JP3495785B2 - Quantitative water diversion system for intake or sewer system - Google Patents

Quantitative water diversion system for intake or sewer system

Info

Publication number
JP3495785B2
JP3495785B2 JP13086794A JP13086794A JP3495785B2 JP 3495785 B2 JP3495785 B2 JP 3495785B2 JP 13086794 A JP13086794 A JP 13086794A JP 13086794 A JP13086794 A JP 13086794A JP 3495785 B2 JP3495785 B2 JP 3495785B2
Authority
JP
Japan
Prior art keywords
water
channel
diversion
water channel
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13086794A
Other languages
Japanese (ja)
Other versions
JPH07317110A (en
Inventor
光男 山本
光章 向畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP13086794A priority Critical patent/JP3495785B2/en
Publication of JPH07317110A publication Critical patent/JPH07317110A/en
Application granted granted Critical
Publication of JP3495785B2 publication Critical patent/JP3495785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、下水等において余剰
の水を分流して流量を一定に保持するために使用される
取水または下水渠系の定量分水装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantitative water diversion system of a water intake or sewer system used for diversion of surplus water in sewage or the like to maintain a constant flow rate.

【0002】[0002]

【従来の技術】雨水混合式下水道管渠等の渠系において
は、雨のとき下水処理施設の負担を軽減するため、定量
分水装置を用いて一部を下水処理施設に、分水したもの
は一般河川に放流している。そして、この種の定量分水
装置としては、従来、図7a,bに示すような横越流渠
が使用されている。同図に示すように、水路2を画成す
る断面矩形のコンクリート壁1の一方の側壁を下縁が水
路2底面から所定高さに突出するように矩形状に切り欠
き、この切欠3の下縁をせき部3aとして余剰の水がせ
き部3aを越えて図外の分水路等に分水されるように
し、下水処理施設にその処理能力と対応した設定水量を
越える水が流れることを防止している。
2. Description of the Related Art In a sewer system such as a rainwater mixing type sewer pipe, a part of water is divided into a sewerage treatment facility using a quantitative water diversion device in order to reduce the burden on the sewerage treatment facility in case of rain. Is released to general rivers. As a quantitative water diversion device of this type, conventionally, a horizontal crossover as shown in FIGS. 7a and 7b is used. As shown in the same figure, one side wall of a concrete wall 1 having a rectangular cross section that defines a water channel 2 is cut out in a rectangular shape so that a lower edge projects from the bottom surface of the water channel 2 to a predetermined height. As the ridge 3a, excess water is passed over the ridge 3a and diverted to a diversion channel (not shown) to prevent the sewage treatment facility from flowing more water than the set amount corresponding to its treatment capacity. is doing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た定量分水装置にあっては、切欠3が水路2内の水の流
れと直角に開口してせき部3aが水路2内の水の流れと
平行に延在するため、せき部3aを越す水(分水)の流
れも水路2内の流速の影響を受けて図中矢印で示すよう
に水路2下流側に斜め下方に向かう射流となる。したが
って、水路内の上流側の流量が多くなると(流速が高く
なると)、せき部3aを越えること無く水路2下流へ流
れる水の流量も図6の破線に示すように増大し、水路2
内の下流側の流量を設定流量に維持することが困難であ
った。
However, in the above-mentioned quantitative water diversion device, the notch 3 opens at a right angle to the flow of water in the water channel 2 and the weir 3a forms the flow of water in the water channel 2. Since they extend in parallel, the flow of water (diversion) over the weir 3a is also influenced by the flow velocity in the water channel 2 and becomes a jet flow obliquely downward to the downstream side of the water channel 2 as shown by the arrow in the figure. Therefore, when the flow rate on the upstream side in the water channel increases (the flow velocity increases), the flow rate of water flowing to the downstream of the water channel 2 without exceeding the weir 3a also increases as shown by the broken line in FIG.
It was difficult to maintain the flow rate on the downstream side within the set flow rate.

【0004】そこで、従来の定量分水装置では、せき部
3aの流れ方向寸法(図7a中、F)を大きくしてその
対策とするが、下水の分水人孔の大型化を招くという問
題を生じる。具体的には、幅が2.5m、高さが1.3
4mで、せき部3aの高さが11cmの水路2であれば
せき部3aの長さを12.8m程度に構成しなければな
らず、下水の分水人孔の大型化が避けられない。そし
て、分水人孔の施工は交通煩雑な交差点で地下埋設物が
多い道路で行わなければならないため、上述した問題が
施工費用の増大、工期の長期間化等の原因となってい
た。この発明は、上記事情に鑑みてなされたもので、水
路の上流側の流量の多少に関わらず下流側の流量を一定
に維持でき、また、分水人孔の小型化が図れ施工費用の
節減と工期の短縮が可能な取水または下水渠系の定量分
水装置を提供することを目的とする。
Therefore, in the conventional quantitative water diversion device, the size in the flow direction of the weir 3a (F in FIG. 7a) is enlarged to take measures against it, but the problem of increasing the size of the sewage diversion hole is caused. Cause Specifically, the width is 2.5 m and the height is 1.3.
If the water channel 2 is 4 m and the height of the weir 3a is 11 cm, the length of the weir 3a must be configured to be about 12.8 m, and it is inevitable that the sewage diversion hole is enlarged. Further, since the construction of the diversion manhole must be carried out on a road where there are many underground buried objects at an intersection where traffic is complicated, the above-mentioned problems have caused an increase in construction cost and a longer construction period. The present invention has been made in view of the above circumstances, and can maintain a constant flow rate on the downstream side regardless of the flow rate on the upstream side of the waterway, and also can reduce the size of the diversion hole and save construction costs. It is an object of the present invention to provide a quantitative water diversion device of a water intake or sewer system that can shorten the construction period.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明にかかる取水または下水渠系の
定量分水装置は、水路底面に分水路と連通する複数の四
角形開口部を水流方向と直交するように設け、該開口部
の縁に所定高さのせき部を形成するとともに、該複数の
開口部によって前記水路底面に直角蛇行水路部を形成し
た。
In order to achieve the above object, the water intake or sewer system quantitative water diversion device according to the invention of claim 1 has a plurality of square openings communicating with the water diversion channel at the bottom of the water channel. It was provided so as to be orthogonal to the water flow direction, a weir having a predetermined height was formed at the edge of the opening, and a right-angled meandering water passage was formed at the bottom of the water passage by the plurality of openings.

【0006】そして、請求項1記載の発明にかかる取水
または下水渠系の定量分水装置は、前記直角蛇行水路部
の幅寸法を前記水路の幅寸法の1/5〜1/4とした態
様(請求項2)に構成することができる。
Further, in the quantitative water diversion system of the intake or sewer system according to the invention of claim 1, the width dimension of the right-angled meandering water channel portion is set to 1/5 to 1/4 of the width dimension of the water channel. (Claim 2).

【0007】また、請求項3記載の発明にかかる取水ま
たは下水渠系の定量分水装置は、水路途中に分水路と連
通する落し穴を設け、該落し穴上で該落し穴の上下流の
水路を側縁が所定高さのせき部で区画される連絡水路で
連続するとともに、該連絡水路に水流方向と直交する直
角蛇行水路部を形成した。
Further, in the quantitative water diversion system of the intake or sewer system according to the third aspect of the present invention, a drop hole communicating with the water diversion channel is provided in the water channel, and the water channel upstream and downstream of the drop hole is located on the side of the water drop channel. The edge was continuous with the connecting water channel partitioned by the weir of a predetermined height, and a right-angled meandering water channel section orthogonal to the water flow direction was formed in the connecting water channel.

【0008】[0008]

【作用】請求項1記載の分水装置によれば、水路内を流
れる余剰の水は直角蛇行水路部を流れる際にせき部に直
角に衝当してせき部を越えるため、余剰の水量が多い場
合(流速が高い場合)も多量の水を開口部から分水路に
流すことができ、水路の下流側の流量を一定に維持で
き、また、開口部の面積を小さくできる。したがって、
分水人孔も小型化でき、施工に際しての費用の節減、ま
た、工期の短縮化が図れる。
According to the water diverter according to the first aspect of the present invention, the surplus water flowing in the water channel collides with the weir at a right angle when flowing through the right-angled meandering water channel part and crosses the weir. Even when there is a large amount (when the flow velocity is high), a large amount of water can be made to flow from the opening to the water diversion channel, the flow rate on the downstream side of the water channel can be maintained constant, and the area of the opening can be reduced. Therefore,
The water diversion hole can also be downsized, which saves construction costs and shortens the construction period.

【0009】また、請求項3記載の分水装置によれば、
連絡水路を流れる余剰の水は直角蛇行水路部を流れる際
にせき部に直角に衝当してせき部を越え、落し穴から分
水路に流れる。このため、余剰の流量が多い場合は多量
の水を分水路に流すことができ、水路の下流側の流量を
一定に維持できる。したがって、連絡水路の長さ、ま
た、落し穴の開口面積を小さくでき、分水人孔の小型化
が図れ、施工に際しての費用の節減、また、工期の短縮
化が図れる。
According to the water diverter of the third aspect,
Excess water flowing through the connecting waterway hits the weir at a right angle when flowing through the right-angled meandering waterway, crosses the weir, and flows from the pit into the diversion channel. Therefore, when the surplus flow rate is large, a large amount of water can be made to flow in the diversion channel, and the flow rate on the downstream side of the water channel can be maintained constant. Therefore, the length of the connecting water channel and the opening area of the drop hole can be reduced, the diversion hole can be downsized, the cost for construction can be reduced, and the construction period can be shortened.

【0010】[0010]

【実施例】以下、この発明の実施例を図面を参照して説
明する。図1および図2はこの発明の第1実施例にかか
る取水または下水渠系の定量分水装置を示し、図1aが
平面図、図1bが同図1aに水の流れを矢印で示した作
用説明のための平面図、図2aが図1aのA−A矢視断
面図、図2bが図1aのB−B矢視断面図、図2cが図
1aのC−C矢視断面図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a quantitative water diversion device of a water intake or sewer system according to a first embodiment of the present invention, FIG. 1a is a plan view, and FIG. 1b is an operation in which the flow of water is shown by arrows in FIG. 1a. 2A is a sectional view taken along the line AA of FIG. 1A, FIG. 2B is a sectional view taken along the line BB of FIG. 1A, and FIG. 2C is a sectional view taken along the line C-C of FIG. 1A. .

【0011】図中、10は角筒状のコンクリート壁11
により画成される断面矩形状の下水水路、20は角筒状
のコンクリート壁21により画成され下水水路10の下
側に延設された断面矩形状の分水路である。これら下水
水路10と分水路20は一部でコンクリート壁11の底
壁とコンクリート壁21の上壁とを共有して並設され、
この共有コンクリート壁部分30に下水水路10と分水
路20とを連通する2つの開口部31,32が形成され
ている。
In the figure, 10 is a rectangular concrete wall 11
Is a sewage channel with a rectangular cross section, and 20 is a diversion channel with a rectangular cross section defined by a rectangular concrete wall 21 and extending below the sewage channel 10. These sewage channels 10 and diversion channels 20 are partially installed side by side, sharing the bottom wall of the concrete wall 11 and the top wall of the concrete wall 21.
The shared concrete wall portion 30 is formed with two openings 31 and 32 that connect the sewage channel 10 and the diversion channel 20.

【0012】開口部31,32は、図1a,bに示すよ
うに、下水水路10の流れ方向に離間し、かつ、流れ方
向と直角な方向に偏位し、千鳥状に配置され、直角蛇行
水路部99を形成している。これら開口部31,32は
それぞれ、下水水路20の流れ方向に平行な辺と直交す
る辺とにより画定される矩形状を有し、下水水路10側
の周縁に全周にわたって所定高さのせき部31a,32
aが形成されている。これらせき部31a,32aは、
開口部31,32と相似の矩形状を有し、下水水路10
の上下流側部分が流れ方向と直交する方向に延在する。
As shown in FIGS. 1a and 1b, the openings 31 and 32 are separated from each other in the flow direction of the sewage canal 10 and are displaced in the direction perpendicular to the flow direction, and are arranged in a staggered manner and form a right-angled meandering. A water channel portion 99 is formed. Each of these openings 31 and 32 has a rectangular shape defined by a side parallel to the flow direction of the sewage water channel 20 and a side orthogonal to the flow direction, and a weir portion having a predetermined height along the entire circumference at the peripheral edge on the sewage water channel 10 side. 31a, 32
a is formed. These coughs 31a and 32a are
It has a rectangular shape similar to the openings 31 and 32, and has a sewerage channel 10.
The upstream / downstream side portion extends in a direction orthogonal to the flow direction.

【0013】そして、開口部31は下水水路10幅方向
寸法W1 が下水水路10の幅寸法W0 の3/4〜4/5
に、同様に、開口部32は下水水路10幅方向寸法W2
が下水水路10の幅寸法W0 の3/4〜4/5に形成さ
れる。具体的な寸法としては、前述した従来の寸法に対
応させると、上記寸法W0 が2.5m、寸法W1 ,W2
が1.9m、また、開口部31の縦寸法L1 が1.5
m、開口部32の縦寸法L2 が2.5m、開口部31,
32間の間隔L3 が1.5mであり、この寸法設定では
分水人孔が5.5mの長さ(図中l)に形成される。
The width W 1 of the opening 31 in the width direction of the sewer channel 10 is 3/4 to 4/5 of the width W 0 of the sewer channel 10.
Similarly, the opening 32 has a dimension W 2 in the width direction of the sewer channel 10.
Are formed at 3/4 to 4/5 of the width dimension W 0 of the sewer channel 10. As concrete dimensions, when corresponding to the above-mentioned conventional dimensions, the dimension W 0 is 2.5 m, and the dimensions W 1 and W 2 are
Is 1.9 m, and the vertical dimension L 1 of the opening 31 is 1.5
m, the vertical dimension L 2 of the opening 32 is 2.5 m, the opening 31,
The distance L 3 between the 32 is 1.5 m, and with this dimension setting, a water diversion hole is formed with a length of 5.5 m (l in the figure).

【0014】この第1実施例にあっては、下水水路10
の上流側の流量が下流側へ流すべき設定流量を越えてい
る場合、水は図1bに実線と破線の矢印で示すように流
れ、余剰の水が開口部31,32から分水路20へ分水
される。ここで、同図の破線の矢印で示すように、余剰
の水は各開口部31,32のせき部31a,32aに直
角に衝当してせき部31a,32aを越えるため、流量
が多い場合、すなわち、流速が高い場合は流速に応じた
多量の水を開口部31,32から分水路20に流すこと
ができる。したがって、下水水路10の下流側の流量を
図6に太い実線で示すように設定流量に維持できる。そ
して、開口部31,32は余剰の水量が多い場合も多量
の水を分水路20へ分水できるため、開口部31,32
の寸法(面積)を小さくでき、分水人孔が小型化でき、
施工期間の短縮と費用の節減が可能となる。なお、図6
は上述した具体的寸法の1/5モデルにおける計測流量
を示す。
In the first embodiment, the sewer 10
If the flow rate on the upstream side exceeds the set flow rate that should flow to the downstream side, the water flows as shown by the solid line and the broken line arrow in FIG. 1b, and excess water is diverted from the openings 31, 32 to the water diversion channel 20. To be watered. Here, as shown by the broken line arrow in the figure, the excess water hits the weirs 31a and 32a of the openings 31 and 32 at a right angle and crosses the weirs 31a and 32a, so that the flow rate is large. That is, when the flow velocity is high, a large amount of water according to the flow velocity can flow from the openings 31 and 32 to the water diversion channel 20. Therefore, the flow rate on the downstream side of the sewer channel 10 can be maintained at the set flow rate as shown by the thick solid line in FIG. Since the openings 31, 32 can divert a large amount of water to the water diversion channel 20 even when the amount of surplus water is large, the openings 31, 32 are formed.
Can reduce the size (area) of the
It is possible to shorten the construction period and save costs. Note that FIG.
Shows the measured flow rate in the 1/5 model of the above-mentioned concrete dimension.

【0015】また、下水水路10の上流側の流量が下流
側へ流すべき設定流量以下であれば、図1bの実線の矢
印で示すように、水は直角蛇行水路部99を流れ、開口
部31,32へ流入すること無く下流側へ流れる。
If the flow rate on the upstream side of the sewage channel 10 is less than or equal to the set flow rate to be flown on the downstream side, the water flows through the right-angled meandering channel section 99 and the opening 31 as shown by the solid arrow in FIG. 1b. , 32 to the downstream side without flowing into.

【0016】そして、本発明者の上記1/5モデルでの
実験によれば、直角蛇行水路部99の幅寸法、すなわ
ち、水路10幅方向寸法W0 から開口部31,32の幅
方向寸法W1 ,W2 を引いた値(W0 −W1 )を12c
m(実際の寸法では、60cm)に設定したものでは表
1に示す特性が、また、直角蛇行水路部99の幅寸法を
16cm(実際の寸法では、80cm)に設定したもの
では表2に示す特性が得られ、その優れた分水性能が実
証された。なお、表1,表2における単位は1/Sであ
る。
According to the experiment by the inventor of the above-mentioned 1/5 model, the width dimension of the right-angled meandering water channel portion 99, that is, the dimension W 0 in the width direction of the channel 10 to the dimension W in the width direction of the openings 31, 32. The value obtained by subtracting 1 and W 2 (W 0 −W 1 ) is 12c.
Table 1 shows the characteristics shown in Table 1 when m (60 cm in actual size) is set, and Table 2 shows that the width dimension of the right-angled meandering waterway section 99 is set to 16 cm (80 cm in actual size). The characteristics were obtained and its excellent water diversion performance was demonstrated. The unit in Tables 1 and 2 is 1 / S.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】図3はこの発明の第2実施例にかかる取水
または下水渠系の定量分水装置の模式平面図である。な
お、この第2実施例および後述する他の実施例について
は、上述した第1実施例と同一の部分に同一の符号を付
して説明を省略する。
FIG. 3 is a schematic plan view of a quantitative water diversion system for a water intake or sewer system according to a second embodiment of the present invention. In addition, regarding the second embodiment and other embodiments described later, the same parts as those in the above-mentioned first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0020】この第2実施例は、矩形状の3つの開口部
33,34,35を水路10底壁に設けて分水路20に
連通する。これら開口部33,34,35は千鳥状に配
置、すなわち、開口部33が水路10の幅方向中央に、
開口部34,35が水路10の側壁に接して幅方向中央
に間隔を隔て配置される。そして、前述した第1実施例
で述べたように、各開口部33、34、35には、周縁
に開口形状と相似の矩形状のせき部33a,34a,3
5aが対向する一対の辺を流れ方向に、他の対向する一
対の辺を流れ方向と直交するように形成され、開口部3
3,34,35により直角蛇行水路部99が形成され
る。
In the second embodiment, three rectangular openings 33, 34, 35 are provided on the bottom wall of the water channel 10 to communicate with the water diversion channel 20. These openings 33, 34, 35 are arranged in a staggered manner, that is, the openings 33 are located at the center of the water channel 10 in the width direction.
The openings 34, 35 are in contact with the side walls of the water channel 10 and are arranged at intervals in the center in the width direction. Then, as described in the above-described first embodiment, each of the openings 33, 34, 35 has a rectangular weir 33a, 34a, 3 at the periphery similar to the opening shape.
5a is formed so that the pair of opposite sides are in the flow direction and the other pair of opposite sides is orthogonal to the flow direction.
A right angle meandering water channel portion 99 is formed by 3, 34 and 35.

【0021】なお、この実施例にあっては、開口部33
は寸法M3 が水路10幅寸法W0 の3/4〜4/5に、
また、開口部34,35は幅寸法M4 ,M5 の和(M4
+M5 )が水路10幅寸法W0 の3/4〜4/5になる
ように形成される。
In this embodiment, the opening 33
The dimension M 3 is 3/4 to 4/5 of the width W 0 of the water channel 10,
Further, the openings 34 and 35 are the sum of the width dimensions M 4 and M 5 (M 4
+ M 5 ) is formed to be 3/4 to 4/5 of the width dimension W 0 of the water channel 10.

【0022】この第2実施例にあっても、水路10の上
流側の流量が設定水量を越えている場合、図中破線の矢
印で示すように、余剰の水が各開口部33,34,35
のせき部33a,34a,35aに直角に衝当してせき
部33a,34a,35aを越え、開口部33,34,
35から分水路20へ流れる。このため、水路10の上
流側の流量が大きい場合はその流量に応じた多量の水を
分水でき、下流側の水量を設定水量に確実に保持でき
る。
Also in this second embodiment, when the flow rate on the upstream side of the water channel 10 exceeds the set water amount, excess water is generated in each of the openings 33, 34, as shown by the broken line arrow in the figure. 35
It strikes the weirs 33a, 34a, 35a at a right angle and crosses the weirs 33a, 34a, 35a, and the openings 33, 34,
From 35 to diversion 20. Therefore, when the flow rate on the upstream side of the water channel 10 is large, a large amount of water corresponding to the flow rate can be divided, and the water amount on the downstream side can be reliably maintained at the set water amount.

【0023】図4はこの発明の第3実施例にかかる取水
または下水渠系の定量分水装置を示す模式平面図であ
る。この第3実施例は、水路10の一方の側壁側を分水
路20上で一部矩形状に拡張し、水路10の他方の側壁
から拡張部19の中央部まで開口する開口部36と、拡
張部19の端部に開口する開口部37とを間隔を隔て形
成する。上述した各実施例と同様に、これら開口部3
6,37は、矩形状をなして周縁に一部が水の流れと対
向するせき部36a,37aが形成され、直角蛇行水路
部99を構成する。
FIG. 4 is a schematic plan view showing a quantitative water diversion system of a water intake or sewer system according to a third embodiment of the present invention. In this third embodiment, one side wall side of the water channel 10 is partially expanded on the water diversion channel 20 into a rectangular shape, and an opening 36 is opened from the other side wall of the water channel 10 to the central portion of the expansion section 19, and an expansion. An opening 37 that opens at the end of the portion 19 is formed at a distance. Similar to the above-mentioned embodiments, these openings 3
Reference numerals 6 and 37 form rectangular shapes, and the weir portions 36a and 37a, which partially face the flow of water, are formed in the peripheral edge thereof, and form a right-angled meandering water channel portion 99.

【0024】この第3実施例にあっても、水路10の上
流の流量が設定水量を越えている場合は、余剰の水がせ
き部36a,37aに直角に衝当してせき部36a,3
7aを越え、開口部36,37から分水路20へ流れ
る。このため、上流側の流量が多量の場合もその流量に
応じた水量を分水でき、水路10の下流側の流量を設定
流量に保持できる。
Also in the third embodiment, when the flow rate upstream of the water channel 10 exceeds the set water amount, excess water strikes the weirs 36a, 37a at a right angle, and the weirs 36a, 3a.
7a, and flows into the diversion channel 20 through the openings 36 and 37. Therefore, even if the flow rate on the upstream side is large, the amount of water can be divided according to the flow rate, and the flow rate on the downstream side of the water channel 10 can be maintained at the set flow rate.

【0025】なお、上述した実施例では矩形状の開口部
を例示するが、開口部の形状は矩形状に限られるもので
はなく、一辺に水が直角に衝当するように配置された三
角形状あるいは半月形状等の開口部を採用することも可
能であり、その形状は適宜に選択される。
In the above-mentioned embodiment, the rectangular opening is illustrated, but the shape of the opening is not limited to the rectangular shape, and the triangular shape is arranged so that the water strikes one side at a right angle. Alternatively, a half-moon shaped opening or the like can be adopted, and the shape is appropriately selected.

【0026】図5a,bはこの発明の第4実施例にかか
る取水または下水渠系の定量分水装置を示し、aが模式
平面図、bがaのD−D矢視図である。この第4実施例
は、水路10が円筒状の管17で画成される管渠から構
成され、この水路10が分水路20に開口する落し穴9
0で上流部分10aと下流部分10bとに分断される。
そして、水路10は上流部分10aと下流部分10bと
が樋部材(連絡水路)16で接続される。
FIGS. 5a and 5b show a water diversion or sewer system quantitative water diversion device according to a fourth embodiment of the present invention, in which a is a schematic plan view and b is a view taken along the line DD of FIG. In the fourth embodiment, a water channel 10 is composed of a pipe defined by a cylindrical tube 17, and the water channel 10 is a drop hole 9 that opens to a diversion channel 20.
At 0, it is divided into an upstream portion 10a and a downstream portion 10b.
In the water channel 10, the upstream portion 10a and the downstream portion 10b are connected by a gutter member (communication water channel) 16.

【0027】樋部材16は、管17と同一の曲率で管1
7の底部に連続する部分円弧状をなし、落し穴90上で
水路10内の水の流れ方向に直交するように4か所で9
0度に屈曲して直角蛇行水路部99を形成する。この樋
部材16は、その側縁がせき部を構成する。
The gutter member 16 has the same curvature as that of the pipe 17, and
7 is formed in a partially arcuate shape continuous to the bottom, and is arranged at 9 points at 4 points on the drop hole 90 so as to be orthogonal to the flow direction of water in the water channel 10.
It bends at 0 degrees to form a right-angled meandering water channel portion 99. The side edge of the gutter member 16 constitutes a weir.

【0028】この第4実施例にあっては、水路10の上
流部分10aの流量が設定流量を越えている場合、図中
破線の矢印で示すように、余剰の水の一部が上流部分1
0aから直接に落し穴90に落下し、また、樋部材16
を流れる余剰の水は樋部材16の側縁に直角に衝当して
側縁を越え、落し穴90に流れる。したがって、上述し
た各実施例と同様に、上流部分10aから樋部材16に
多量の水が流入した場合、その流量に応じた水量を落し
穴90に流すことができ、下流部分10bの流量を設定
流量に保持できる。
In the fourth embodiment, when the flow rate in the upstream portion 10a of the water channel 10 exceeds the set flow rate, a part of the surplus water will be in the upstream portion 1 as indicated by the broken line arrow in the figure.
0a directly into the drop hole 90, and the gutter member 16
Excess water flowing through the side wall of the gutter member 16 strikes the side edge of the gutter member 16 at a right angle, crosses the side edge, and flows into the drop hole 90. Therefore, similarly to each of the above-described embodiments, when a large amount of water flows into the gutter member 16 from the upstream portion 10a, the amount of water according to the flow rate can be dropped into the hole 90, and the flow rate of the downstream portion 10b can be set to the set flow rate. Can be held at

【0029】なお、上述した第4実施例では、樋部材1
6を所定の曲率をもって屈曲させるが、図5a中に仮想
線で示すように、直角に折り曲げることも可能である。
また、上述した各実施例では、下水に適用した例で説明
するが、この発明は下水のみならず上水またはかんがい
用の取水等にも適用できることは述べるまでもない。
In the fourth embodiment described above, the gutter member 1
Although 6 is bent with a predetermined curvature, it is also possible to bend it at a right angle, as shown by an imaginary line in FIG. 5a.
Further, in each of the above-described embodiments, an example in which the present invention is applied to sewage will be described, but it goes without saying that the present invention can be applied not only to sewage but also to tap water or water intake for irrigation.

【0030】[0030]

【発明の効果】以上説明したように、請求項1記載の発
明にかかる取水または下水渠系の定量分水装置によれ
ば、水路内を流れる余剰の水はせき部に直角に衝当して
せき部を越えるため、余剰の水量が多く流速が高い場合
には流速に応じ多量の水を開口部から分水路に流すこと
ができ、水路の下流側の流量を一定に維持でき、また、
開口部の面積を小さくできる。したがって、分水人孔も
小型化でき、施工に際しての費用の節減、また、工期の
短縮化が図れる。
As described above, according to the quantitative water diversion system of the intake or sewer system according to the invention described in claim 1, the surplus water flowing in the water channel hits the weir at right angles. Since the water exceeds the weir, a large amount of water can flow from the opening to the diversion channel according to the flow rate when the amount of surplus water is large and the flow rate is high, and the flow rate on the downstream side of the water channel can be maintained constant.
The area of the opening can be reduced. Therefore, the water diversion hole can also be downsized, the cost for construction can be reduced, and the construction period can be shortened.

【0031】また、請求項3記載の発明にかかる取水ま
たは下水渠系の定量分水装置によれば、連絡水路を流れ
る余剰の水はせき部に直角に衝当してせき部を越え、落
し穴から分水路に流れるため、余剰の流量が多い場合は
その流速に応じ多量の水を分水路に流すことができ、水
路の下流側の流量を一定に維持できる。したがって、連
絡水路の長さ、また、落し穴の開口面積を小さくでき、
分水人孔の小型化が図れ、施工に際しての費用の節減、
また、工期の短縮化が図れる。
Further, according to the water intake or sewer system quantitative water diversion device according to the third aspect of the present invention, the surplus water flowing through the connecting water channel hits the weir at a right angle, crosses the weir, and falls. Therefore, when the excess flow rate is large, a large amount of water can be flown into the diversion channel according to the flow velocity, and the flow rate on the downstream side of the water channel can be maintained constant. Therefore, the length of the connecting water channel and the opening area of the pit can be reduced,
The diversion hole can be downsized, and the construction cost can be reduced.
In addition, the construction period can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例にかかる取水または下水
渠系の定量分水装置を示し、aが模式平面図、bが同図
aに水の流れを矢印で示した作用説明図である。
FIG. 1 is a schematic plan view of a water intake or sewer system quantitative water diversion device according to a first embodiment of the present invention, a is a schematic plan view, and b is an operation explanatory view showing a flow of water by an arrow in FIG. 1 a. is there.

【図2】同定量分水装置の断面図であり、aが図1aの
A−A矢視断面、bが図1aのB−B矢視断面、cが図
1aのC−C矢視断面を示す。
FIG. 2 is a cross-sectional view of the identified water diversion device, where a is a cross section taken along the line AA of FIG. 1a, b is a cross section taken along the line BB of FIG. 1a, and c is a cross section taken along the line C-C of FIG. 1a. Indicates.

【図3】この発明の第2実施例にかかる取水または下水
渠系の定量分水装置の模式平面図である。
FIG. 3 is a schematic plan view of a quantitative water diversion system for a water intake or sewer system according to a second embodiment of the present invention.

【図4】この発明の第3実施例にかかる取水または下水
渠系の定量分水装置の模式構成図である。
FIG. 4 is a schematic configuration diagram of a quantitative water diversion device of a water intake or sewer system according to a third embodiment of the present invention.

【図5】この発明の第4実施例にかかる取水または下水
渠系の定量分水装置を示し、aが模式平面図、bがaの
D−D矢視図である。
FIG. 5 shows a quantitative water diversion device of a water intake or sewer system according to a fourth embodiment of the present invention, in which a is a schematic plan view and b is a DD arrow view of a.

【図6】1/5モデルにおける水路上流の流量と水路下
流の流量との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the flow rate upstream of the water channel and the flow rate downstream of the water channel in the 1/5 model.

【図7】従来の取水または下水渠系の定量分水装置を示
し、aが模式側面図、bが断面図である。
FIG. 7 shows a conventional quantitative water diversion device of a water intake or sewer system, in which a is a schematic side view and b is a sectional view.

【符号の説明】[Explanation of symbols]

10 水路 11 コンクリート壁 10a 上流部分 10b 下流部分 16 樋部材(連絡水路) 20 分水路 21 コンクリート壁 31,32,33,34,35,36,37 開口
部 31a,32a,33a,34a,35a,36a,3
7a せき部 90 落し穴 99 直角蛇行水路部
10 water channel 11 concrete wall 10a upstream portion 10b downstream portion 16 gutter member (connecting water channel) 20 water diversion channel 21 concrete wall 31, 32, 33, 34, 35, 36, 37 opening 31a, 32a, 33a, 34a, 35a, 36a , 3
7a Weir 90 Drop hole 99 Right angle meandering waterway

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E03B 3/02 E03F 1/00 E03B 7/07 E02B 13/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) E03B 3/02 E03F 1/00 E03B 7/07 E02B 13/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水路底面に分水路と連通する複数の四角
形開口部を水流方向と直交するように設け、該開口部の
縁に所定高さのせき部を形成するとともに、該複数の開
口部によって前記水路底面に直角蛇行水路部を形成した
ことを特徴とする取水または下水渠系の定量分水装置。
1. A plurality of quadrangular openings communicating with a water diversion channel are provided on a bottom surface of a water channel so as to be orthogonal to a water flow direction, and a weir having a predetermined height is formed at an edge of the water opening. A right-angled meandering water channel portion is formed on the bottom of the water channel by means of a water intake or sewer system quantitative water diversion device.
【請求項2】 前記直角蛇行水路部の幅寸法を前記水路
の幅寸法の1/5〜1/4とした請求項1記載の取水ま
たは下水渠系の定量分水装置。
2. The quantitative water diversion system of the intake or sewer system according to claim 1, wherein the width dimension of the right-angled meandering water channel portion is set to 1/5 to 1/4 of the width dimension of the water channel.
【請求項3】 水路途中に分水路と連通する落し穴を設
け、該落し穴上で該落し穴の上下流の水路を側縁が所定
高さのせき部で区画される連絡水路で連続するととも
に、該連絡水路に水流方向と直交する直角蛇行水路部を
形成したことを特徴とする取水または下水渠系の定量分
水装置。
3. A drop hole communicating with the diversion channel is provided in the middle of the water channel, and the water channel upstream and downstream of the drop hole is continuous with a connecting water channel whose side edge is divided by a weir of a predetermined height. A quantitative water diversion device for a water intake or sewer system, characterized in that a right-angled meandering water channel portion that is orthogonal to the water flow direction is formed in the connecting water channel.
JP13086794A 1994-05-23 1994-05-23 Quantitative water diversion system for intake or sewer system Expired - Fee Related JP3495785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13086794A JP3495785B2 (en) 1994-05-23 1994-05-23 Quantitative water diversion system for intake or sewer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13086794A JP3495785B2 (en) 1994-05-23 1994-05-23 Quantitative water diversion system for intake or sewer system

Publications (2)

Publication Number Publication Date
JPH07317110A JPH07317110A (en) 1995-12-05
JP3495785B2 true JP3495785B2 (en) 2004-02-09

Family

ID=15044559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13086794A Expired - Fee Related JP3495785B2 (en) 1994-05-23 1994-05-23 Quantitative water diversion system for intake or sewer system

Country Status (1)

Country Link
JP (1) JP3495785B2 (en)

Also Published As

Publication number Publication date
JPH07317110A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
US5836716A (en) Drainage pipe
US5672028A (en) Flood control system
Houston Hydraulic model study of Hyrum Dam auxiliary labyrinth spillway
US6155746A (en) Fish ladder and its construction
US6338595B1 (en) Storm water control header for culverts
JP3495785B2 (en) Quantitative water diversion system for intake or sewer system
Cottman et al. BRIDGES AND CULVERTS REDUCED IN SIZE AND COST BY USE OF CRITICAL FLOW TRANSITIONS.
CN201010988Y (en) Conveniently draining shutter grate cover
KR100570462B1 (en) Rainwater drainage sump and installation method
JPH072591U (en) Town basin
PL196965B1 (en) Water drainage system for consolidated earthen surfaces and structures
KR200416122Y1 (en) Structure for drain in road
Valentín et al. Hydraulic efficiency of macro-inlets
Kishore et al. Issues and Solutions of Drainage System for Dehradun City
JPS6022154Y2 (en) Manhole internal structure
JPH07139020A (en) Rain water channel system
Molzahn et al. Assessment of drainage infrastructure for urban areas
JPH0237013Y2 (en)
KR20230166470A (en) Street inlet grating cover waterway system with incline drain hole for low impact development of aquatic ecosystem
KR20160149029A (en) Decline connection type drain apparatus for bridge
JPH0352871Y2 (en)
Carr Micromanagement of Stormwater for Wet Weather Control
JP2002356901A (en) Rainwater flowing-down control method and speed reducing storage watercourse body used in the same
Pisano Case Study: Best Management Practice (BMP) Solution for a Combined Sewer Problem
Russo et al. Hydraulic efficiency of macro-inlets

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees