.R.Tice
& R.M.Gilley、J.Contr.Release、2(1985年)34
3); − 憤霧乾燥法(D.L.Wise他、Life Sci.、19(1976
年)867; − 押出し法(A.J.Schwope他、Life Sci.、17(1975
年)1877); − 溶融埋設法(A.J.Schwope他、Life Sci.、17(1975
年)1877);または − 界面重合法(G.Birrenbach & P.Speiser、J.Phar
m.Sci.、65(1976年)1763); しかしながら、記載された方法には、この方法が、多
量の毒性の有機溶剤を用いて作業するので、生じた遅延
医薬形が重合体埋設物の形で高い溶剤残留濃度を有する
という欠点;例えば、J.P.Benoit他、Int.J.Pharmaceut
ics、29(1986年)95、があるかまたは記載された方法
には、殊に、局所的に著しい温度上昇を生じかつ取り込
まれた医薬物質を損ない得る高い温度または圧力で作業
されるという欠点;例として、L.M.Sanders他、J.Phar
m.Sci.、75(1986年)356、がある。この種の医薬形
が、より長い時間に亘って、皮下または組織中に残留し
ている場合には、有機溶剤により局所的に毒性の組織反
応を予想すべきである。従って、溶剤残量は、できる限
り記載された製品から除去されていなければならない。
Delayed-pharmaceutical forms made using absorbable polyesters of this kind are suitable for being introduced as subcutaneous injections or implants in the body and to date have been made by the following method: − Microencapsulation method using organic solvent (LMSa
nders et al., J. Contr. Release, 2 (1985) 187 or P.
B. Deasy, Microencapsulation and Related Drug Proce
sses, M. dekker Inc., New York 1984);-emulsion polymerization followed by solvent evaporation (TRTice).
& RMGilley, J. Contr. Release, 2 (1985) 34
3);-Angular mist drying method (DLWise et al., Life Sci., 19 (1976
867; -Extrusion method (AJ Schwope et al., Life Sci., 17 (1975)
1877); − Melt burial method (AJ Schwope et al., Life Sci., 17 (1975)
1877); or-interfacial polymerization (G. Birrenbach & P. Speiser, J. Phar
m.Sci., 65 (1976) 1763); however, in the method described, the delayed medicinal form that results is due to the fact that this method works with large amounts of toxic organic solvents. The disadvantage of having a high residual solvent concentration in form; eg JP Benoit et al., Int. J. Pharmaceut
ics, 29 (1986) 95, or the described method, in particular, has the disadvantage that it is operated at elevated temperatures or pressures which cause a significant local temperature rise and can impair the incorporated drug substance. ; As an example, LM Sanders et al., J. Phar
m.Sci., 75 (1986) 356. Topically toxic tissue reactions with organic solvents should be expected if this type of pharmaceutical form remains subcutaneous or in the tissue for a longer period of time. Therefore, the solvent balance should be removed from the listed products as much as possible.

上記の公知技術水準に属する製造方法の詳説された記
載は、ドイツ連邦共和国特許出願公開第3744329号明細
書中に存在する。
A detailed description of the manufacturing method which is known in the state of the art can be found in the German patent application DE 37 44 329 A1.

最終的に、“Aerosol Solvent Extraktion System"
(ASES)と呼称された作用物質負荷された微粒子の製造
法は、欧州特許第0322687A2号明細書の記載から公知で
ある。
Finally, "Aerosol Solvent Extraktion System"
A method for producing active substance-loaded microparticles designated as (ASES) is known from the description of EP 0322687A2.

前記方法を用いる場合、作用物質負荷された微粒子
は、流動ガスを用いて製造される。超臨界雰囲気中で、
重合体と作用物質との溶液から、微粒子が形成され、こ
の場合、溶剤は、ガス相中に吸収されることによって除
去される。
When using said method, the active substance-loaded microparticles are produced using a flowing gas. In a supercritical atmosphere,
From the solution of polymer and active substance, fine particles are formed, in which case the solvent is removed by absorption in the gas phase.

作用物質負荷された微粒子が、最少量の有機溶剤(10
ppm未満)を有し、残留単量体、分子量調整剤または重
合触媒もなしに自己滅菌して製造する前記方法が好適で
あるにもかかわらず、しかしながら、バッチ量増大の場
合に、確実に一定の粒径分布が達成されず、かつ全ての
加水分解可能な重合体が確実に微粒子に加工することが
できるのものではないことが不利である。
Fine particles loaded with the active substance are the smallest amount of organic solvent (10
(less than 1 ppm) and is self-sterilizing without residual monomers, molecular weight regulators or polymerization catalysts, the method is however suitable, however, in the case of increasing batch volume, it remains reliably constant. It is disadvantageous that the particle size distribution of 1 is not achieved and that not all hydrolyzable polymers can be reliably processed into fine particles.

従って、本発明の課題は、均一の粒径分布を有する作
用物質負荷された微粒子を加水分解可能な重合体、殊
に、乳酸およびグリコール酸の共重合体から製造するこ
とである。
The object of the invention is therefore to produce active substance-loaded microparticles having a uniform particle size distribution from hydrolysable polymers, in particular lactic acid and glycolic acid copolymers.

前記発明は、それぞれ少なくとも1つの生理学的に認
容性のアミノ酸が、加水分解可能な重合体または共重合
体および少なくとも1つの作用物質からなる溶液に、相
応する溶剤中で添加され、超臨界雰囲気中で微粒子が形
成され、この場合、溶剤は、ガス相中に吸収されること
によって除去されることによって解決された。
According to the invention, at least one physiologically tolerable amino acid is added to a solution of a hydrolyzable polymer or copolymer and at least one active substance in a corresponding solvent, in a supercritical atmosphere. At this point fine particles were formed, in which case the solvent was solved by being removed by absorption in the gas phase.

本発明によれば、全ての作用物質が、使用されてもよ
い。作用物質の例は、医薬剤、毒素およびウイルスであ
る。医薬剤の概念については、米国特許第3773919号明
細書が指摘される。
According to the invention, all agents may be used. Examples of agents are pharmaceutical agents, toxins and viruses. Regarding the concept of pharmaceutical agents, US Pat. No. 3,773,919 is pointed out.

全ての生物学的に認容性の加水分解可能な重合体およ
び共重合体は、担持物質として使用することができる。
All biologically acceptable hydrolyzable polymers and copolymers can be used as support materials.

例として次のものが記載される: ポリ−1−ラクチド(l−PLA)、ポリ−d,l−ラクチド
(RLA)、ポリ−l−ラクチドコグリコリド(l−PLG
A)並びに乳酸(LA)およびグリコール酸(GA)の単量
体の種々の含量を有するポリ−d,l−ラクチドコグリコ
リド(PLGA)。有利に、この重合体ラクチドコグリコリ
ドは、85:15〜50:50の間のモル比であり、特に有利に
は、モル比75:25である。
The following are mentioned by way of example: poly-1-lactide (1-PLA), poly-d, l-lactide (RLA), poly-1-lactide coglycolide (1-PLG).
A) and poly-d, l-lactide coglycolide (PLGA) with different contents of lactic acid (LA) and glycolic acid (GA) monomers. The polymeric lactide coglycolide is preferably in a molar ratio between 85:15 and 50:50, particularly preferably in a molar ratio of 75:25.

本発明により使用可能なアミノ酸は、次の記載に限定
されるものではないが、L−リジン、L−フェニルアラ
ニン、L−トリプトファンまたはD,L−フェニアラニン
である。
Amino acids that can be used according to the invention are, but not limited to, L-lysine, L-phenylalanine, L-tryptophan or D, L-phenianalanine.

本発明の実施形式によれば、流動ガスとして、酸化窒
素、二酸化炭素、ハロゲン化炭化水素、飽和または不飽
和炭化水素、二酸化窒素またはアンモニアあるいはその
混合物が使用される。
According to an embodiment of the invention, nitrogen oxides, carbon dioxide, halogenated hydrocarbons, saturated or unsaturated hydrocarbons, nitrogen dioxide or ammonia or mixtures thereof are used as fluidizing gas.

また、本発明のもう1つの実施形式によれば、超臨界
状態に移行することができる相応する適当なガス並びに
低沸点の液体およびその混合物は、それぞれ流動ガスと
して使用可能である。
According to another mode of realization of the invention, the corresponding suitable gas capable of transitioning to the supercritical state and the low-boiling liquids and their mixtures can each be used as flowing gas.

次の実施例は、本発明を詳説する。  The following example illustrates the invention in detail.

実施例 1 ブセレリン含有の微粒子重合体:ポリ−(D,L)ラクチ
ドコグリコリド、容積で0.8dl/gの製造 L−リジン(アルドリッヒ社(Aldrich))0.375g
を、酢酸(メルク社(Merk))25m1中に溶解し;ポリ−
(D,L)ラクチドコグリコリド(単量体比75:25)2.5g
を、ジクロルメタン(メルク社)75m1中に溶解する。二
つの溶液を、合わせる。次に、ブセレリン0.06gを添加
し、かつ透明な溶液;ブゼレリンに対して、0.06%の溶
液が生じるまで撹拌する。
Example 1 Buserelin-containing fine particle polymer: poly- (D, L) lactide coglycolide, production of 0.8 dl / g by volume L-lysine (Aldrich) 0.375 g
Was dissolved in 25 ml of acetic acid (Merk); poly-
2.5 g of (D, L) lactide coglycolide (monomer ratio 75:25)
Is dissolved in 75 ml of dichloromethane (Merck). Combine the two solutions. Then 0.06 g of buserelin are added and stirred until a clear solution; 0.06% solution, based on buzerelin, results.

前記溶液を、貯水槽(17)、−第1図参照−、中に入
れ、ピストンポンプ(16)の導管(50)を用いて供給
し、導管(52)、熱交換器(15)の導管(54)の還流後
に、弁(20)に供給し、最終的に導管(55)を介してノ
ズル(118)に供給する。94〜96バールの過圧を用い
て、ブセレリンおよび共重合体を含有する溶液を、常用
の一成分ノズル(118)、Schlick 121 V型を通過し
て蒸留塔(12)中に噴霧し、この場合、CO2は、90バー
ル/36℃を有する超臨界状態および均一流量中の8.9kg/h
の通過量で、入口(8)を介して、蒸留塔を通過して導
かれる。このノズルは0.5mmの直径を有し、噴霧角度は1
0゜である。
The solution is placed in a water storage tank (17) -see Fig. 1, and is supplied using a conduit (50) of a piston pump (16), a conduit (52) and a conduit of a heat exchanger (15). After the reflux of (54), it is supplied to the valve (20) and finally to the nozzle (118) via the conduit (55). A solution containing buserelin and copolymer was sprayed into the distillation column (12) through a conventional one-component nozzle (118), Schlick 121 V type, using an overpressure of 94-96 bar, CO 2 is 8.9 kg / h in supercritical state and uniform flow rate with 90 bar / 36 ° C
Is passed through the distillation column via the inlet (8). This nozzle has a diameter of 0.5 mm and has a spray angle of 1
It is 0 °.

溶剤に対して超臨界のCO2の高い親和力に相応して、
一次的に形成された液滴から溶剤が抽出され;球状の固
体が残留する。この溶剤で負荷されたCO2は、導管(4
2)および(40)を通過して流出し、2つの磁力弁(7
および9)を通過して蒸留塔末端部に向い、60バールに
減圧される。この弁は、単位時間当たりに蒸留塔中に流
入する流動ガスの量が、蒸留塔の作業圧力を維持しなが
ら流出することができるような程度に操作されている。
Corresponding to the high affinity of supercritical CO 2 for solvents,
The solvent is extracted from the primarily formed droplets; spherical solids remain. CO 2 loaded with this solvent is
2) and (40) flow out and two magnetic valves (7
And through 9) towards the end of the distillation column and depressurized to 60 bar. This valve is operated to such an extent that the amount of fluid gas flowing into the distillation column per unit time can flow out while maintaining the working pressure of the distillation column.

60バールに減圧することによって冷却され、溶剤で負
荷されたCO2は、導管(62)を用いて、21℃に加熱され
たセパレータ(10)中に導かれ、このセパレータ中で、
溶剤混合物は、前記条件下に著しく減少した可溶性の結
果として、CO2中で分離する。溶剤混合物から遊離したC
O2は、導管(64および32)を用いて、圧力上昇および温
度上昇によって改めて超臨界状態に移行され(90バー
ル、36℃)および相応する粒子の十分な乾燥のために新
たに蒸留塔に、導管(34)、液状ガスポンプ(4)、導
管(36)、熱交換器(5)、導管(38)を介して入口
(8)を通過して供給される。
The CO 2 which has been cooled by reducing the pressure to 60 bar and which has been loaded with solvent, is led using a conduit (62) into a separator (10) heated to 21 ° C., where
Solvent mixture, as a result of the significantly reduced soluble in the conditions, separated in CO 2. C liberated from the solvent mixture
O 2 is again transferred to the supercritical state (90 bar, 36 ° C.) by increasing the pressure and the temperature using the conduits (64 and 32) and is freshly transferred to the distillation column for sufficient drying of the corresponding particles. , Conduit (34), liquid gas pump (4), conduit (36), heat exchanger (5), conduit (38) and through inlet (8).

セパレータ(10)中で分離された溶剤混合物の取り出
しは、弁(6)および(13)を通過する循環からのセパ
レータ(10)の分離後に行われ、かつ体気圧への減圧が
行われる。
The removal of the solvent mixture separated in the separator (10) is carried out after the separation of the separator (10) from the circulation through the valves (6) and (13) and the depressurization to body pressure.

20〜50分間である本来の噴霧時間の完結後に、セパレ
ータ(10)中で溶剤がもはや回収できなくなるまで、更
にCO2が蒸留塔によって導かれる。
After completion of the original spraying time, which is 20 to 50 minutes, further CO 2 is led by the distillation column until no more solvent can be recovered in the separator (10).

乾燥工程の終了後に、蒸留塔へのCO2流は、止めら
れ、蒸留塔は、弁(11)および(14)を介して大気圧に
減圧され、かつ粒子は、蒸留塔末端部(19)で取り出さ
れる。
After the end of the drying process, the CO 2 flow to the distillation column is stopped, the distillation column is depressurized to atmospheric pressure via valves (11) and (14), and the particles are collected at the end of the distillation column (19). Taken out at.

蒸留塔から取り出された乾燥粉末は、5〜10μmの直
径を有するブセレリン含有球体からなる。
The dry powder withdrawn from the distillation column consists of buserelin-containing spheres with a diameter of 5-10 μm.

実施例 2 H−RH−アンタゴニスト含有の微粒子重合体:ポリ−
(D,L)ラクチドコグリコリド、容積で0.8dl/gの製造 製造は、実施例1と同様にして行われる。
Example 2 Fine particle polymer containing H-RH-antagonist: poly-
Production of (D, L) lactide coglycolide, 0.8 dl / g by volume Production is carried out in the same way as in Example 1.

L−リジン(アルドリッヒ社)0.375g、LH−RH−アン
タゴニスト0.06gおよびポリ−(D,L)ラクチドコグリコ
リド[75:25]2.5g、容積で0.8dl/gを、一緒に酢酸(メ
ルク社)25mlおよびジクロルメタン(メルク社)75ml中
に溶解し、透明な溶液が生じるまで撹拌する。
0.375 g L-lysine (Aldrich), 0.06 g LH-RH-antagonist and 2.5 g poly- (D, L) lactide coglycolide [75:25], 0.8 dl / g by volume together with acetic acid (Merck) ) Dissolved in 25 ml and 75 ml of dichloromethane (Merck) and stirred until a clear solution results.

前記溶液は、94〜96バールの過圧を用いて、高圧装置
の蒸留塔中で噴霧される。この場合、均一流量中で90バ
ール/36℃を有するCO2は、蒸留塔を通過して導かれる。
CO2通過量は、8.9kg/hである。ノズルとして、0.5mmの
ノズル直径および10゜の噴霧角度を有するSchlick 121
V型の常用の一成分ノズルが使用される。
The solution is atomized in the distillation column of a high pressure device using an overpressure of 94-96 bar. In this case, CO 2 with 90 bar / 36 ° C. at a uniform flow rate is led through the distillation column.
The amount of passing CO 2 is 8.9 kg / h. As a nozzle, Schlick 121 with a nozzle diameter of 0.5 mm and a spray angle of 10 °
A V-type conventional one-component nozzle is used.

本来の噴霧時間の完結後に、高圧装置のセパレータ中
で溶剤がもはや回収できなくなるまで、CO2は、蒸留塔
を通過して導かれる。
After the end of the original spraying time, CO 2 is led through the distillation column until the solvent can no longer be recovered in the separator of the high-pressure device.

蒸留塔から得られた乾燥粉末は、5〜10μmの直径を
有する球体からなる。
The dry powder obtained from the distillation column consists of spheres with a diameter of 5-10 μm.

実施例 3 作用物質不含の微粒子重合体:ポリ−(D,L)ラクチド
コグリコリド、容積で0.8dl/gの製造 製造は、実施例1と同様にして行われる。
Example 3 Fine-particle polymer containing no active substance: poly- (D, L) lactide coglycolide, production of 0.8 dl / g in volume Production is carried out in the same way as in Example 1.

ジクロルメタン75mlおよびL−リジン(アルドリッヒ
社)0.375gを含有する酢酸25ml(それぞれメルク社)中
のポリ−(D,L)ラクチドコグリコリド2.5g[75:25]、
容積で0.8dl/gからなる溶液は、約94〜96バールの過圧
を用いて、高圧装置の蒸留塔中で噴霧される。同時に、
均一流量中で90バール/36℃を有するCO2は、蒸留塔を通
過して導かれる。このCO2通過量は、8.9kg/hである。ノ
ズルとして、0.5mmのノズル直径および10゜の噴霧角度
を有するSchlick 121 V型の常用の一成分ノズルが使
用される。
2.5 g of poly- (D, L) lactide coglycolide [25:25] in 25 ml of acetic acid (each from Merck) containing 75 ml of dichloromethane and 0.375 g of L-lysine (Aldrich),
A solution consisting of 0.8 dl / g by volume is atomized in the distillation column of the high-pressure device using an overpressure of about 94-96 bar. at the same time,
CO 2 with 90 bar / 36 ° C. in a uniform flow is led through the distillation column. This CO 2 passage amount is 8.9 kg / h. The nozzle used is a conventional one-component Schlick 121 V nozzle with a nozzle diameter of 0.5 mm and a spray angle of 10 °.

本来の噴霧時間の完結後に、高圧装置のセパレータ中
で溶剤がもはや回収できなくなるまで、CO2は、蒸留塔
を通過して導かれる。
After the end of the original spraying time, CO 2 is led through the distillation column until the solvent can no longer be recovered in the separator of the high-pressure device.

次の第1表は、作用物質含有の微小粒子の製造に使用
可能な重合体の他の例をまとめて示している。
The following Table 1 summarizes other examples of polymers which can be used for the production of active substance-containing microparticles.

この種の微粒子の製造は、実施例1〜3に詳説されて
いるのと同じ方法で行われる。
The production of this type of microparticles is carried out in the same manner as detailed in Examples 1-3.

重合体を、それぞれジクロルメタン(メルク社)75ml
および酢酸25ml中に溶解する。
75 ml of each dichloromethane (Merck)
And dissolved in 25 ml acetic acid.

それぞれの量のアミノ酸を添加する。D,L−フェニル
アラニンは、適当な方法で50mlまでのエタノール(メル
ク社)中に前溶解されている。
Add each amount of amino acid. D, L-phenylalanine is pre-dissolved in up to 50 ml of ethanol (Merck) in a suitable manner.

得られた微粒子は、滅菌されておりかつ溶剤残分、重
合触媒または開始剤分子不含である。
The resulting microparticles are sterilized and free of solvent residues, polymerization catalysts or initiator molecules.

該微粒子は、5〜10μmの均一な粒径分布を有する。  The fine particles have a uniform particle size distribution of 5 to 10 μm.

従って、該微粒子は、皮下注射または体内への移植の
ための遅延医薬形として使用を見出すことができる。
Therefore, the microparticles may find use as a delayed pharmaceutical form for subcutaneous injection or implantation in the body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 シュナイダー, ハネローレ ドイツ連邦共和国 D−4000 デュッセ ルドルフ ウルメンシュトラーセ 45 (58)調査した分野(Int.Cl.7,DB名) A61K 9/14 A61K 47/30 B01J 13/04 CAPLUS(STN)─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Schneider, Hanellore Federal Republic of Germany D-4000 Düsseldorf Ulmenstraße 45 (58) Fields investigated (Int.Cl. 7 , DB name) A61K 9/14 A61K 47 / 30 B01J 13/04 CAPLUS (STN)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】流動ガスを用いて加水分解可能な重合体か
ら作用物質負荷された調剤微粒子を製造するための方法
において、少なくとも1つの作用物質を含有する液状媒
体、担持剤としての少なくとも1つの重合体及び少なく
とも1つのアミノ酸を流動ガスと接触させ、液状媒体を
流動ガスによって除去させ、かつ液状媒体から遊離し
た、作用物質を担持した担持剤からなる調剤を微粒子の
形で取得することを特徴とする、加水分解可能な重合体
からなる作用物質負荷された調剤微粒子の製造法。
1. A process for the preparation of active substance-loaded preparation microparticles from a polymer hydrolyzable using a flowing gas, a liquid medium containing at least one active substance, at least one as a carrier. Characterized in that a polymer and at least one amino acid are brought into contact with a fluid gas, a liquid medium is removed by the fluid gas, and a preparation, which is liberated from the liquid medium and comprises a carrier carrying an active substance, is obtained in the form of fine particles. And a method for producing finely divided particles of an active substance loaded with a hydrolyzable polymer.
【請求項2】重合体が共重合体である、請求の範囲1記
載の流動ガスを用いる加水分解可能な重合体からなる作
用物質負荷された調剤微粒子の製造法。
2. A process for producing active substance-loaded preparation fine particles comprising a hydrolyzable polymer using a flowing gas according to claim 1, wherein the polymer is a copolymer.
【請求項3】重合体が、ポリ−l−ラクチド、ポリ−d,
l−ラクチドもしくは、それぞれの単量体成分の変動可
能な含量を有するポリ−l−ラクチドコグリコリドまた
はポリ−d,l−ラクチドコグリコリドである、請求の範
囲1または2記載の流動ガスを用いる加水分解可能な重
合体からなる作用物質負荷された調剤微粒子の製造法。
3. The polymer is poly-1-lactide, poly-d,
Use of a flowing gas according to claim 1 or 2, which is l-lactide or poly-l-lactide coglycolide or poly-d, l-lactide coglycolide with variable content of the respective monomer components. A process for the preparation of active substance-loaded preparation particles which consist of a hydrolyzable polymer.
【請求項4】重合体ラクチドコグリコリドが、85:15〜5
0:50の間のモル比を有する、請求の範囲1から3までの
いずれか1項記載の流動ガスを用いる加水分解可能な重
合体からなる作用物質負荷された調剤微粒子の製造法。
4. The polymer lactide coglycolide is 85: 15-5.
A process for the preparation of active substance-loaded preparation microparticles of a hydrolyzable polymer using a flowing gas according to any one of claims 1 to 3, which has a molar ratio between 0:50.
【請求項5】アミノ酸がL−リジン、L−フェニルアラ
ニンまたはL−トリプトファンである、請求の範囲1か
ら4までのいずれか1項記載の流動ガスを用いる加水分
解可能な重合体からなる作用物質負荷された調剤微粒子
の製造法。
5. The active substance load consisting of a hydrolyzable polymer using a flowing gas according to claim 1, wherein the amino acid is L-lysine, L-phenylalanine or L-tryptophan. For producing the prepared finely divided particles.
【請求項6】アミノ酸がD,L−フェニルアラニンであ
る、請求の範囲1から5までのいずれか1項記載の流動
ガスを用いる加水分解可能な重合体からなる作用物質負
荷された調剤微粒子の製造法。
6. Production of active substance-loaded preparation microparticles of a hydrolyzable polymer using a flowing gas according to claim 1, wherein the amino acid is D, L-phenylalanine. Law.
【請求項7】流動ガスとして、酸化窒素、二酸化炭素、
ハロゲン化炭化水素、飽和または不飽和炭化水素、二酸
化窒素またはアンモニアあるいはその混合物を使用す
る、請求の範囲1から6までのいずれか1項記載の流動
ガスを用いる加水分解可能な重合体からなる作用物質負
荷された調剤微粒子の製造法。
7. A fluidized gas comprising nitric oxide, carbon dioxide,
Action of a hydrolyzable polymer with a flowing gas according to any one of claims 1 to 6 using halogenated hydrocarbons, saturated or unsaturated hydrocarbons, nitrogen dioxide or ammonia or mixtures thereof. A method for producing substance-loaded preparation fine particles.
【請求項8】超臨界状態に移行することができる好適な
ガス並びに低沸点の液体およびその混合物を流動ガスと
して使用する、請求の範囲1から7までのいずれか1項
記載の流動ガスを用いる加水分解可能な重合体からなる
作用物質負荷された調剤微粒子の製造法。
8. Use of a fluidizing gas according to any one of claims 1 to 7 in which a suitable gas capable of transitioning to a supercritical state and low boiling point liquids and mixtures thereof are used as fluidizing gas. A process for the preparation of active substance-loaded preparation particles which consist of a hydrolyzable polymer.
JP50204192A 1990-12-22 1991-12-18 Method for producing active substance-containing fine particles comprising a hydrolyzable polymer Expired - Fee Related JP3496153B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4041563.5 1990-12-22
DE4041563A DE4041563A1 (en) 1990-12-22 1990-12-22 METHOD FOR PRODUCING ACTIVE MICROPARTICLES FROM HYDROLYTICALLY DEGRADABLE POLYMERS
PCT/DE1991/001002 WO1992011000A1 (en) 1990-12-22 1991-12-18 Method of producing microscopic particles made of hydrolytically decomposable polymers and containing active substances

Publications (2)

Publication Number Publication Date
JPH06504531A JPH06504531A (en) 1994-05-26
JP3496153B2 true JP3496153B2 (en) 2004-02-09

Family

ID=6421280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50204192A Expired - Fee Related JP3496153B2 (en) 1990-12-22 1991-12-18 Method for producing active substance-containing fine particles comprising a hydrolyzable polymer

Country Status (15)

Country Link
US (1) US5424076A (en)
EP (1) EP0563176B1 (en)
JP (1) JP3496153B2 (en)
KR (1) KR0162105B1 (en)
AT (1) ATE116542T1 (en)
CA (1) CA2098814C (en)
DE (2) DE4041563A1 (en)
DK (1) DK0563176T3 (en)
ES (1) ES2067324T3 (en)
FI (1) FI102811B (en)
GR (1) GR3015623T3 (en)
HU (1) HU217817B (en)
IE (1) IE65915B1 (en)
PT (1) PT99892B (en)
WO (1) WO1992011000A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981719A (en) 1993-03-09 1999-11-09 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US6090925A (en) 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
GB9313642D0 (en) * 1993-07-01 1993-08-18 Glaxo Group Ltd Method and apparatus for the formation of particles
US6169763B1 (en) 1995-06-29 2001-01-02 Qualcomm Inc. Characterizing a communication system using frame aligned test signals
FR2753639B1 (en) * 1996-09-25 1998-12-11 PROCESS FOR THE PREPARATION OF MICROCAPSULES OF ACTIVE MATERIALS COATED WITH A POLYMER AND NOVEL MICROCAPSULES OBTAINED IN PARTICULAR BY THE PROCESS
US5766637A (en) * 1996-10-08 1998-06-16 University Of Delaware Microencapsulation process using supercritical fluids
GB9703673D0 (en) * 1997-02-21 1997-04-09 Bradford Particle Design Ltd Method and apparatus for the formation of particles
DE19711393C1 (en) * 1997-03-19 1998-08-13 Fraunhofer Ges Forschung Process for microencapsulating particles
FR2762318B1 (en) * 1997-04-18 1999-09-17 Pharma Biotech COMPOSITIONS HAVING SUSTAINED RELEASE AND A PROCESS FOR THEIR PREPARATION
TW577759B (en) * 1997-04-18 2004-03-01 Ipsen Pharma Biotech Sustained release compositions in the form of microcapsules or implants and the process for their preparation
FR2776516B1 (en) * 1998-03-25 2001-05-25 Pharma Biotech COMPOSITIONS HAVING SUSTAINED RELEASE AND THEIR PREPARATION METHOD
US5989463A (en) 1997-09-24 1999-11-23 Alkermes Controlled Therapeutics, Inc. Methods for fabricating polymer-based controlled release devices
GB9810559D0 (en) * 1998-05-15 1998-07-15 Bradford Particle Design Ltd Method and apparatus for particle formation
GB9915975D0 (en) 1999-07-07 1999-09-08 Bradford Particle Design Ltd Method for the formation of particles
WO2001003671A2 (en) * 1999-07-13 2001-01-18 Skw Trostberg Aktiengesellschaft Method for producing powdery particle-reduced formulations with the aid of compressed gases
GB9920558D0 (en) * 1999-08-31 1999-11-03 Bradford Particle Design Ltd Methods for particle formation and their products
FR2811913B1 (en) * 2000-07-19 2003-09-19 Separex Sa ENCAPSULATION PROCESS IN THE FORM OF MICRO-CAPSULES OF FINE SOLID PARTICLES
US6521258B1 (en) * 2000-09-08 2003-02-18 Ferro Corporation Polymer matrices prepared by supercritical fluid processing techniques
US6579532B1 (en) * 2000-09-08 2003-06-17 Ferro Corporation Orthopedic mixtures prepared by supercritical fluid processing techniques
GB0027357D0 (en) * 2000-11-09 2000-12-27 Bradford Particle Design Plc Particle formation methods and their products
GB0117696D0 (en) 2001-07-20 2001-09-12 Bradford Particle Design Plc Particle information
GB0208742D0 (en) 2002-04-17 2002-05-29 Bradford Particle Design Ltd Particulate materials
US7582284B2 (en) * 2002-04-17 2009-09-01 Nektar Therapeutics Particulate materials
GB0216562D0 (en) 2002-04-25 2002-08-28 Bradford Particle Design Ltd Particulate materials
US9339459B2 (en) 2003-04-24 2016-05-17 Nektar Therapeutics Particulate materials
US6966990B2 (en) * 2002-10-11 2005-11-22 Ferro Corporation Composite particles and method for preparing
US20040185110A1 (en) * 2002-11-08 2004-09-23 Ronald Harland Formulations of low solubility bioactive agents and processes for making the same
EP1624862B1 (en) 2003-05-08 2014-12-31 Nektar Therapeutics Particulate materials
US7507823B2 (en) * 2004-05-06 2009-03-24 Bristol-Myers Squibb Company Process of making aripiprazole particles
EP1757361A1 (en) 2005-08-23 2007-02-28 Feyecon Development & Implementation B.V. Process for the preparation of encapsulates through precipitation
JP4705691B2 (en) * 2006-10-11 2011-06-22 クリティテック・インコーポレイテッド Method for precipitating small pharmaceutical particles in a container for use
EP2425820B1 (en) 2007-02-11 2015-04-08 MAP Pharmaceuticals Inc Method of therapeutic administration of dhe to enable rapid relief of migraine while minimizing side effect profile
ATE521337T1 (en) * 2007-07-18 2011-09-15 Feyecon Bv METHOD FOR PRODUCING A CO-CRYSTAL PHARMACEUTICAL COMPOSITION
WO2009110939A2 (en) * 2007-12-10 2009-09-11 Massachusetts Institute Of Technology Drug delivery system for pharmaceuticals and radiation
MX350838B (en) 2011-02-11 2017-09-18 Grain Proc Corporation * Salt composition.

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) * 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
PH19942A (en) * 1980-11-18 1986-08-14 Sintex Inc Microencapsulation of water soluble polypeptides
DE3218151A1 (en) * 1982-05-14 1983-11-17 Akzo Gmbh, 5600 Wuppertal MICROPOROUS, POWDER-SHAPED POLYLACTIDES AND METHOD FOR THE PRODUCTION THEREOF
CA1241246A (en) * 1983-07-21 1988-08-30 Salomon Hakim Surgically-implantable device susceptible of noninvasive magnetic adjustment
CH666406A5 (en) * 1984-02-29 1988-07-29 Sandoz Ag METHOD FOR PRODUCING microcapsules BROMOKRIPTINMESYLAT AS PHARMACOLOGICAL ACTIVE INCLUDED.
HU192982B (en) * 1984-04-28 1987-08-28 Allatorvostudomanyi Egyetem Process for producing synergetic pharmaceutical compositions containing thiamulin and antibacterial and antiprotozoal organic acids
DE3428372A1 (en) * 1984-08-01 1986-02-13 Hoechst Ag, 6230 Frankfurt CONTROLLED RELEASE REGULAR PEPTIDES MICROCAPSULES, PRODUCTION METHOD AND INJECTION PREPARATIONS
DE3701625A1 (en) * 1987-01-21 1988-08-04 Boehringer Ingelheim Kg PERORAL DRUG PREPARATION WITH DELAYED ACTIVE RELEASE
DE3738228A1 (en) * 1987-11-11 1989-05-24 Hoechst Ag METHOD FOR PRODUCING BIODEGRADABLE MICRO-CAPSULES OF WATER-SOLUBLE PEPTIDES AND PROTEINS AND MICRO-CAPSULES OBTAINED BY THIS PROCESS
DE3744329A1 (en) * 1987-12-28 1989-07-06 Schwarz Pharma Gmbh METHOD FOR THE PRODUCTION OF AT LEAST ONE ACTIVE AGENT AND A TRAITER COMPRISING PREPARATION
JP2827287B2 (en) * 1988-07-05 1998-11-25 武田薬品工業株式会社 Sustained release microcapsules containing water-soluble drugs
US5271945A (en) * 1988-07-05 1993-12-21 Takeda Chemical Industries, Ltd. Sustained release microcapsule for water soluble drug
ES2062530T3 (en) * 1989-05-01 1994-12-16 Alkermes Inc PROCEDURE FOR PRODUCING SMALL PARTICLES OF BIOLOGICALLY ACTIVE MOLECULES.
DE3917617A1 (en) * 1989-05-31 1990-12-06 Boehringer Ingelheim Kg MICRONIZED BIODEGRADABLE PARTICLES, PROCESS FOR THEIR PREPARATION AND THEIR USE
US5232707A (en) * 1989-07-10 1993-08-03 Syntex (U.S.A.) Inc. Solvent extraction process
JPH0363232A (en) * 1989-07-10 1991-03-19 Syntex Usa Inc Extraction of solvent
GB8928250D0 (en) * 1989-12-14 1990-02-21 Erba Carlo Spa Use of supercritical fluids to obtain porous sponges of biodegradable polymers

Also Published As

Publication number Publication date
PT99892B (en) 1999-06-30
EP0563176A1 (en) 1993-10-06
KR930701985A (en) 1993-09-08
WO1992011000A1 (en) 1992-07-09
DE4041563A1 (en) 1992-06-25
IE65915B1 (en) 1995-11-29
GR3015623T3 (en) 1995-06-30
US5424076A (en) 1995-06-13
FI102811B1 (en) 1999-02-26
HU9301812D0 (en) 1993-09-28
CA2098814A1 (en) 1992-06-23
HU217817B (en) 2000-04-28
IE914313A1 (en) 1992-07-01
ATE116542T1 (en) 1995-01-15
FI932761A0 (en) 1993-06-16
EP0563176B1 (en) 1995-01-04
CA2098814C (en) 1999-05-11
JPH06504531A (en) 1994-05-26
ES2067324T3 (en) 1995-03-16
DE59104172D1 (en) 1995-02-16
KR0162105B1 (en) 1998-12-01
DK0563176T3 (en) 1995-03-06
HUT63954A (en) 1993-11-29
FI102811B (en) 1999-02-26
PT99892A (en) 1992-12-31
FI932761A (en) 1993-06-16

Similar Documents

Publication Publication Date Title
JP3496153B2 (en) Method for producing active substance-containing fine particles comprising a hydrolyzable polymer
JP2818174B2 (en) Method and apparatus for producing a composition comprising an active ingredient embedded in a carrier
US7147806B2 (en) Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein
Freitas et al. Ultrasonic atomisation into reduced pressure atmosphere—envisaging aseptic spray-drying for microencapsulation
Tabata et al. Protein release from gelatin matrices
US8440614B2 (en) Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein
Wang et al. The application of a supercritical antisolvent process for sustained drug delivery
KR100730440B1 (en) Injectable buprenorphine microparticle compositions and their use
US20030147965A1 (en) Methods and products useful in the formation and isolation of microparticles
JP2009536942A (en) Method for producing sustained-release microspheres with improved dispersibility and injection administration capacity
CA2836891A1 (en) Method for preparing microparticles with reduced initial burst and microparticles prepared thereby
JP2011528373A (en) Process for preparing microparticles containing bioactive peptides
WO2005061095A1 (en) Process for producing microsphere and apparatus for producing the same
TW200520792A (en) Method and device for manufacturing minute sphere
US20050214227A1 (en) Microparticle formulations for sustained-release of bioactive compounds
AU770235B2 (en) Delivery of microparticle formulations using needleless syringe device for sustained-release of bioactive compounds
WO2001080835A1 (en) Process for producing microsphere
JP2010517928A (en) Method for preparing particles comprising a biological molecule and a carrier polymer
JP3709808B2 (en) Microsphere production method
Bhupathyraaj et al. Role Of Polymers As Engineered Platform For Pharmaceutical Dosage Forms
Bandi et al. Formulation of controlled-release drug delivery systems
Yeo et al. Recent advances in microencapsulation technology
Kompella Nagesh Bandi GlaxoSmithKline, Parsippany, New Jersey, USA Christopher B. Roberts and Ram B. Gupta Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
Kinahan The Influence of Supercritical Fluid Technology on the Physicochemical and Morphological Properties of Biodegradable Polymers and Drug-Polymer Systems
MXPA96004634A (en) Compositions for controlled supply, liqui

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees