JP3493921B2 - Vehicle steering control device - Google Patents

Vehicle steering control device

Info

Publication number
JP3493921B2
JP3493921B2 JP31999996A JP31999996A JP3493921B2 JP 3493921 B2 JP3493921 B2 JP 3493921B2 JP 31999996 A JP31999996 A JP 31999996A JP 31999996 A JP31999996 A JP 31999996A JP 3493921 B2 JP3493921 B2 JP 3493921B2
Authority
JP
Japan
Prior art keywords
steering
steering control
vehicle
control amount
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31999996A
Other languages
Japanese (ja)
Other versions
JPH10157645A (en
Inventor
和也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31999996A priority Critical patent/JP3493921B2/en
Publication of JPH10157645A publication Critical patent/JPH10157645A/en
Application granted granted Critical
Publication of JP3493921B2 publication Critical patent/JP3493921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は車両の操舵制御装置
に関し、特に車両前方の画像から走行路を認識し、この
走行路から逸脱しないように操舵制御を行う車両の操舵
制御装置に関する。 【0002】 【従来の技術】従来から、車両を安全に走行させること
を目的として、道路の白線等のガイドラインを認識して
自車の走行路を認識し、この走行路から逸脱しないよう
に操舵制御を行う車両の操舵制御装置が提案されてい
る。 【0003】例えば、特開平5−294250号公報に
は、運転者の方向指示器操作があるときに、車両が走行
する走行路から逸脱する動作により移動する側の後方車
両の有無を検出し、後方車両があるときに警報を行い、
また、運転者の方向指示操作がないときに車両が走行中
の走行路を維持して走行するように操舵制御することが
記載されている。 【0004】 【発明が解決しようとする課題】前輪の操舵制御により
進路補正を行う場合、横風等で大きな進路ずれを生じた
ときは前輪の操舵制御も単位時間当りの制御量が大きく
なり、ハンドルへの反力も大きくなる。このため、運転
者に違和感を与えると共に、その反力に対して無意識的
に逆方向への保舵力や修正操舵力を発生させてしまい、
進路補正の自動操舵と運転者のハンドル操作とが干渉す
る場合が生じる。 【0005】また、後輪の操舵制御により進路補正を行
う場合、横風等の進路ずれにより後輪を操舵制御する
と、その操舵制御初期には運転者の操舵との干渉は生じ
ない。しかし進路補正の操舵制御中に運転者が前輪を操
舵し、前輪の操舵がなされた状態で車両の進路方向がガ
イドラインと平行となって進路補正が終了した場合に
は、後輪の操舵量が前輪の操舵量と共に残ってしまう。
つまり、前輪を仮に左に切った状態で車両がガイドライ
ンと平行に直進するということは、後輪も左に切れてお
り、車体は右を向いて斜行(カニ走り)している。この
状態でハンドルを中立位置に戻すと車両は右旋回する。
また、この状態で後輪を左に切る進路補正が必要となっ
た場合には後輪の操舵制御量が更に大きくなって、後輪
の操舵範囲を越え、操舵制御量が制限されることにより
進路補正が不充分となるという問題があった。 【0006】本発明は上記の点に鑑みなされたもので、
前輪の操舵制御量が所定値を越えないよう後輪の操舵制
御を追加して行うことにより、運転者に違和感を与える
ことなく、運転者のハンドル操作と干渉することなく操
舵制御が可能な車両の操舵制御装置を提供することを目
的とする。 【0007】 【課題を解決するための手段】請求項1に記載の発明
は、図1に示すように、車両の走行路上のガイドライン
を認識するガイドライン認識手段M1を有し、上記ガイ
ドラインの認識結果に基づいて走行路上の目標位置まで
車両を移動するよう操舵制御を行う車両の操舵制御装置
において、上記ガイドラインの認識結果に基づいて、前
輪の操舵制御量を算出する第1の演算手段M2と、上記
前輪の操舵制御量が所定値を越えたとき、これを越えな
いよう上記前輪の操舵制御量と後輪の操舵制御量とを再
度算出する第2の演算手段M3と、上記第1又は第2の
演算手段で得られた操舵制御量に基づいて前輪又は前輪
及び後輪の操舵を行う制御手段M4と、 【0008】 【0009】 操舵手段の操舵時に車両が斜行したとき
後輪及び前輪夫々の操舵制御量を後輪の操舵角が0とな
る方向に復帰させる復帰手段M5を有する。 【0010】このため、後輪の操舵制御時に運転者がハ
ンドル操作を行って前輪と後輪の操舵方向が同一方向と
なり車両が斜行した場合にも後輪の操舵角が0まで復帰
されるため斜行を脱して車両を直進させることができ
る。 【0011】 【発明の実施の形態】図2は本発明装置の一実施例の構
成図を示す。同図中、前輪操舵機構は操舵ハンドル11
を有しており、この操舵ハンドル11は操舵軸12を介
してステアリングギヤボックス13内のピニオンギヤに
接続されている。このピニオンギヤはラックバー14と
噛合し、操舵ハンドル11の回転運動をラックバー14
の往復運動に変換して伝達するものである。ラックバー
14の両端には左右タイロッド及び左右ナックルアーム
を介して左右前輪が操舵可能に連結されている。また、
前輪の操舵制御のためのアクチュエータとしての電動モ
ータ15が設けられている。電動モータ15の回転軸は
ステアリングギヤボックス16内にてピニオンギヤに接
続されており、このピニオンギヤはラックバー14と噛
合している。 【0012】後輪操舵機構は後輪を操舵するためのアク
チュエータとしてのブラシレスモータなどの電動モータ
21を備えている。電動モータ21の回転軸はステアリ
ングギヤボックス22内にて減速機構を介して軸方向に
変位可能に支持されたリレーロッド23に接続されてお
り、リレーロッド23は同モータ21の回転に応じて軸
方向に変位する。減速機構の逆効率は小さく設定されて
いて、リレーロッド23側からの外部入力により電動モ
ータ21が回転駆動されることがないようになってい
る。リレーロッド23の両端にはタイロッド及びナック
ルアームを介して左右後輪が接続されていて、左右後輪
はリレーロッド23の軸方向の変位に応じて操舵され
る。 【0013】電子制御回路(ECU)30には操舵角セ
ンサ32,操舵トルクセンサ33,車速センサ34,ガ
イドライン認識装置36夫々と、電動モータ15,2
1,表示部40,警報部41夫々が接続されている。操
舵角センサ32は左右前輪の操舵角を検出する。操舵ト
ルクセンサ33は操舵ハンドル11の操舵トルクを検出
する。車速センサ34は車両の速度を検出する。 【0014】ガイドライン認識手段M1としてのガイド
ライン認識装置36は車両の進行方向前方の道路を撮像
した道路画像をカメラ38から供給され、この道路画像
を処理して道路の中央又は路側の白線や黄色の追越し禁
止線等のガイドラインを認識し、このガイドラインに基
づいて走行車線を認識し、図4に破線で示す走行路中央
線からの車両オフセット量E(n),及び二重線で示す
ガイドラインIからの距離L1 及び画像から得た車両の
走行路に対する傾き角θS 夫々を検出する。ここで、1
は前方注視点距離(一定値)、eは現在横ずれ量であ
り、 E(n)=e+L11 ≒1×θ と表わされる。この車両オフセット量E(n),傾き角
θS はECU30に供給される。 【0015】電子制御装置30は図3に示す如く、マイ
クロコンピュータで構成され、中央処理ユニット(CP
U)50と、リードオンリメモリ(ROM)52と、ラ
ンダムアクセスメモリ(RAM)54と、入力ポート回
路56と、出力ポート回路58と、通信回路60とを有
し、これらは双方向性のコモンバス62により互いに接
続されている。 【0016】入力ポート回路56には操舵角センサ3
2,操舵トルクセンサ33,車速センサ34夫々の出力
する検出信号が供給される。また、通信回路60にはガ
イドライン認識装置36の出力する車両オフセット量E
(n)及び傾き角θS が供給される。 【0017】ROM52には制御プログラムが記憶され
ている。CPU50は制御プログラムに基づき、後述す
る種々の演算を行い、その際にRAM54が作業領域と
して使用される。CPU50が制御プログラムを実行す
ることにより発生した制御信号は出力ポート回路58か
ら駆動回路42,43に供給される。駆動回路42,4
3夫々は電動モータ15,21夫々を駆動して前輪、後
輪夫々の操舵制御を行う。また、CPU50は操舵制御
の状態を表示部40に表示させると共に、車両が操舵制
御にも拘らず走行路を逸脱しそうな状態となると警報部
41から警報を発する。 【0018】図5はCPU30が実行する操舵制御処理
の一実施例のフローチャートを示す。この処理は所定時
間間隔で繰り返される。同図中、ステップS10ではガ
イドライン認識装置36から供給される車両オフセット
量E(n)と傾き角θS を読み取って、このE(n),
θS から自車両が現在走行している走行路を逸脱しよう
としているか否か、つまり操舵制御の必要があるか否か
を判別する。ここで、走行路逸脱が予測されなければス
テップS10を繰り返し、走行路逸脱が予測されればス
テップS12に進む。 【0019】第1の演算手段M2としてのステップS1
2では前輪だけの操舵による必要補正の操舵制御量を演
算する。ここで、操舵制御量演算の制約条件として、進
路補正時間T0と許容補正操舵角速度H0とを設けてい
る。進路補正時間T0は通常、運転者が持っている運転
に関する先読み時間(2〜3秒)である。これは2〜3
秒前の予測は50〜70%程度は妥当と考えられる。許
容補正操舵角速度H0は運転者に与える前輪の操舵制御
によるハンドルの手応えが違和感として感じられるハン
ドル周上の角速度であり、状況やハンドルの持ち方によ
っても差があるが、5〜20deg/sec 以下が妥当と考え
られる。この2つの制約条件下で操舵制御量がサイン波
形状となるよう前輪の操舵制御を行うのであるが、ステ
ップS12では図6(A)に示すように、車両70の現
在の車両オフセット量E(n)と傾き角θS と進路補正
時間とから、前輪だけの操舵制御で実線Vに示すような
経路で車両70が走行目標ラインにのるように図6
(B)に示す如きサイン波形状の操舵制御量Mf(Mf
は時間の関数である)を演算する。 【0020】次にステップS14では図6(A)に示す
ような操舵制御量Mfの最大値Mfmax が限界値A0を
越えるか否かを判別する。この限界値A0は最大操舵角
速度が許容補正操舵角速度H0であるときの最大操舵角
ある。ここで、Mfmax ≦A0の場合はステップS12
で演算された前輪の操舵制御量Mfが許容補正操舵角速
度H0の範囲内であるためステップS16に進んで、操
舵制御量Mfにより前輪だけの操舵制御を行う。この操
舵制御はステップS18で終了が確認されるまで繰り返
され、終了の確認により処理サイクルを終了する。 【0021】一方、Mfmax >A0の場合は図7に示す
ようにステップS12で演算された前輪の操舵制御量M
f(実線VIa)が許容補正操舵角速度H0を越え、ハン
ドルの手応えが運転者に違和感を与えるため、第2の演
算手段M3としてのステップS20に進み、最大値が限
界値A0となるような前輪操舵制御量Mfa(図7の実
線VIb)と後輪操舵制御量Mr(図7の実線VIc)とを
演算する。この演算は前後輪夫々から重心までの距離、
スタビリティファクタ等の車両諸元に基づいて行われ
る。ここでは前輪操舵制御量Mfaと後輪操舵制御量M
rとの同時制御が前輪のみの操舵制御量Mfの制御に相
当する。次にステップS22に進んで操舵制御量Mfa
による前輪の操舵制御と、操舵制御量Mrによる後輪の
操舵制御とを同時に行う。 【0022】ステップS24では上記の操舵制御が終了
したか否かを判別しており、終了していない場合はステ
ップS26で運転者による操舵、つまりハンドル操作が
行われたかどうかを判別し、運転者の操舵があった場合
にはステップS28で進路角θg が0か否かを判別す
る。ここで進路角θg は車両の重心位置の進行方向とガ
イドラインとのなす角であり、車両オフセット量E
(n)と傾き角θS とを時間的に解析することにより得
られる。ここでθg =0の場合は斜行の判別のためステ
ップS30に進む。運転者による操舵がない場合、又は
θg ≠0の場合は斜行のおそれがないためステップS2
2に進む。 【0023】ステップS30では後輪・操舵角が0か否
かを判別する。この後輪操舵角は後輪の操舵制御量をそ
のまま用いるが、別途、後輪の操舵角センサを設けても
良い。ここで、後輪操舵角が0でなければ進路角θg が
0であり車両が斜行しているためステップS32に進
む。 【0024】斜行では前輪と後輪が同一方向に操舵され
ているため、ステップS32で後輪操舵制御量Mrを角
速度Hrで後輪操舵角が0となる方向に戻す。これと共
に前輪操舵制御量Mfaを角速度Hfで前輪操舵角が0
となる方向に戻す。上記の角速度Hr,Hf夫々は許容
補正操舵角速度H0の1/2とする。このステップS3
2を実行後、ステップS30に進む。また、ステップS
30で後輪の操舵角が0の場合は車両が直進しているた
め処理サイクルを終了する。上記のステップS16,S
20が制御手段M4に対応し、ステップS32が復帰手
段M5に対応する。 【0025】ここで、図8の実線VIIbで示すような前輪
操舵制御量Mfaと、実線VIIcで示すような後輪操舵制
御量Mrとで操舵制御が開始された場合に、時刻t1
運転者がハンドル操作を行い、これにより期間T1にお
いて、車両70が図8(B)に示すように斜行したもの
とする。この場合も期間T2で後輪操舵制御量及び前輪
操舵制御量が後輪操舵角が0となるように戻され、車両
は斜行を止めて直進する。なお、時刻t2 では後輪操舵
角が0,かつ進路角θg が0となったが図8(B)に示
すように車両70が目標ライン上にのらない状態となる
場合もある。しかし、斜行となったのは運転者が意識的
にハンドル操作を行った結果であるため、操舵制御を終
了させて運転者のハンドル操作に任せても問題はない。 【0026】このように、前輪の操舵制御量は所定値を
越えることがなく、これにより運転者に違和感を与える
ことがないため、運転者が逆方向へ保持力や修正操舵力
を発生させることがなく、操舵制御と運転者のハンドル
操作との干渉を防止することができる。 【0027】 【発明の効果】上述の如く、請求項1に記載の発明は、
車両の走行路上のガイドラインを認識するガイドライン
認識手段を有し、上記ガイドラインの認識結果に基づい
て走行路上の目標位置まで車両を移動するよう操舵制御
を行う車両の操舵制御装置において、上記ガイドライン
の認識結果に基づいて、前輪の操舵制御量を算出する第
1の演算手段と、上記前輪の操舵制御量が所定値を越え
たとき、これを越えないよう上記前輪の操舵制御量と後
輪の操舵制御量とを再度算出する第2の演算手段と、上
記第1又は第2の演算手段で得られた操舵制御量に基づ
いて前輪又は前輪及び後輪の操舵を行う制御手段と、 【0028】 【0029】 操舵手段の操舵時に車両が斜行したとき
後輪及び前輪夫々の操舵制御量を後輪の操舵角が0とな
る方向に復帰させる復帰手段を有する。 【0030】このため、後輪の操舵制御時に運転者がハ
ンドル操作を行って前輪と後輪の操舵方向が同一方向と
なり車両が斜行した場合にも後輪の操舵角が0まで復帰
されるため斜行を脱して車両を直進させることができ
る。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a vehicle steering control device, and more particularly to a vehicle steering control system that recognizes a traveling road from an image ahead of the vehicle and performs steering control so as not to deviate from the traveling road. The present invention relates to a vehicle steering control device. 2. Description of the Related Art Conventionally, for the purpose of driving a vehicle safely, a guideline such as a white line on a road is recognized to recognize a travel path of a vehicle, and steering is performed so as not to deviate from the travel path. 2. Description of the Related Art A steering control device for a vehicle that performs control has been proposed. For example, Japanese Unexamined Patent Publication No. 5-294250 discloses that when a driver operates a turn signal, the presence or absence of a rear vehicle on the moving side due to an operation deviating from a traveling path on which the vehicle travels is detected. Alerts you when there is a vehicle behind you,
It also describes that steering control is performed so that the vehicle travels while maintaining the traveling path on which the vehicle is traveling when there is no direction instruction operation by the driver. [0004] When the course is corrected by steering control of the front wheels, when a large course deviation occurs due to cross wind or the like, the control amount per unit time of the steering control of the front wheels also becomes large, and the steering wheel is controlled. The reaction force is also greater. For this reason, it gives the driver a sense of incongruity, and unintentionally generates a steering force in the opposite direction or a corrected steering force in response to the reaction force,
In some cases, automatic steering for course correction and driver's steering operation interfere with each other. [0005] Further, when the course is corrected by the steering control of the rear wheel, if the steering of the rear wheel is controlled by the course deviation such as the crosswind, the interference with the driver's steering does not occur in the initial stage of the steering control. However, if the driver steers the front wheels during steering control for course correction and the course of the vehicle is parallel to the guideline in the state where the front wheels are steered, the steering amount of the rear wheels is reduced. It remains with the amount of front wheel steering.
That is, if the vehicle goes straight in parallel with the guideline with the front wheels turned left, the rear wheels are also turned left, and the vehicle body leans to the right (crab running). When the steering wheel is returned to the neutral position in this state, the vehicle turns right.
Also, in this state, if it becomes necessary to correct the course of turning the rear wheel to the left, the steering control amount of the rear wheel will be further increased, exceeding the rear wheel steering range, and the steering control amount will be limited. There is a problem that the course correction becomes insufficient. [0006] The present invention has been made in view of the above points,
A vehicle capable of performing steering control without giving the driver an uncomfortable feeling and without interfering with the driver's steering operation by additionally performing the steering control of the rear wheel so that the steering control amount of the front wheel does not exceed a predetermined value. It is an object of the present invention to provide a steering control device. [0007] According to an aspect of the invention according to claim 1, as shown in Figure 1, has a recognized guidelines recognizing means M1 guidelines traveling path of the vehicle, the recognition of the Guidelines A steering control device for a vehicle that performs steering control to move the vehicle to a target position on a traveling road based on the result; When the steering control amount of the front wheel exceeds a predetermined value, a second calculating means M3 for calculating again the steering control amount of the front wheel and the steering control amount of the rear wheel so as not to exceed the predetermined value; and control means M4 for performing steering of the front wheels or the front and rear wheels based on the steering control amount obtained by the second computing means, [0008] [0009] rear wheel when the vehicle is skewed when steering the helmsman stage as well as Having return means M5 for returning the steering control amount of people wheel respectively in the direction of the steering angle of the rear wheels is zero. For this reason, even when the driver operates the steering wheel during steering control of the rear wheels and the steering direction of the front wheels and the rear wheels becomes the same direction and the vehicle leans, the steering angle of the rear wheels is returned to zero. Therefore, the vehicle can go straight after getting out of the skew. FIG. 2 is a block diagram showing an embodiment of the apparatus according to the present invention. In the figure, the front wheel steering mechanism is a steering wheel 11.
The steering wheel 11 is connected to a pinion gear in a steering gear box 13 via a steering shaft 12. This pinion gear meshes with the rack bar 14 to rotate the steering handle 11 in rotation.
This is converted into a reciprocating motion and transmitted. Left and right front wheels are steerably connected to both ends of the rack bar 14 via left and right tie rods and left and right knuckle arms. Also,
An electric motor 15 is provided as an actuator for steering control of the front wheels. The rotation shaft of the electric motor 15 is connected to a pinion gear in the steering gear box 16, and the pinion gear meshes with the rack bar 14. The rear wheel steering mechanism has an electric motor 21 such as a brushless motor as an actuator for steering the rear wheels. The rotating shaft of the electric motor 21 is connected to a relay rod 23 supported in a steering gear box 22 via a speed reduction mechanism so as to be displaceable in the axial direction, and the relay rod 23 rotates in accordance with the rotation of the motor 21. Displace in the direction. The reverse efficiency of the speed reduction mechanism is set small, so that the electric motor 21 is not driven to rotate by an external input from the relay rod 23 side. Right and left rear wheels are connected to both ends of the relay rod 23 via tie rods and knuckle arms, and the left and right rear wheels are steered according to the axial displacement of the relay rod 23. An electronic control circuit (ECU) 30 includes a steering angle sensor 32, a steering torque sensor 33, a vehicle speed sensor 34, a guideline recognition device 36, and electric motors 15, 2.
1, a display unit 40 and an alarm unit 41 are connected. The steering angle sensor 32 detects the steering angles of the left and right front wheels. The steering torque sensor 33 detects the steering torque of the steering wheel 11. The vehicle speed sensor 34 detects the speed of the vehicle. A guide line recognizing device 36 as a guide line recognizing means M1 is supplied from a camera 38 with a road image obtained by photographing a road ahead in the traveling direction of the vehicle. The road image is processed and white lines or yellow lines at the center or road side of the road are processed. Recognizing the guideline such as the no-passing line, the traveling lane is recognized based on the guideline, and the vehicle offset E (n) from the center line of the traveling road indicated by a broken line in FIG. detecting the inclination angle theta S respectively for the distance L 1 and the travel path of the vehicle obtained from the image. Where 1
Is the forward fixation point distance (constant value), e is the current lateral shift amount, and is expressed as E (n) = e + L 1 L 1 ≒ 1 × θ. The vehicle offset E (n), the tilt angle theta S is supplied to the ECU 30. As shown in FIG. 3, the electronic control unit 30 is constituted by a microcomputer and has a central processing unit (CP).
U) 50, a read-only memory (ROM) 52, a random access memory (RAM) 54, an input port circuit 56, an output port circuit 58, and a communication circuit 60. They are connected to each other by 62. The input port circuit 56 includes the steering angle sensor 3
2. Detection signals output from the steering torque sensor 33 and the vehicle speed sensor 34 are supplied. The communication circuit 60 also has a vehicle offset amount E output from the guideline recognition device 36.
(N) and the inclination angle θ S are supplied. The ROM 52 stores a control program. The CPU 50 performs various operations to be described later based on the control program, and at that time, the RAM 54 is used as a work area. A control signal generated by the CPU 50 executing the control program is supplied from the output port circuit 58 to the drive circuits 42 and 43. Drive circuits 42, 4
Each of the three drives the electric motors 15 and 21 to perform steering control of the front wheels and the rear wheels, respectively. In addition, the CPU 50 displays the state of the steering control on the display unit 40, and issues an alarm from the alarm unit 41 when the vehicle is likely to deviate from the traveling path regardless of the steering control. FIG. 5 shows a flowchart of one embodiment of the steering control process executed by the CPU 30. This process is repeated at predetermined time intervals. In the figure, to read the vehicle offset E (n) and the inclination angle theta S supplied from the step S10 Guideline recognition device 36, the E (n),
vehicle from theta S whether trying to deviate from the travel path currently traveling, to determine whether that is in need of steering control. Here, if the deviation of the traveling road is not predicted, step S10 is repeated, and if the deviation of the traveling road is predicted, the process proceeds to step S12. Step S1 as the first calculating means M2
In step 2, a required correction steering control amount by steering only the front wheels is calculated. Here, a course correction time T0 and an allowable correction steering angular velocity H0 are provided as constraints on the calculation of the steering control amount. Normally, the course correction time T0 is a look-ahead time (2 to 3 seconds) relating to driving that the driver has. This is 2-3
About 50 to 70% of the prediction before 2 seconds is considered appropriate. The permissible corrected steering angular velocity H0 is an angular velocity on the periphery of the steering wheel at which the response of the steering wheel by the front wheel steering control given to the driver is felt as uncomfortable. Is considered appropriate. The steering control of the front wheels is performed so that the steering control amount has a sine wave shape under these two constraints. In step S12, as shown in FIG. 6A, the current vehicle offset amount E ( n), the inclination angle θ S, and the course correction time, as shown in FIG.
(B) A sine wave shaped steering control amount Mf (Mf
Is a function of time. Next, in step S14, it is determined whether or not the maximum value Mfmax of the steering control amount Mf as shown in FIG. 6A exceeds the limit value A0. The limit value A0 is the maximum steering angle when the maximum steering angular velocity is the allowable corrected steering angular velocity H0. Here, if Mfmax ≦ A0, step S12
Since the steering control amount Mf of the front wheel calculated in the above is within the range of the permissible corrected steering angular velocity H0, the process proceeds to step S16, and the steering control of only the front wheel is performed based on the steering control amount Mf. This steering control is repeated until the end is confirmed in step S18, and the processing cycle ends when the end is confirmed. On the other hand, when Mfmax> A0, as shown in FIG. 7, the front wheel steering control amount M calculated in step S12 is calculated.
Since f (solid line VIa) exceeds the permissible corrected steering angular velocity H0 and the response of the steering wheel gives the driver an uncomfortable feeling, the process proceeds to step S20 as the second calculating means M3, and the front wheel such that the maximum value becomes the limit value A0. A steering control amount Mfa (solid line VIb in FIG. 7) and a rear wheel steering control amount Mr (solid line VIc in FIG. 7) are calculated. This calculation calculates the distance from each of the front and rear wheels to the center of gravity,
This is performed based on vehicle specifications such as a stability factor. Here, the front wheel steering control amount Mfa and the rear wheel steering control amount M
The simultaneous control with r corresponds to the control of the steering control amount Mf of only the front wheels. Next, the routine proceeds to step S22, where the steering control amount Mfa
, And the steering control of the rear wheels based on the steering control amount Mr is simultaneously performed. In step S24, it is determined whether or not the above-described steering control has been completed. If not, in step S26, it is determined whether or not the driver has performed steering, that is, whether or not the steering wheel operation has been performed. If the steering has been performed, it is determined in step S28 whether or not the course angle θg is zero. Here, the course angle θg is an angle between the traveling direction of the center of gravity of the vehicle and the guide line, and the vehicle offset amount E
It is obtained by analyzing (n) and the inclination angle θ S temporally. If .theta.g = 0, the flow advances to step S30 to determine skew. If there is no steering by the driver, or if θg ≠ 0, there is no possibility of skewing, so step S2
Proceed to 2. In step S30, it is determined whether or not the rear wheel / steering angle is zero. Although the rear wheel steering angle uses the steering control amount of the rear wheel as it is, a rear wheel steering angle sensor may be separately provided. Here, if the rear wheel steering angle is not 0, the course angle θg is 0 and the vehicle is traveling obliquely, so the process proceeds to step S32. Since the front wheel and the rear wheel are steered in the same direction in the skew, the rear wheel steering control amount Mr is returned to the direction in which the rear wheel steering angle becomes zero at the angular velocity Hr in step S32. At the same time, the front wheel steering control amount Mfa is changed to the angular speed Hf and the front wheel steering angle becomes zero.
Return to the direction Each of the angular velocities Hr and Hf is set to 1 / of the allowable corrected steering angular velocity H0. This step S3
After the execution of step 2, the process proceeds to step S30. Step S
If the steering angle of the rear wheel is 0 at 30, the processing cycle ends because the vehicle is traveling straight. The above steps S16, S
20 corresponds to the control means M4, and step S32 corresponds to the return means M5. Here, when the steering control is started with the front wheel steering control amount Mfa as shown by the solid line VIIb in FIG. 8 and the rear wheel steering control amount Mr as shown by the solid line VIIc, the operation is started at time t 1 . It is assumed that the driver performs the steering operation, and thereby the vehicle 70 skews as shown in FIG. 8B in the period T1. Also in this case, in the period T2, the rear wheel steering control amount and the front wheel steering control amount are returned so that the rear wheel steering angle becomes 0, and the vehicle stops straight and travels straight. Incidentally, the rear wheel steering angle at the time t 2 is 0, and sometimes became a track angle θg is 0 in a state where the vehicle 70 is not ride on the target line as shown in FIG. 8 (B). However, the skewing is a result of the driver consciously operating the steering wheel, so that there is no problem if the steering control is terminated and the driver operates the steering wheel. As described above, since the steering control amount of the front wheels does not exceed the predetermined value, and thereby the driver does not feel uncomfortable, the driver generates the holding force or the correction steering force in the reverse direction. Therefore, interference between the steering control and the driver's steering operation can be prevented. As described above, the first aspect of the present invention provides
The vehicle steering control device includes a guideline recognizing means for recognizing the guideline on the traveling path of the vehicle, and performs a steering control to move the vehicle to a target position on the traveling path based on the recognition result of the guideline. A first calculating means for calculating a front wheel steering control amount based on the result; and when the front wheel steering control amount exceeds a predetermined value, the front wheel steering control amount and the rear wheel steering are controlled so as not to exceed the predetermined value. A second calculating means for calculating the control amount again, a control means for steering the front wheel or the front and rear wheels based on the steering control amount obtained by the first or second calculating means, [0029] with a return means for returning in the direction in which the steering angle of the rear wheel steering control amount of the rear wheels and front wheels, respectively when the vehicle upon steering of the steering hand stage skewed becomes 0. Therefore, the steering angle of the rear wheels is returned to 0 even when the driver operates the steering wheel during the steering control of the rear wheels and the steering directions of the front wheels and the rear wheels become the same direction and the vehicle leans. Therefore, the vehicle can go straight after getting out of the skew.

【図面の簡単な説明】 【図1】本発明の原理図である。 【図2】本発明装置の構成図である。 【図3】ECUのブロック図である。 【図4】車両オフセット量を説明するための図である。 【図5】操舵制御処理のフローチャートである。 【図6】本発明の操舵制御を説明するための図である。 【図7】本発明の操舵制御を説明するための図である。 【図8】本発明の操舵制御を説明するための図である。 【符号の説明】 10 前輪操舵機構 11 操舵ハンドル 12 操舵軸 13,16,22 ステアリングギヤボックス 14 ラックバー 15,21 電動モータ 20 後輪操舵機構 23 リレーロッド 30 ECU 32 操舵角センサ 33 操舵トルクセンサ 34 車速センサ 36 ガイドライン認識装置 38 カメラ 40 表示部 41 警報部 42,43 駆動回路 M1 ガイドライン認識手段 M2 第1の演算手段 M3 第2の演算手段 M4 制御手段 M5 復帰手段[Brief description of the drawings] FIG. 1 is a diagram illustrating the principle of the present invention. FIG. 2 is a configuration diagram of the device of the present invention. FIG. 3 is a block diagram of an ECU. FIG. 4 is a diagram for explaining a vehicle offset amount. FIG. 5 is a flowchart of a steering control process. FIG. 6 is a diagram for explaining steering control according to the present invention. FIG. 7 is a diagram for explaining steering control according to the present invention. FIG. 8 is a diagram for explaining steering control according to the present invention. [Explanation of symbols] 10 Front wheel steering mechanism 11 Steering wheel 12 Steering axis 13,16,22 Steering gear box 14 rack bar 15,21 Electric motor 20 Rear wheel steering mechanism 23 relay rod 30 ECU 32 Steering angle sensor 33 Steering torque sensor 34 Vehicle speed sensor 36 Guideline Recognition Device 38 Camera 40 Display 41 Alarm section 42, 43 drive circuit M1 guideline recognition means M2 First calculation means M3 Second calculation means M4 control means M5 return means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B62D 6/00 - 6/06 B62D 7/00 - 7/20 G08G 1/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B62D 6/00-6/06 B62D 7/00-7/20 G08G 1/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】 車両の走行路上のガイドラインを認識す
るガイドライン認識手段を有し、上記ガイドラインの認
識結果に基づいて走行路上の目標位置まで車両を移動す
るよう操舵制御を行う車両の操舵制御装置において、 上記ガイドラインの認識結果に基づいて、前輪の操舵制
御量を算出する第1の演算手段と、 上記前輪の操舵制御量が所定値を越えたとき、これを越
えないよう上記前輪の操舵制御量と後輪の操舵制御量と
を再度算出する第2の演算手段と、 上記第1又は第2の演算手段で得られた操舵制御量に基
づいて前輪又は前輪及び後輪の操舵を行う制御手段と 操舵手段の操舵時に車両が斜行したとき後輪及び前輪夫
々の操舵制御量を後輪の操舵角が0となる方向に復帰さ
せる復帰手段を 有することを特徴とする車両の操舵制御
装置。
(57) [Claims 1] A guide line recognizing means for recognizing a guide line on a traveling path of a vehicle, and based on the recognition result of the guide line, steering to move the vehicle to a target position on the traveling path. A first calculating means for calculating a front wheel steering control amount based on the recognition result of the guideline, wherein the first wheel steering control amount exceeds a predetermined value. A second calculating means for recalculating the front wheel steering control amount and the rear wheel steering control amount so as not to exceed, and a front wheel or a front wheel based on the steering control amount obtained by the first or second calculating means. And control means for steering the rear wheels, and a rear wheel and a front wheel when the vehicle leans while steering the steering means.
Each steering control amount is returned to the direction where the steering angle of the rear wheel becomes zero.
A steering control device for a vehicle, comprising : a return unit for causing the vehicle to return .
JP31999996A 1996-11-29 1996-11-29 Vehicle steering control device Expired - Fee Related JP3493921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31999996A JP3493921B2 (en) 1996-11-29 1996-11-29 Vehicle steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31999996A JP3493921B2 (en) 1996-11-29 1996-11-29 Vehicle steering control device

Publications (2)

Publication Number Publication Date
JPH10157645A JPH10157645A (en) 1998-06-16
JP3493921B2 true JP3493921B2 (en) 2004-02-03

Family

ID=18116629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31999996A Expired - Fee Related JP3493921B2 (en) 1996-11-29 1996-11-29 Vehicle steering control device

Country Status (1)

Country Link
JP (1) JP3493921B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301877B2 (en) * 2008-05-19 2013-09-25 本田技研工業株式会社 Vehicle steering control device

Also Published As

Publication number Publication date
JPH10157645A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP4021792B2 (en) Steering control device
JP6638012B2 (en) Vehicle lane departure prevention control device
JP3367355B2 (en) Vehicle steering control device
JP2000118423A (en) Vehicular steering controller
US11383760B2 (en) Steering system
JP3660011B2 (en) Vehicle steering control device
JP2008044427A (en) Steering controller for vehicle
JP3882318B2 (en) Vehicle steering control device
JP5396807B2 (en) Steering support device
JP3166635B2 (en) Vehicle steering control device
JP3255052B2 (en) Vehicle steering control device
JP3598720B2 (en) Vehicle steering control device
JPH09221053A (en) Steering device for vehicle
JP3575206B2 (en) Vehicle steering control device
JP2010158987A (en) Vehicular steering control device
JPH1134898A (en) Traveling controller for vehicle
JP3493921B2 (en) Vehicle steering control device
JP4715372B2 (en) Steering support device
JP7032967B2 (en) Vehicle steering support device
JP3555391B2 (en) Vehicle steering control device
JP3577864B2 (en) Vehicle steering control device
JP5082237B2 (en) Vehicle steering assist device
JP3572870B2 (en) Vehicle steering control device
JP2003072579A (en) Vehicle steering control device
JP3252773B2 (en) Vehicle steering system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20081121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees