JP3494343B2 - Method for producing phosphorus pentafluoride - Google Patents

Method for producing phosphorus pentafluoride

Info

Publication number
JP3494343B2
JP3494343B2 JP33734597A JP33734597A JP3494343B2 JP 3494343 B2 JP3494343 B2 JP 3494343B2 JP 33734597 A JP33734597 A JP 33734597A JP 33734597 A JP33734597 A JP 33734597A JP 3494343 B2 JP3494343 B2 JP 3494343B2
Authority
JP
Japan
Prior art keywords
phosphorus
hydrogen fluoride
phosphorus trichloride
gas
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33734597A
Other languages
Japanese (ja)
Other versions
JPH11171517A (en
Inventor
敦之 徳永
忠幸 川島
久和 伊東
辻岡  章一
満夫 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP33734597A priority Critical patent/JP3494343B2/en
Publication of JPH11171517A publication Critical patent/JPH11171517A/en
Application granted granted Critical
Publication of JP3494343B2 publication Critical patent/JP3494343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/10Halides or oxyhalides of phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、各種ヘキサフルオ
ロリン酸塩、その中でも特に、リチウム電池およびリチ
ウムイオン電池用の電解質として有用なヘキサフルオロ
リン酸リチウムの原料として有用な五フッ化リンの製造
方法に関する。 【0002】 【従来技術】五フッ化リン(PF5)は、各種ヘキサフ
ルオロリン酸塩、その中でも特に、リチウム電池および
リチウムイオン電池用の電解質として有用なヘキサフル
オロリン酸リチウムの原料として、また、ポリマーの重
合触媒や半導体用ドーピング剤としても使用され、有用
な化合物である。 【0003】五フッ化リンを製造する方法としては、フ
ッ素(F2)とリン(P)を直接反応させる方法や五塩
化リン(PCl5)を三フッ化砒素(AsF3)やフッ化
水素(HF)等のフッ素化剤と反応させる方法などが知
られている。 【0004】 【発明が解決しようとする問題点】しかしながら、フッ
素とリンを直接反応させる方法は、反応速度が大きいた
め反応を制御するのが非常に難しいという問題がある。
さらに、高価なフッ素ガスを使用するため、当然ことな
がら得られる五フッ化リンも高価なものになってしま
う。 【0005】一方、五塩化リンを三フッ化砒素やフッ化
水素等のフッ素化剤と反応させる方法は、原料である五
塩化リンが吸湿性の大きな固体であるため取り扱いが難
しく、特に、製造設備への原料投入等においてその作業
性が悪く、機械化も図りにくいという問題がある。ま
た、五塩化リンが大気中の水分と容易に反応するため、
作業中にしばしば有毒な塩化水素ガスが発生し作業環境
を悪化させている。 【0006】 【問題点を解決するための具体的手段】本発明者は上記
問題に対し、検討を重ねた結果、三塩化リン(PC
3)とフッ化水素を反応させてガス状の三フッ化リン
(PF3)を生成させた後、三フッ化リンと塩素(C
2)を反応させてガス状の二塩化三フッ化リン(PC
23)を生成させ、さらに、二塩化三フッ化リンとフ
ッ化水素を反応させて五フッ化リンを得ることにより、
上記した従来技術の問題点を解決できることを見出し本
発明に到達したものである。 【0007】 すなわち本発明は、三塩化リンとフッ化
水素を反応させてガス状の三フッ化リンを生成(第一フ
ッ素化工程)させ、第一フッ素化工程で生成した三フッ
化リンと塩素を反応させてガス状の二塩化三フッ化リン
を生成(塩素化工程)させ、さらに、二塩化三フッ化リ
ンとフッ化水素を反応させて五フッ化リンを生成(第二
フッ素化工程)させて五フッ化リンを製造するに際し、
第一フッ素化工程において、フッ化水素と三塩化リンの
供給が、フッ化水素の三塩化リンに対するモル比が3〜
5の場合は、塩素化工程において、塩素の供給を、塩素
の三塩化リンに対するモル比が1〜10となるように供
給し、全工程(第一フッ素化工程、塩素化工程および第
二フッ素化工程)におけるフッ化水素の三塩化リンに対
するモル比が5〜30となるように、不足分のフッ化水
素を第二フッ素化工程で供給することを特徴とする五フ
ッ化リンの製造方法を提供するものである。 【0008】本発明において、三塩化リンとフッ化水素
を反応させてガス状の三フッ化リンを生成させた後、三
フッ化リンと塩素を反応させてガス状の二塩化三フッ化
リンを生成させ、さらに、二塩化三フッ化リンとフッ化
水素を反応させて五フッ化リンを得るのが望ましい。 【0009】出発原料に室温で液体である三塩化リンを
用いるため、五塩化リンを原料に使用する場合と比較し
て、製造設備への原料投入等においてその作業性が飛躍
的に向上し、機械化も容易に図れるというメリットを有
する。 【0010】以下、本発明を詳細に説明する。まず始め
に、三塩化リンとフッ化水素を反応させてガス状の三フ
ッ化リンを生成させ、その後、三フッ化リンと塩素を反
応させてガス状の二塩化三フッ化リンを生成させるのが
特に重要である。最初に、三塩化リンと塩素を反応させ
ると、固体の五塩化リンが生成、析出し、配管などを閉
塞するなどの問題が生じる。本発明では、最初に三塩化
リンとフッ化水素を反応させてガス状の三フッ化リンを
生成させた後、塩素と反応させるため、ガス状のものし
か生成せず、このため、配管などが閉塞する等の問題は
全く生じない。 【0011】第一フッ素化工程において、三塩化リンと
フッ化水素の混合方法としては、窒素やアルゴンなどの
不活性ガスのキャリアーに同伴させた三塩化リンガスと
フッ化水素ガスを接触させる方法、不活性ガスのキャリ
アーに同伴させた三塩化リンガスを無水フッ酸液と接触
させる方法、フッ化水素ガスを三塩化リンの液体と接触
させる方法、三塩化リンの液体と無水フッ酸液を接触さ
せる方法などを挙げることができる。この中で、フッ化
水素ガスを三塩化リンの液体と接触させる方法が、フッ
化水素と三塩化リンの供給量を制御しやすいことから最
も好適である。フッ化水素ガスの供給量はマスフローコ
ントローラーで、三塩化リン液の供給量は送液ポンプで
それぞれ容易に制御できる。 【0012】三塩化リンとフッ化水素の供給は、フッ化
水素の三塩化リンに対するモル比(HF/PCl3)が
5〜30の範囲が好ましくは、最適には、モル比が5〜
20の範囲であることが望ましい。モル比が5以下にな
ると後述するように追加のフッ化水素を必要とする。モ
ル比の上限については特に限定はされないが、モル比が
30以下であることが望ましい。またモル比を30より
大きくしても、効果はほとんど期待できないだけでな
く、逆に、第二フッ素化工程後、生成ガスを精製する場
合には多大な労力が必要となり不都合が生じる。 【0013】なお、第一フッ素化工程におけるフッ化水
素と三塩化リンの供給が、フッ化水素の三塩化リンに対
するモル比で5〜30であると、塩素化工程後新たにフ
ッ化水素を供給しなくても第二フッ素化工程で完遂さ
れ、その結果、作業が簡素化するのでより好ましい。 【0014】塩素化工程における塩素の供給量は、塩素
の供給した三塩化リンに対するモル比(Cl2/PC
3)が1〜10であることが望ましい。モル比が1未
満であると第一フッ素化工程で生成した三フッ化リンが
完全に二塩化三フッ化リンに変わらず一部残ってしまい
好ましくない。残った三フッ化リンは、第二フッ素化工
程に送られても五フッ化リンにはならない。モル比の上
限については特に限定はされないが、モル比が10以下
であることが望ましい。モル比を10より大きくして
も、効果はほとんど期待できないだけでなく、逆に、第
二フッ素化工程後、生成ガスを精製する場合には多大な
労力が必要となる等不都合が生じる。 【0015】なお、第一フッ素化工程において、フッ化
水素と三塩化リンの供給を、フッ化水素の三塩化リンに
対するモル比が3〜5の場合には、全工程(第一フッ素
化工程+塩素化工程+第二フッ素化工程)におけるフッ
化水素の三塩化リンに対するモル比で5〜30となるよ
うに、不足分のフッ化水素を新たに第二フッ素化工程で
供給することにより特に問題はない。モル比が3未満で
あると未反応の三塩化リンが残ってしまい好ましくな
い。生成物に三塩化リンが残っていると次の塩素化工程
で固体である五塩化リンが生成、析出し、配管の閉塞な
どの問題が生じる。 【0016】第一フッ素化工程、塩素化工程及び第二フ
ッ素化工程の各工程の操作圧力は、特に限定されない
が、操作及び設備が最も簡素される大気圧が最も好適で
ある。第一フッ素化工程、塩素化工程及び第二フッ素化
工程の各工程において、反応させる温度は、0〜120
℃の範囲が好ましく、最適には、20〜100℃が望ま
しい。0℃以下の温度で反応させるとフッ化水素が配管
内に凝集しやすくなり安定した反応ができなくなり、ま
た、付帯設備も高価なものになる等不都合が生じる。一
方、温度の上限については特に限定されないが、120
℃以下であることが望ましい。120℃より高い温度で
反応させても効果はほとんど期待できず、逆に、操作が
煩雑となり、また、付帯設備も高価なものになる等不都
合が生じ好ましくない。 【0017】本発明による五フッ化リンの製造方法によ
れば、第二フッ素化工程後に得られる生成ガスは、五フ
ッ化リン、フッ化水素、塩化水素および塩素の混合ガス
となる。フッ化水素、塩化水素および塩素等の不純物ガ
スが問題にならない場合にはそのまま使用してもよい
し、純度の高い五フッ化リンが必要な場合は、既知の方
法でフッ化水素、塩化水素および塩素等の不純物ガスを
除去した後使用すればよい。 【0018】 【実施例】以下、実施例により本発明を詳述するが、か
かる実施例に限定されるものではない。 【0019】なお、実施例で示した反応は、先端、先端
から300mm及び先端から600mmの3カ所にガス
導入管を具備したステンレス製反応管(直径:1インチ
φ、長さ=1,000mm)を使用して行った。以下、
3本のガス導入管は先端から、導入管1、導入管2及び
導入管3と呼ぶ。 【0020】実施例1 三塩化リン液とフッ化水素ガスをそれぞれ1.0g/m
in、650SCCMの速度[モル比(HF/PC
3)=3.99]で導入管1から反応管に供給した
(第一フッ素化工程)。その後、導入管2から塩素ガス
を200SCCMの速度[モル比(Cl2/PCl3)=
1.23]で(塩素化工程)、導入管3からフッ化水素
ガスを200SCCMの速度[モル比(HF/PC
3)=5.22]で(第二フッ素化工程)それぞれ反
応管に供給した。なお、反応圧力は大気圧、反応温度は
25℃である。 【0021】しばらくして反応管から出てきたガスの赤
外線吸収(IR)を測定したところ、五フッ化リン、フ
ッ化水素および塩化水素のピークが認められた。また、
ガス組成をガスクロマトグラフィーで分析したところ、
ガス組成は、五フッ化リン:15vol%、フッ化水
素:3vol%、塩化水素:78vol%、塩素:4v
ol%であった。 【0022】実施例2 三塩化リン液とフッ化水素ガスをそれぞれ1.0g/m
in、1500SCCMの速度[モル比(HF/PCl
3)=9.20]で導入管1から反応管に供給した(第
一フッ素化工程)。その後、導入管2から塩素ガスを3
00SCCMの速度[モル比(Cl2/PCl3)=1.
84]で反応管に供給した(塩素化工程)。なお、反応
圧力は大気圧、反応温度は35℃である。 【0023】しばらくして反応管から出てきたガスの赤
外線吸収(IR)を測定したところ、五フッ化リン、フ
ッ化水素および塩化水素のピークが認められた。また、
ガス組成をガスクロマトグラフィーで分析したところ、
ガス組成は、五フッ化リン:9vol%、フッ化水素:
38vol%、塩化水素:45vol%、塩素:8vo
l%であった。 【0024】実施例3 三塩化リン液の中に窒素ガス(N2)を吹き込んで得た
窒素と三塩化リンの混合ガス(PCl3の含有量:10
vol%)とフッ化水素ガスをそれぞれ500SCCM
の速度[モル比(HF/PCl3)=10.0]で導入
管1から反応管に供給した(第一フッ素化工程)。その
後、導入管2から塩素ガスを100SCCMの速度[モ
ル比(Cl2/PCl3)=1.84]で反応管に供給し
た(塩素化工程)。なお、反応圧力は大気圧、反応温度
は50℃である。 【0025】しばらくして反応管から出てきたガスの赤
外線吸収(IR)を測定したところ、五フッ化リン、フ
ッ化水素および塩化水素のピークが認められた。また、
ガス組成をガスクロマトグラフィーで分析したところ、
ガス組成は、五フッ化リン:5vol%、フッ化水素:
23vol%、塩化水素:24vol%、塩素:4vo
l%、窒素:44vol%であった。 【0026】実施例4 三塩化リン液とフッ化水素ガスをそれぞれ1.0g/m
in、650SCCMの速度[モル比(HF/PC
3)=3.99]で導入管1から反応管に供給した
(第一フッ素化工程)。その後、導入管2から塩素ガス
を200SCCMの速度[モル比(Cl2/PCl3)=
1.23]で反応管に供給した(塩素化工程)。なお、
反応圧力は大気圧、反応温度は25℃である。 【0027】しばらくして反応管から出てきたガスの赤
外線吸収(IR)を測定したところ、五フッ化リン、二
塩化三フッ化リンおよび塩化水素のピークが認められ
た。また、ガス組成をガスクロマトグラフィーで分析し
たところ、ガス組成は、五フッ化リン:9vol%、二
塩化三フッ化リン:10vol%、塩化水素:76vo
l%、塩素:5vol%であった。 【0028】実施例5 三塩化リン液とフッ化水素ガスをそれぞれ1.0g/m
in、1500SCCMの速度[モル比(HF/PCl
3)=9.20]で導入管1から反応管に供給した(第
一フッ素化工程)。その後、導入管2から塩素ガスを5
0SCCMの速度[モル比(Cl2/PCl3)=0.3
1]で反応管に供給した(塩素化工程)。なお、反応圧
力は大気圧、反応温度は35℃である。 【0029】しばらくして反応管から出てきたガスの赤
外線吸収(IR)を測定したところ、五フッ化リン、三
フッ化リン、フッ化水素および塩化水素のピークが認め
られた。また、ガス組成をガスクロマトグラフィーで分
析したところ、ガス組成は、五フッ化リン:3vol
%、三フッ化リン:7vol%、フッ化水素:55vo
l%、塩化水素:35vol%であった。 【0030】 【発明の効果】本発明の方法により、容易に反応を制御
でき、安全かつ安価に五フッ化リンを製造することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variety of hexafluorophosphates, and more particularly, to lithium hexafluorophosphate useful as an electrolyte for lithium batteries and lithium ion batteries. The present invention relates to a method for producing phosphorus pentafluoride useful as a raw material. [0002] Phosphorus pentafluoride (PF 5 ) is a raw material for various hexafluorophosphates, particularly lithium hexafluorophosphate useful as an electrolyte for lithium batteries and lithium ion batteries. It is also useful as a polymerization catalyst for polymers and as a dopant for semiconductors, and is a useful compound. As a method of producing phosphorus pentafluoride, a method of directly reacting fluorine (F 2 ) with phosphorus (P) or a method of converting phosphorus pentachloride (PCl 5 ) to arsenic trifluoride (AsF 3 ) or hydrogen fluoride A method of reacting with a fluorinating agent such as (HF) is known. [0004] However, the method of directly reacting fluorine and phosphorus has a problem that it is very difficult to control the reaction due to a high reaction rate.
Further, since expensive fluorine gas is used, naturally obtained phosphorus pentafluoride also becomes expensive. On the other hand, the method of reacting phosphorus pentachloride with a fluorinating agent such as arsenic trifluoride or hydrogen fluoride is difficult to handle because the raw material phosphorus pentachloride is a highly hygroscopic solid. There is a problem that the workability is poor at the time of inputting the raw materials to the facilities and it is difficult to achieve the mechanization. Also, since phosphorus pentachloride easily reacts with atmospheric moisture,
During work, toxic hydrogen chloride gas is often generated, deteriorating the working environment. The present inventor has studied the above problems and found that phosphorus trichloride (PC
l 3 ) and hydrogen fluoride to produce gaseous phosphorus trifluoride (PF 3 ), and then phosphorus trifluoride and chlorine (C
l 2 ) to react with gaseous phosphorus trichloride (PC)
l 2 F 3 ) and further reacting phosphorus trichloride and hydrogen fluoride to obtain phosphorus pentafluoride,
The inventors have found that the above-mentioned problems of the conventional technology can be solved, and have reached the present invention. That is, the present invention relates to a method of
Reaction of hydrogen to produce gaseous phosphorus trifluoride
Fluorination process)
Gaseous phosphorus trichloride by reacting phosphorus chloride and chlorine
(Chlorination step), and furthermore,
Reacts with hydrogen fluoride to produce phosphorus pentafluoride (II
Fluorination step) to produce phosphorus pentafluoride,
In the first fluorination step, hydrogen fluoride and phosphorus trichloride
The supply is at a molar ratio of hydrogen fluoride to phosphorus trichloride of 3 to
In the case of 5, in the chlorination step, supply of chlorine is
In a molar ratio of 1 to 10 with respect to phosphorus trichloride.
Supply, all processes (first fluorination process, chlorination process and
Hydrogen fluoride in the difluorination step)
Insufficient fluorinated water so that the molar ratio
It is intended to provide a method for producing phosphorus pentafluoride, characterized in that nitrogen is supplied in a second fluorination step . In the present invention, gaseous phosphorus trifluoride is produced by reacting phosphorus trichloride with hydrogen fluoride to produce gaseous phosphorus trifluoride and then reacting phosphorus trifluoride with chlorine. It is desirable to produce phosphorus pentafluoride by reacting phosphorus trichloride and hydrogen fluoride. Since phosphorus trichloride, which is a liquid at room temperature, is used as a starting material, the workability thereof is greatly improved when the raw material is introduced into a production facility, as compared with the case where phosphorus pentachloride is used as a raw material. It has the advantage that it can be easily mechanized. Hereinafter, the present invention will be described in detail. First, gaseous phosphorus trifluoride is produced by reacting phosphorus trichloride and hydrogen fluoride, and then gaseous phosphorus trichloride is produced by reacting phosphorus trifluoride with chlorine. Is particularly important. First, when phosphorus trichloride is reacted with chlorine, solid phosphorus pentachloride is generated and precipitated, causing problems such as clogging of pipes and the like. In the present invention, after first reacting phosphorus trichloride with hydrogen fluoride to generate gaseous phosphorus trifluoride, and then reacting with chlorine, only gaseous ones are generated. There is no problem such as blockage. In the first fluorination step, as a method of mixing phosphorus trichloride and hydrogen fluoride, a method of bringing phosphorus trichloride gas and hydrogen fluoride gas brought into contact with a carrier of an inert gas such as nitrogen or argon, A method of contacting phosphorus trichloride gas with a hydrofluoric acid solution entrained in a carrier of an inert gas, a method of contacting hydrogen fluoride gas with a liquid of phosphorus trichloride, a method of contacting a liquid of phosphorus trichloride with a solution of hydrofluoric acid Methods and the like can be mentioned. Among them, a method in which hydrogen fluoride gas is brought into contact with a liquid of phosphorus trichloride is most preferable because the supply amounts of hydrogen fluoride and phosphorus trichloride can be easily controlled. The supply amount of the hydrogen fluoride gas can be easily controlled by a mass flow controller, and the supply amount of the phosphorus trichloride solution can be easily controlled by a liquid feed pump. The supply of phosphorus trichloride and hydrogen fluoride is preferably performed at a molar ratio of hydrogen fluoride to phosphorus trichloride (HF / PCl 3 ) in the range of 5 to 30, and most preferably, in a molar ratio of 5 to 30.
It is desirable to be in the range of 20. When the molar ratio is 5 or less, additional hydrogen fluoride is required as described later. The upper limit of the molar ratio is not particularly limited, but is preferably 30 or less. If the molar ratio is larger than 30, not only little effect can be expected, but also, on the contrary, a great deal of labor is required when purifying the produced gas after the second fluorination step, which causes inconvenience. When the supply of hydrogen fluoride and phosphorus trichloride in the first fluorination step is 5 to 30 in molar ratio of hydrogen fluoride to phosphorus trichloride, hydrogen fluoride is newly added after the chlorination step. It is more preferable to complete the second fluorination step even without supplying, thereby simplifying the operation. The amount of chlorine supplied in the chlorination step is determined by the molar ratio of chlorine supplied to phosphorus trichloride (Cl 2 / PC
l 3 ) is preferably 1 to 10. If the molar ratio is less than 1, the phosphorus trifluoride produced in the first fluorination step is not completely changed to phosphorus trichloride and partly remains, which is not preferable. The remaining phosphorus trifluoride does not become phosphorus pentafluoride even if it is sent to the second fluorination step. The upper limit of the molar ratio is not particularly limited, but the molar ratio is desirably 10 or less. If the molar ratio is larger than 10, not only little effect can be expected, but also, on the contrary, a great deal of labor is required when purifying the generated gas after the second fluorination step. [0015] In the first fluorination step, the supply of hydrogen fluoride and phosphorus trichloride is carried out in all steps (first fluorination step) when the molar ratio of hydrogen fluoride to phosphorus trichloride is 3 to 5. (+ Chlorination step + second fluorination step) by supplying a shortage of hydrogen fluoride in the second fluorination step so that the molar ratio of hydrogen fluoride to phosphorus trichloride is 5 to 30. There is no particular problem. If the molar ratio is less than 3, unreacted phosphorus trichloride remains, which is not preferable. If phosphorus trichloride remains in the product, solid phosphorus pentachloride is generated and precipitated in the next chlorination step, causing problems such as blockage of piping. The operating pressure in each of the first fluorination step, the chlorination step and the second fluorination step is not particularly limited, but the atmospheric pressure at which the operation and equipment are the simplest is most preferable. In each step of the first fluorination step, the chlorination step and the second fluorination step, the reaction temperature is 0 to 120.
C. is preferred, and most preferably 20 to 100C. If the reaction is carried out at a temperature of 0 ° C. or less, hydrogen fluoride is likely to aggregate in the pipe, and a stable reaction cannot be performed. On the other hand, the upper limit of the temperature is not particularly limited.
It is desirable that the temperature be less than or equal to ° C. Even if the reaction is carried out at a temperature higher than 120 ° C., almost no effect can be expected. On the contrary, the operation becomes complicated and the accompanying equipment becomes expensive, which is not preferable. According to the method for producing phosphorus pentafluoride according to the present invention, the product gas obtained after the second fluorination step is a mixed gas of phosphorus pentafluoride, hydrogen fluoride, hydrogen chloride and chlorine. If impurity gases such as hydrogen fluoride, hydrogen chloride and chlorine do not pose a problem, they may be used as they are, or if highly pure phosphorus pentafluoride is required, hydrogen fluoride, hydrogen chloride may be used by a known method. It may be used after removing impurity gases such as chlorine and chlorine. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. The reaction described in the examples was carried out in a stainless steel reaction tube (diameter: 1 inch φ, length = 1,000 mm) provided with gas introduction pipes at three points: a tip, 300 mm from the tip and 600 mm from the tip. Was performed using Less than,
The three gas introduction tubes are referred to as an introduction tube 1, an introduction tube 2, and an introduction tube 3 from the tip. Example 1 Each of a phosphorus trichloride solution and hydrogen fluoride gas was 1.0 g / m 2.
in, 650 SCCM rate [molar ratio (HF / PC
l 3 ) = 3.99] from the introduction tube 1 to the reaction tube (first fluorination step). Thereafter, chlorine gas was supplied from the inlet pipe 2 at a rate of 200 SCCM [molar ratio (Cl 2 / PCl 3 ) =
1.23] (chlorination step), hydrogen fluoride gas was introduced from the inlet pipe 3 at a rate of 200 SCCM [molar ratio (HF / PC
l 3 ) = 5.22] (second fluorination step). The reaction pressure is atmospheric pressure, and the reaction temperature is 25 ° C. After a while, infrared absorption (IR) of the gas coming out of the reaction tube was measured, and peaks of phosphorus pentafluoride, hydrogen fluoride and hydrogen chloride were recognized. Also,
When the gas composition was analyzed by gas chromatography,
The gas composition was: phosphorus pentafluoride: 15 vol%, hydrogen fluoride: 3 vol%, hydrogen chloride: 78 vol%, chlorine: 4 v
ol%. Example 2 Phosphorus trichloride solution and hydrogen fluoride gas were each 1.0 g / m 2
in, 1500 SCCM rate [molar ratio (HF / PCl
3 ) = 9.20] and supplied to the reaction tube from the introduction tube 1 (first fluorination step). Thereafter, chlorine gas was introduced from the introduction pipe 2 for 3 hours.
00SCCM rate [molar ratio (Cl 2 / PCl 3 ) = 1.
84] (chlorination step). The reaction pressure is atmospheric pressure, and the reaction temperature is 35 ° C. After a while, infrared absorption (IR) of the gas coming out of the reaction tube was measured, and peaks of phosphorus pentafluoride, hydrogen fluoride and hydrogen chloride were recognized. Also,
When the gas composition was analyzed by gas chromatography,
The gas composition was phosphorus pentafluoride: 9 vol%, hydrogen fluoride:
38 vol%, hydrogen chloride: 45 vol%, chlorine: 8 vol
1%. Example 3 A mixed gas of nitrogen and phosphorus trichloride (PCL 3 content: 10 obtained by blowing nitrogen gas (N 2 ) into a phosphorus trichloride solution.
vol%) and hydrogen fluoride gas at 500 SCCM
(Molar ratio (HF / PCl 3 ) = 10.0) from the introduction tube 1 to the reaction tube (first fluorination step). Thereafter, chlorine gas was supplied from the introduction tube 2 to the reaction tube at a rate of 100 SCCM [molar ratio (Cl 2 / PCl 3 ) = 1.84] (chlorination step). The reaction pressure is atmospheric pressure and the reaction temperature is 50 ° C. After a while, infrared absorption (IR) of the gas coming out of the reaction tube was measured, and peaks of phosphorus pentafluoride, hydrogen fluoride and hydrogen chloride were recognized. Also,
When the gas composition was analyzed by gas chromatography,
The gas composition was phosphorus pentafluoride: 5 vol%, hydrogen fluoride:
23 vol%, hydrogen chloride: 24 vol%, chlorine: 4 vol
1%, nitrogen: 44 vol%. Example 4 Each of a phosphorus trichloride solution and hydrogen fluoride gas was 1.0 g / m 2.
in, 650 SCCM rate [molar ratio (HF / PC
l 3 ) = 3.99] from the introduction tube 1 to the reaction tube (first fluorination step). Thereafter, chlorine gas was supplied from the inlet pipe 2 at a rate of 200 SCCM [molar ratio (Cl 2 / PCl 3 ) =
1.23] (chlorination step). In addition,
The reaction pressure is atmospheric pressure, and the reaction temperature is 25 ° C. After a while, infrared absorption (IR) of the gas coming out of the reaction tube was measured, and peaks of phosphorus pentafluoride, phosphorus trichloride, and hydrogen chloride were recognized. When the gas composition was analyzed by gas chromatography, the gas composition was as follows: phosphorus pentafluoride: 9 vol%, phosphorus dichloride: 10 vol%, hydrogen chloride: 76 vol.
1%, chlorine: 5 vol%. Example 5 Phosphorus trichloride solution and hydrogen fluoride gas were each 1.0 g / m 2
in, 1500 SCCM rate [molar ratio (HF / PCl
3 ) = 9.20] and supplied to the reaction tube from the introduction tube 1 (first fluorination step). Then, chlorine gas is introduced from the introduction pipe 2 for 5 hours.
0 SCCM rate [molar ratio (Cl 2 / PCl 3 ) = 0.3
1] (chlorination step). The reaction pressure is atmospheric pressure, and the reaction temperature is 35 ° C. After a while, infrared absorption (IR) of the gas coming out of the reaction tube was measured, and peaks of phosphorus pentafluoride, phosphorus trifluoride, hydrogen fluoride and hydrogen chloride were recognized. When the gas composition was analyzed by gas chromatography, the gas composition was found to be phosphorus pentafluoride: 3 vol.
%, Phosphorus trifluoride: 7 vol%, hydrogen fluoride: 55 vol
1%, hydrogen chloride: 35 vol%. According to the method of the present invention, the reaction can be easily controlled, and phosphorus pentafluoride can be produced safely and inexpensively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻岡 章一 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (72)発明者 高畑 満夫 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (56)参考文献 特開 平10−245211(JP,A) 特開 平6−56413(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 25/00 - 25/46 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Shoichi Tsujioka 5253 Oki Obe, Oji, Ube City, Yamaguchi Prefecture Central Research Laboratory of Glass Co., Ltd. (72) Mitsuo Takahata 5253 Oki Ube, Oji Ube City, Yamaguchi Prefecture, Central (56) References JP-A-10-252111 (JP, A) JP-A-6-56413 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 25/00-25/46

Claims (1)

(57)【特許請求の範囲】 【請求項1】 三塩化リンとフッ化水素を反応させてガ
ス状の三フッ化リンを生成(第一フッ素化工程)させ、
第一フッ素化工程で生成した三フッ化リンと塩素を反応
させてガス状の二塩化三フッ化リンを生成(塩素化工
程)させ、さらに、二塩化三フッ化リンとフッ化水素を
反応させて五フッ化リンを生成(第二フッ素化工程)さ
せて五フッ化リンを製造するに際し、第一フッ素化工程
において、フッ化水素と三塩化リンの供給が、フッ化水
素の三塩化リンに対するモル比が3〜5の場合は、塩素
化工程において、塩素の供給を、塩素の三塩化リンに対
するモル比が1〜10となるように供給し、全工程(第
一フッ素化工程、塩素化工程および第二フッ素化工程)
におけるフッ化水素の三塩化リンに対するモル比が5〜
30となるように、不足分のフッ化水素を第二フッ素化
工程で供給することを特徴とする五フッ化リンの製造方
法。
(57) [Claims 1] The reaction of phosphorus trichloride and hydrogen fluoride to produce gas
To produce phosphorous trifluoride (first fluorination step)
Reaction between phosphorus trifluoride and chlorine generated in the first fluorination process
To produce gaseous phosphorus trichloride (chlorination process
Process), and furthermore, phosphorus trichloride and hydrogen fluoride
React to produce phosphorus pentafluoride (second fluorination step)
The production of phosphorus pentafluoride in the first fluorination step, when the supply of hydrogen fluoride and phosphorus trichloride is in a molar ratio of hydrogen fluoride to phosphorus trichloride of 3 to 5; In the above, the supply of chlorine is supplied such that the molar ratio of chlorine to phosphorus trichloride is 1 to 10, and all the steps (first fluorination step, chlorination step and second fluorination step) are performed.
The molar ratio of hydrogen fluoride to phosphorus trichloride is 5
30. A method for producing phosphorus pentafluoride, wherein a shortage of hydrogen fluoride is supplied in the second fluorination step so as to be 30.
JP33734597A 1997-12-08 1997-12-08 Method for producing phosphorus pentafluoride Expired - Fee Related JP3494343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33734597A JP3494343B2 (en) 1997-12-08 1997-12-08 Method for producing phosphorus pentafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33734597A JP3494343B2 (en) 1997-12-08 1997-12-08 Method for producing phosphorus pentafluoride

Publications (2)

Publication Number Publication Date
JPH11171517A JPH11171517A (en) 1999-06-29
JP3494343B2 true JP3494343B2 (en) 2004-02-09

Family

ID=18307763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33734597A Expired - Fee Related JP3494343B2 (en) 1997-12-08 1997-12-08 Method for producing phosphorus pentafluoride

Country Status (1)

Country Link
JP (1) JP3494343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096724A1 (en) 2007-02-08 2008-08-14 Stella Chemifa Corporation Processes for producing phosphorus pentafluoride and hexafluorophosphate
JP2012126621A (en) * 2010-12-17 2012-07-05 Daikin Industries Ltd Method for producing phosphorus pentafluoride

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307409B2 (en) 2007-08-16 2013-10-02 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
JP2010042937A (en) * 2008-08-08 2010-02-25 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphates
US8815058B2 (en) * 2010-06-30 2014-08-26 Honeywell International Inc. Extractive distillation of AsF5 and PF5 using HF
JP4983972B2 (en) * 2010-10-14 2012-07-25 ダイキン工業株式会社 Method for producing phosphorus pentafluoride
CN101955173A (en) * 2010-10-18 2011-01-26 天津市泰旭物流有限公司 Technology for preparing phosphorus trifluoride by adopting reaction of phosphorus trifluoride and zinc fluoride
US20150044118A1 (en) * 2012-01-19 2015-02-12 Lanxess Deutschland Gmbh Low-chloride lipf6
JP5865314B2 (en) * 2013-08-21 2016-02-17 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
US11511993B2 (en) 2017-03-13 2022-11-29 Kanto Denka Kogyo Co., Ltd. Method for producing phosphorus pentafluoride
WO2023168597A1 (en) * 2022-03-08 2023-09-14 Central Glass Company, Limited Method for producing phosphorus trifluoride and method for producing phosphorus pentafluoride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096724A1 (en) 2007-02-08 2008-08-14 Stella Chemifa Corporation Processes for producing phosphorus pentafluoride and hexafluorophosphate
JP2012126621A (en) * 2010-12-17 2012-07-05 Daikin Industries Ltd Method for producing phosphorus pentafluoride

Also Published As

Publication number Publication date
JPH11171517A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP3494343B2 (en) Method for producing phosphorus pentafluoride
JP3456934B2 (en) Method for producing lithium hexafluorophosphate
JP2005507849A (en) Method for producing phosphorus pentafluoride
CN107986248A (en) A kind of preparation method of double fluorine sulfimides
JP3798560B2 (en) Purification method of lithium hexafluorophosphate
JP3727797B2 (en) Method for producing nitrogen trifluoride
JPS6221724B2 (en)
JP5803098B2 (en) Method for producing phosphorus pentafluoride
JP3494344B2 (en) Method for producing lithium hexafluorophosphate
CN105502410A (en) Preparation and purification methods of silicon tetrafluoride
EP2628709A1 (en) Method for producing phosphorus pentafluoride
US3848064A (en) Production of sulfur tetrafluoride from sulfur chlorides and fluorine
CN101068763A (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
US6884403B2 (en) Method of purifying lithium hexafluorophosphate
US20090068083A1 (en) Process for synthesis of halogenated nitrogen
JP3071393B2 (en) Method for producing electrolyte for lithium battery
JP3258413B2 (en) Method for producing germanium tetrafluoride
Clifford et al. Reactions of pentafluorosulfanylamine and pentafluorosulfanyliminosulfur difluoride
JPH0781903A (en) Production of inorganic fluoride being in gaseous state at ordinary temperature
US20100121117A1 (en) Process for preparing decafluorocyclohexene
CN103443065B (en) The method of purification of difluoroacetic acid chloride
CN103253641B (en) Solid phase method for preparation of high purity phosphorus pentafluoride gas
JP2930351B2 (en) Manufacturing method of NF (3)
JPH09241187A (en) Production of tetrafluoromethane
WO2003080511A1 (en) Solid state thermal method for the synthesis of lithium hexafluro phosphate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees