JP3492432B2 - Detonator - Google Patents

Detonator

Info

Publication number
JP3492432B2
JP3492432B2 JP29999194A JP29999194A JP3492432B2 JP 3492432 B2 JP3492432 B2 JP 3492432B2 JP 29999194 A JP29999194 A JP 29999194A JP 29999194 A JP29999194 A JP 29999194A JP 3492432 B2 JP3492432 B2 JP 3492432B2
Authority
JP
Japan
Prior art keywords
explosive
state
detonator
charge
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29999194A
Other languages
Japanese (ja)
Other versions
JPH08159699A (en
Inventor
茂樹 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Denshikiki Co Ltd
Original Assignee
Yokogawa Denshikiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Denshikiki Co Ltd filed Critical Yokogawa Denshikiki Co Ltd
Priority to JP29999194A priority Critical patent/JP3492432B2/en
Publication of JPH08159699A publication Critical patent/JPH08159699A/en
Application granted granted Critical
Publication of JP3492432B2 publication Critical patent/JP3492432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、爆薬が指定されたタイ
ミング以外では発火しないように制御する起爆装置に関
する。 【0002】 【従来の技術】従来より、信管等において爆薬を安全に
発火させるため、タイマ等により安全解除を行うタイミ
ングを決定し、該安全解除状態においてのみ起爆指令に
より爆薬への点火が可能になる安全解除機構を設けた起
爆装置が利用されている。 【0003】 【発明が解決しようとする課題】ところで、従来の起爆
装置では、上記安全解除状態において何等かの理由によ
り爆薬への点火が行われず、爆薬が発火しなかった場
合、その信管または爆薬は不発弾として地面等に着床す
る。係る場合、従来の起爆装置においては安全解除状態
がすみやかに撤回されず、事後処理を行う作業者の身の
安全が確保されずに危険であった。本発明は、上述した
事情に鑑みてなされたものであり、不発火の場合にもす
みやかに安全状態に復帰する起爆装置を提供することを
目的としている。 【0004】 【課題を解決するための手段】上記課題を解決するため
に、本発明においては、爆薬の発火タイミングを制御す
る起爆装置において、加熱剤と素電池とを内蔵し、前記
加熱剤が着火されると前記素電池が加熱されて発電する
とともに、所定時間経過後に前記加熱剤が消費されると
前記素電池の温度が低下して発電を停止する熱電池と、
前記熱電池が発電すると充電され、該発電が停止すると
放電する充放電手段と、前記爆薬と所定距離離れて設け
られ、前記充放電手段が充電されている間に指令を受け
ると該充放電手段の充電エネルギにより発火する発火手
段と、前記爆薬よりも爆破エネルギが小である起爆薬を
所定の位置に内蔵し、前記熱電池から電源が供給される
と所定角度回動して前記爆薬と前記発火手段との間に前
記起爆薬を介挿し、前記所定時間経過後に該電源の供給
が停止されると回動前の状態に復帰して前記起爆薬を前
記爆薬および前記発火手段から遠ざける起爆機構とを具
備することを特徴としている。 【0005】 【作用】上記構成によれば、熱電池が加熱されて発電す
ると、充放電手段が充電されるとともに、起爆機構が所
定角度回動し、内蔵した起爆薬が発火手段と爆薬との間
に介挿され、起爆待機状態(安全解除状態)になる。こ
の状態で発火手段に発火指令が行われると、充放電手段
の充電エネルギを受けて発火して起爆薬に印火し、起爆
薬の発火により爆薬も発火するが、該指令が行われなか
った場合、熱電池の温度が低下して発電が停止すると、
充放電手段が放電されるとともに起爆機構は回動前の状
態に復帰し、起爆薬が発火手段および爆薬から遠ざか
る。従って、起爆待機状態が解除されて再び安全状態と
なる。 【0006】 【実施例】以下、図面を参照して、本発明の実施例につ
いて説明する。図1は、本発明の一実施例による、爆薬
用起爆装置の構成を示す図である。図において、1は、
図示しない加熱剤および、高温により導電性となる素電
池が内蔵された熱電池であり、電極としての出力端子
a,b、および、点火用端子c,dが設けられている。
図示しない別の主電源から上記点火端子c,dを介して
熱電池1へ通電が行われると、熱電池1の内部で点火動
作が行われて上記加熱剤が着火され、素電池が加熱され
る。これにより、出力端子a,bに所定の起電力が得ら
れる。また、所定時間経過後に加熱剤が消費されると素
電池の温度が低下して上記起電力が低下する。すなわ
ち、加熱剤の容量等により熱電池1の寿命が決まるが、
ここでは上記所定時間は数分程度であるとする。 【0007】2はロータリーソレノイド(アクチュエー
タ)であり、熱電池1の出力端子a,bを介して電源が
供給されることにより、高トルクで一定角度の回動運動
を発生する。また、このロータリーソレノイド2には図
示しない復帰用スプリングが内蔵されており、熱電池1
から電源の供給が停止されると該スプリングにより回動
前の状態に復帰する。 【0008】3はシャフトであり、その一端がロータリ
ーソレノイド2と軸心を共通として結合されている。ま
た、シャフト3の他端には、これと軸心を共通とするシ
ャッタ4が結合されている。シャッタ4の一部には孔部
4aが形成されており、孔部4aには起爆薬6が充填さ
れている。7はシャッタ4の下方に配置された導爆薬、
8は導爆薬7の直下に配置された伝爆薬である。ロータ
リーソレノイド2が上記一定角度回動すると、これと連
動するシャッタ4に充填された起爆薬6と、上記導爆薬
7および伝爆薬8とは、一直線上に並んだ状態、いわゆ
る「火道がつながった状態」となる。これら起爆薬6、
導爆薬7、伝爆薬8は、この順に発火感度が「敏感→鈍
感」になるとともに爆破のパワーが「小→大」になる特
性を有している。これは、万一の事故に備えて爆破のパ
ワーが小さいものしか容易に発火しないようにし、爆破
のパワーを段階的に増大させて最終的に大きな爆破力を
得るためである。 【0009】10は電気雷管であり、電流が流れること
により発火し、起爆薬6に引火する。電気雷管10は、
シャッタ4が上述のように回動して火道がつながった状
態において起爆薬6に最も近付くように配置されてお
り、シャッタ4が回動前の状態に復帰すると、起爆薬6
は電気雷管10から遠ざかる。 【0010】サイリスタ17は、後述する遠隔指令手段
(またはタイマ)による指令信号を受信した場合にのみ
作動する。そして、コンデンサ13に蓄えられていたエ
ネルギーが電気雷管10に流れ、電気雷管10が発火す
るように設計されている。この時、電気雷管10と起爆
薬6とが上記近付いた状態であると、起爆薬6は電気雷
管10の発火エネルギーを受けて発火する。 【0011】また、図1に示すように、電気雷管10の
端子qは接地され、端子pは以下に説明する充放電回路
12に接続されている。充放電回路12は、コンデンサ
13と放電抵抗器14とが並列に接続され、充電抵抗器
18とは直列に接続された回路であり、一端(符号s)
がダイオード16を介して熱電池1の出力端子bに接続
されており、熱電池1から起電力が供給されるとコンデ
ンサ13は充電される。この状態でサイリスタ17にト
リガ信号Stが入力されて作動状態になると、蓄積され
た電荷が電気雷管10に供給される。一方、熱電池1か
らの起電力の供給が停止されると、コンデンサ13に蓄
積された電荷が放電抵抗器14を介して放電される。 【0012】次に、図1の起爆装置による起爆動作のシ
ーケンスを、図2のタイミングチャートを用いて説明す
る。該起爆シーケンスは、図示しない遠隔指令手段また
はタイマにより実行可能であり、ここでは、初めにタイ
マを用いた方式について説明する。 タイマ方式 時刻T1において、起爆装置に設けられたピンを抜く等
の方法により上記主電源がオフ状態からオン状態に切り
替わると(図2(イ)参照)、タイマが起動する。この
タイマは、以下に説明する複数のタイミングにおいて所
定の指令信号を発するようにあらかじめ設定されてい
る。次に、時刻T2において、タイマ指令により主電源
から熱電池1への通電が開始されると、熱電池1はオフ
状態からオン状態に切り替わり(図2(ロ)参照)、起
電力が発生される。 【0013】これにより、上記熱電池1の起電力により
図1のロータリーソレノイド2が回動し、これに連動し
てシャフト3、およびシャッタ4が図に示す矢印の方向
に回動する。また、熱電池1の起電力は充放電回路12
にも供給され、コンデンサ13の充電が開始される。そ
して、時刻T3においてロータリーソレノイド2の回動
角が上記一定角度に達すると、ロータリーソレノイド
2、シャフト3、シャッタ4の回動動作は停止する。 【0014】この状態(時刻T3)において、シャッタ
4の孔部4aは電気雷管10の下方に位置し、起爆薬
6、導爆薬7、伝爆薬8は一直線上に並んだ配置、すな
わち、上述した「火道がつながった状態」となる。従っ
て、この状態で電気雷管10を発火させると、孔部4a
に充填された起爆薬6が発火する。すなわち、シャッタ
4はオフ状態(安全状態)からオン状態(安全解除状
態)に切り替えられたことになる(図2(ハ)参照)。 【0015】そして、時刻T4において、タイマ指令に
よりサイリスタ17が作動すると、コンデンサ13に充
電されていた電荷が電気雷管10に供給される。これに
より、電気雷管10に放電電流が流れて発火する。従っ
て、電気雷管10の発火によりその下方の起爆薬6が発
火し、更に、これと一直線状に配置された導爆薬7、伝
爆薬8が順次発火して、爆破パワーが最大となって爆発
する。 【0016】ところで、熱電池1が加熱されて起電力を
発生する期間は上述したように数分程度と比較的短く、
仮に時刻T4以降に何らかの問題により起爆指令信号が
供給されなかった場合においても、該期間経過すると
(ここでは時刻T5において)、熱電池1の温度が低下
して不活性状態、すなわちオフ状態となる(図2(ロ)
参照)。これにより、熱電池1からロータリーソレノイ
ド2への電源の供給が停止され、該ソレノイド2は、上
述した復帰用スプリングにより回動前の状態に戻る。よ
って、シャッタ4も元の状態、すなわち、図1に示すよ
うに孔部4aが電気雷管10の位置から離れた状態にな
る。また、充放電回路12のコンデンサ13に蓄積され
た電荷が、抵抗14を通して放電され、電気雷管10の
発火用エネルギはゼロになるので、電気雷管10が発火
するおそれはない。 【0017】すなわち、時刻T5以降は、起爆薬6は、
導爆薬7および伝爆薬8を結ぶ線上からはずれた位置に
置かれるので、本爆薬を撤去する作業において万一発火
に至ったとしても、導爆薬7および伝爆薬8に引火する
ことはない。また、導爆薬7および伝爆薬8は、上述し
たように起爆薬6に比べて発火感度が鈍いので、該撤去
作業中の刺激等により単独で発火する心配はほとんどな
い。 【0018】次に、遠隔指令手段を介した遠隔(リモー
ト)操作方式による起爆シーケンスついて、以下に説明
する。 遠隔操作(指令)方式 上記の場合と同様に時刻T1において主電源がオフ状
態からオン状態に切り替わると、本安全装置の以下に示
す各部は、指令信号の受信待機状態となる。次に、時刻
T2において、係員のリモート指令操作(リモートスイ
ッチ等による)により、主電源から熱電池1への通電が
開始されると、熱電池1はオフ状態からオン状態に切り
替わり、起電力が発生される。 【0019】これにより、上記と同様に、ロータリーソ
レノイド2を介してシャッタ4がオフ状態(安全状態)
からオン状態(安全解除状態)に切り替わる(時刻T
3)。また、コンデンサ13も充電される。そして、時
刻T4において、係員のリモート指令操作によりコンデ
ンサ13に充電された電荷が電気雷管10に供給され、
電気雷管10は発火する。これにより、起爆薬6、導爆
薬7、伝爆薬8が順次発火し、爆破パワーが最大となっ
て爆発する。そして、時刻T5において熱電池1がオフ
状態となる。これ以降安全状態が復帰される過程につい
ては上述したの場合と同様であり、その説明を省略す
る。 【0020】このように、本実施例による起爆装置は、
安全解除状態になってから起爆指令が発生する可能性の
ある比較的短い期間を過ぎると、熱電池1が不活性状態
になって起電力が低下し、電気雷管10は発火エネルギ
を失うとともに、ロータリーソレノイド2およびシャッ
タ4が回動前の位置に復帰して起爆薬6、導爆薬7、伝
爆薬8からなる火道が切り離される。このように、すみ
やかに安全状態が回復されるので、事後処理を行う作業
者の身の安全が確保されるという効果がある。また、爆
薬の使用前に起爆装置を組み込む作業においても、熱電
池1が加熱されなければ電気雷管10の有する発火用エ
ネルギはゼロの状態なので、作業者の身の安全が同様に
確保される。 【0021】 【発明の効果】以上、説明したように、本発明によれ
ば、不発火の場合にもすみやかに安全状態に復帰され、
事後処理を安全に行うことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detonator for controlling an explosive so as not to ignite except at a designated timing. 2. Description of the Related Art Conventionally, in order to safely ignite an explosive in a fuse or the like, a timing for releasing safety is determined by a timer or the like, and the explosive can be ignited by an explosion command only in the safety release state. An initiating device provided with a safety release mechanism has been used. [0003] In the conventional detonator, if the explosive is not ignited for any reason in the above safety release state and the explosive does not ignite, the fuze or the explosive is not used. Landed on the ground as an unexploded ordnance. In such a case, in the conventional detonating device, the safety release state is not promptly retracted, and the safety of the worker performing the post-processing is not ensured, which is dangerous. The present invention has been made in view of the above-described circumstances, and has as its object to provide a detonating device that quickly returns to a safe state even in the case of a misfire. [0004] In order to solve the above-mentioned problems, the present invention provides a detonator for controlling the firing timing of explosives, in which a heating agent and a unit cell are incorporated, wherein the heating agent is used. A thermal battery that, when ignited, heats the unit cell to generate power, and when the heating agent is consumed after a predetermined time elapses, the temperature of the unit cell decreases to stop power generation;
A charging / discharging unit that is charged when the thermal battery generates power and is discharged when the power generation stops, and a charging / discharging unit that is provided at a predetermined distance from the explosive and receives a command while the charging / discharging unit is being charged. An ignition means that ignites by the charging energy of the explosive, and an explosive whose blast energy is smaller than that of the explosive are built in a predetermined position. When power is supplied from the thermal battery, the explosive rotates by a predetermined angle and the explosive and the explosive An explosive mechanism that interposes the explosive between the explosive and the explosive, and when the power supply is stopped after the lapse of the predetermined time, returns to a state before rotation and moves the explosive away from the explosive and the explosive; Are provided. According to the above construction, when the thermal battery is heated to generate electric power, the charging / discharging means is charged, the explosion mechanism is rotated by a predetermined angle, and the built-in explosive charges between the firing means and the explosive. It is inserted in between, and becomes a detonation standby state (safety release state). When a firing command is issued to the firing means in this state, the charging energy of the charging / discharging means is received, the fuel is ignited, the explosive is ignited, and the explosive is ignited by the firing of the explosive, but the command is not performed. If the temperature of the thermal battery drops and power generation stops,
As the charging / discharging means is discharged, the detonation mechanism returns to the state before the rotation, and the explosive charges away from the firing means and the explosive. Accordingly, the detonation standby state is released and the state is restored. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of an explosive detonator according to one embodiment of the present invention. In the figure, 1 is
This is a thermal battery in which a heating agent (not shown) and a unit cell which becomes conductive due to high temperature are built in, and output terminals a and b as electrodes and ignition terminals c and d are provided.
When power is supplied from another main power supply (not shown) to the thermal battery 1 via the ignition terminals c and d, an ignition operation is performed inside the thermal battery 1 to ignite the heating agent and heat the unit cell. You. As a result, a predetermined electromotive force is obtained at the output terminals a and b. In addition, when the heating agent is consumed after the elapse of a predetermined time, the temperature of the unit cell decreases, and the electromotive force decreases. That is, the life of the thermal battery 1 is determined by the capacity of the heating agent and the like.
Here, it is assumed that the predetermined time is about several minutes. Reference numeral 2 denotes a rotary solenoid (actuator) which generates a high-torque, constant-angle rotating motion when power is supplied through output terminals a, b of the thermal battery 1. The rotary solenoid 2 has a built-in return spring (not shown).
When the supply of power from is stopped, the spring returns to the state before the rotation. Reference numeral 3 denotes a shaft, one end of which is connected to the rotary solenoid 2 with a common axis. The other end of the shaft 3 is connected to a shutter 4 having a common axis. A hole 4a is formed in a part of the shutter 4, and the explosive 6 is filled in the hole 4a. 7 is an explosive charged under the shutter 4;
Reference numeral 8 denotes an explosive charge disposed immediately below the explosive charge 7. When the rotary solenoid 2 rotates by the predetermined angle, the explosive charge 6 filled in the shutter 4 and the explosive charge 7 and the explosive charge 8 linked to the rotary solenoid 2 are aligned in a straight line, that is, a so-called “fire path is connected”. State ". These explosives 6,
The explosive charge 7 and the explosive charge 8 have such characteristics that the firing sensitivity becomes “sensitive → insensitive” and the blast power becomes “small → large” in this order. This is to make it easy to fire only those having low blast power in case of an accident, and to gradually increase the blast power to finally obtain a large blast power. Reference numeral 10 denotes an electric detonator, which ignites when an electric current flows and ignites the detonator 6. The electric detonator 10 is
The shutter 4 is arranged so as to be closest to the priming charge 6 in the state where the shutter 4 is rotated and the conduit is connected as described above. When the shutter 4 returns to the state before the rotation, the priming charge 6 is used.
Moves away from the electric detonator 10. The thyristor 17 operates only when it receives a command signal from remote command means (or a timer) described later. The energy stored in the capacitor 13 flows to the electric detonator 10, and the electric detonator 10 is designed to ignite. At this time, if the electric detonator 10 and the explosive 6 are in the above-mentioned state, the explosive 6 receives the ignition energy of the electric detonator 10 and fires. As shown in FIG. 1, a terminal q of the electric detonator 10 is grounded, and a terminal p is connected to a charge / discharge circuit 12 described below. The charging / discharging circuit 12 is a circuit in which a capacitor 13 and a discharging resistor 14 are connected in parallel, and a charging resistor 18 is connected in series.
Is connected to the output terminal b of the thermal battery 1 via the diode 16, and when an electromotive force is supplied from the thermal battery 1, the capacitor 13 is charged. In this state, when the trigger signal St is input to the thyristor 17 and the thyristor 17 is activated, the accumulated electric charge is supplied to the electric detonator 10. On the other hand, when the supply of the electromotive force from the thermal battery 1 is stopped, the electric charge accumulated in the capacitor 13 is discharged via the discharge resistor 14. Next, the sequence of the detonation operation by the detonator of FIG. 1 will be described with reference to the timing chart of FIG. The detonation sequence can be executed by remote command means or a timer (not shown). Here, a method using a timer will be described first. At the time T1 of the timer method, when the main power source is switched from the off state to the on state by a method such as pulling out a pin provided on the detonator (see FIG. 2A), the timer starts. This timer is set in advance so as to issue a predetermined command signal at a plurality of timings described below. Next, at time T2, when energization from the main power supply to the thermal battery 1 is started by a timer command, the thermal battery 1 is switched from the off state to the on state (see FIG. 2B), and an electromotive force is generated. You. Thus, the rotary solenoid 2 shown in FIG. 1 is rotated by the electromotive force of the thermal battery 1, and the shaft 3 and the shutter 4 are rotated in the direction of the arrow shown in FIG. The electromotive force of the thermal battery 1 is supplied to the charge / discharge circuit 12.
And charging of the capacitor 13 is started. When the rotation angle of the rotary solenoid 2 reaches the predetermined angle at the time T3, the rotation operation of the rotary solenoid 2, the shaft 3, and the shutter 4 stops. In this state (time T3), the hole 4a of the shutter 4 is located below the electric detonator 10, and the explosive 6, explosive 7, and explosive 8 are arranged in a straight line, that is, as described above. The state is that the conduit is connected. Therefore, when the electric detonator 10 is ignited in this state, the hole 4a
The priming charge 6 filled in is ignited. That is, the shutter 4 has been switched from the off state (safety state) to the on state (safety release state) (see FIG. 2C). At time T4, when the thyristor 17 is activated by a timer command, the electric charge charged in the capacitor 13 is supplied to the electric detonator 10. As a result, a discharge current flows through the electric detonator 10 to ignite. Accordingly, the ignition of the electric detonator 10 ignites the explosive 6 below it, and furthermore, the explosive 7 and the explosive 8 arranged in a straight line with the explosive 6 sequentially ignite, and the blast power is maximized to explode. . Incidentally, the period during which the thermal battery 1 is heated to generate an electromotive force is relatively short, about several minutes, as described above.
Even if the detonation command signal is not supplied due to some problem after the time T4, after the elapse of the period (at the time T5 here), the temperature of the thermal battery 1 decreases and the thermal battery 1 enters an inactive state, that is, an off state. (Fig. 2 (b)
reference). As a result, the supply of power from the thermal battery 1 to the rotary solenoid 2 is stopped, and the solenoid 2 returns to the state before the rotation by the above-described return spring. Accordingly, the shutter 4 is also in the original state, that is, the hole 4a is away from the position of the electric detonator 10 as shown in FIG. In addition, the electric charge stored in the capacitor 13 of the charge / discharge circuit 12 is discharged through the resistor 14, and the ignition energy of the electric detonator 10 becomes zero, so that there is no possibility that the electric detonator 10 will be fired. That is, after time T5, the priming charge 6
The explosive charge 7 and the explosive charge 8 are not located on the line connecting the explosive charge 7 and the explosive charge 8, so that even if a fire occurs in the operation of removing the main explosive charge, the explosive charge 7 and the explosive charge 8 do not ignite. Further, since the explosive charge 7 and the explosive charge 8 have lower ignition sensitivity than the explosive charge 6 as described above, there is almost no fear that the explosive charge 7 and the explosive charge 8 will be ignited independently by the stimulus during the removal operation. Next, a detonation sequence by a remote operation method via a remote command means will be described below. Remote operation (command) method As in the above case, when the main power supply switches from the off state to the on state at time T1, the following units of the safety device enter a command signal reception standby state. Next, at time T2, when the power supply from the main power supply to the thermal battery 1 is started by a remote command operation (by a remote switch or the like) of the attendant, the thermal battery 1 is switched from the off state to the on state, and the electromotive force is reduced. Generated. Thus, as described above, the shutter 4 is turned off via the rotary solenoid 2 (safety state).
To the ON state (safe release state) (time T
3). Also, the capacitor 13 is charged. Then, at time T4, the electric charge charged in the capacitor 13 by the remote command operation of the staff is supplied to the electric detonator 10,
The electric detonator 10 ignites. As a result, the explosive 6, the explosive 7, and the explosive 8 are fired sequentially, and the blast power is maximized to explode. Then, at time T5, the thermal battery 1 is turned off. The process of restoring the safe state thereafter is the same as in the case described above, and a description thereof will be omitted. As described above, the detonator according to this embodiment is
After a relatively short period during which the detonation command may be issued after the safety release state, the thermal battery 1 becomes inactive and the electromotive force decreases, and the electric detonator 10 loses ignition energy, The rotary solenoid 2 and the shutter 4 return to the positions before the rotation, and the conduit composed of the explosive 6, the explosive 7, and the explosive 8 is cut off. As described above, since the safety state is promptly restored, there is an effect that the safety of the worker performing the post-processing is secured. Also, in the work of installing the detonating device before using the explosive, if the thermal battery 1 is not heated, the ignition energy of the electric detonator 10 is in a zero state, so that the safety of the worker's body is similarly secured. According to the present invention, as described above, according to the present invention, even in the case of a misfire, the safe state can be immediately restored.
Post-processing can be performed safely.

【図面の簡単な説明】 【図1】本発明の一実施例における起爆装置の構成を示
す図である。 【図2】同実施例における、起爆動作の流れを示すタイ
ミングチャートである。 【符号の説明】 1 熱電池 2 ロータリーソレノイド(起爆機構) 4 シャッタ(起爆機構) 6 起爆薬 7 導爆薬(爆薬) 8 伝爆薬(爆薬) 10 電気雷管(発火手段) 12 充放電回路(充放電手段)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of an initiator according to an embodiment of the present invention. FIG. 2 is a timing chart showing a flow of a detonation operation in the embodiment. [Description of Signs] 1 Thermal battery 2 Rotary solenoid (explosive mechanism) 4 Shutter (explosive mechanism) 6 Explosive 7 Explosive charge (explosive) 8 Explosive charge (explosive) 10 Electric detonator (ignition means) 12 Charge / discharge circuit (charge / discharge) means)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 爆薬の発火タイミングを制御する起爆装
置において、 加熱剤と素電池とを内蔵し、前記加熱剤が着火されると
前記素電池が加熱されて発電するとともに、所定時間経
過後に前記加熱剤が消費されると前記素電池の温度が低
下して発電を停止する熱電池と、 前記熱電池が発電すると充電され、該発電が停止すると
放電する充放電手段と、 前記爆薬と所定距離離れて設けられ、前記充放電手段が
充電されている間に指令を受けると該充放電手段の充電
エネルギにより発火する発火手段と、 前記爆薬よりも爆破エネルギが小である起爆薬を所定の
位置に内蔵し、前記熱電池から電源が供給されると所定
角度回動して前記爆薬と前記発火手段との間に前記起爆
薬を介挿することにより安全解除状態とし、前記所定時
間経過後に該電源の供給が停止されると回動前の状態に
復帰して前記起爆薬を前記爆薬および前記発火手段から
遠ざけることにより安全状態とする起爆機構とを具備す
ることを特徴とする起爆装置。
(57) [Claim 1] An explosive device for controlling the firing timing of an explosive, wherein a heating agent and a unit cell are incorporated, and when the heating agent is ignited, the unit cell is heated. A heat battery that generates power and stops the power generation when the heating agent is consumed after a lapse of a predetermined time, and a charge that is charged when the heat battery generates power and discharged when the power generation stops. Discharging means, provided at a predetermined distance from the explosive, an ignition means that ignites by charging energy of the charging / discharging means when receiving a command while the charging / discharging means is being charged; incorporates a detonator that is a small to a predetermined position, arming by interposed said detonator between when power is supplied from the heat cell and the explosive to a predetermined angle rotates the ignition means State A detonation mechanism that returns to a state before rotation when the supply of power is stopped after a lapse of a fixed time and moves the detonating charge away from the explosive and the igniting means so as to be in a safe state. A detonator.
JP29999194A 1994-12-02 1994-12-02 Detonator Expired - Fee Related JP3492432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29999194A JP3492432B2 (en) 1994-12-02 1994-12-02 Detonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29999194A JP3492432B2 (en) 1994-12-02 1994-12-02 Detonator

Publications (2)

Publication Number Publication Date
JPH08159699A JPH08159699A (en) 1996-06-21
JP3492432B2 true JP3492432B2 (en) 2004-02-03

Family

ID=17879432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29999194A Expired - Fee Related JP3492432B2 (en) 1994-12-02 1994-12-02 Detonator

Country Status (1)

Country Link
JP (1) JP3492432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5210741B2 (en) * 2008-07-15 2013-06-12 横河電子機器株式会社 Flying object

Also Published As

Publication number Publication date
JPH08159699A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
US5269223A (en) Piezoelectric fuse system with safe and arm device for ammunition
US6923122B2 (en) Energetic material initiation device utilizing exploding foil initiated ignition system with secondary explosive material
JP4652831B2 (en) Detonators for detonation-controlled shells
JP2846121B2 (en) Self-destructive fuze for improved conventional ammunition
CN109307457B (en) Micro-electromechanical sequential logic ignition control device
US4603635A (en) Dual safing for base element fuze
US6244184B1 (en) Fuze for submunition grenade
RU2540987C1 (en) Fuse for missile projectiles and method of its application
US7334523B2 (en) Fuze with electronic sterilization
US6145439A (en) RC time delay self-destruct fuze
JP3492432B2 (en) Detonator
US5147975A (en) Remotely settable, multi-output, electronic time fuze and method of operation
RU2500977C2 (en) Remote action ammunition
KR101016834B1 (en) Electronic Delayed Self-Destruct Fuse of Submunition
US3641938A (en) Percussion or vibration fuse for explosive charge
US6142080A (en) Spin-decay self-destruct fuze
KR101600990B1 (en) The shock-sensing and unlocking circuits of the safety and arming device for the missile fuze
JPH0715360B2 (en) Fuze
EP0605356B1 (en) Self-destructive electronic fuse
US6257145B1 (en) Pyrotechnical impact detonator
CN218864913U (en) Safe ignition control circuit for double-capacitor electronic detonator
JP2002541425A (en) Electromechanical ignition delay device for cartridge fireworks technical decoy flash
US20240230296A1 (en) Electronic time warhead fuze
JP2674197B2 (en) Ignition circuit safety device
WO2024145706A1 (en) Electronic time warhead fuze

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees