JP3492161B2 - Heat flow meter - Google Patents

Heat flow meter

Info

Publication number
JP3492161B2
JP3492161B2 JP22137897A JP22137897A JP3492161B2 JP 3492161 B2 JP3492161 B2 JP 3492161B2 JP 22137897 A JP22137897 A JP 22137897A JP 22137897 A JP22137897 A JP 22137897A JP 3492161 B2 JP3492161 B2 JP 3492161B2
Authority
JP
Japan
Prior art keywords
receiving plate
heat receiving
heat
tube
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22137897A
Other languages
Japanese (ja)
Other versions
JPH1164120A (en
Inventor
八郎 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22137897A priority Critical patent/JP3492161B2/en
Publication of JPH1164120A publication Critical patent/JPH1164120A/en
Application granted granted Critical
Publication of JP3492161B2 publication Critical patent/JP3492161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は事業用、産業用のボ
イラ、加熱炉等の火炉内の熱流計に関する。 【0002】 【従来の技術】従来の熱流計を図4〜図7により説明す
る。 【0003】図4にて、基端閉の筒形の側筒01の前端
部は径の大きい段差になっており、受熱板02が挿入さ
れ、溶接fされている。また基端中央には穴があり、内
管06が挿入され、溶接fされている。さらに基端周面
には溝があり、外管04が挿入され、溶接fされてい
る。 【0004】内管06と外管04間に、側筒01の基端
面と所定の距離をあけて、中管05が同軸に配置されて
いる。 【0005】受熱板02は、熱抵抗が大きく、温度差が
えられるよう、熱伝導率の小さいクロメル製である。ま
た側筒01は、冷却効果を高め、受熱面中央との温度差
を大きくするため、熱伝導率の大きいアルメル製であ
る。 【0006】内管06内には2芯線(アルメル03a−
アルメル03b)のシース管07が通される。そして、
受熱板02の中央と、内管06近くの基端部に小穴があ
けられ、芯線がそれぞれ通され、溶接されている。受熱
板02と基端部とのメンテナンス空間aは受熱板02や
芯線の溶接に必要不可欠である。冷却水は外管04と中
管05間から導入され、中管05と内管06間からリタ
ーンする。図5に回路図を示す。 【0007】受熱板02(クロメル材)と、芯線アルメ
ル03aとの溶接により、温度接点bの起電力が発生
し、側筒01(アルメル材)と芯線アルメル03bの溶
接により受熱板02周囲と側筒01の溶接部に温度接点
cの起電力が発生する。図の様にアルメル線、同志で電
圧08を計測すれば熱電対の差動式が成立し、受熱板0
2の中央部の温度と受熱板周囲の温度との差、すなわち
温度差の起電力が発生することになる。 【0008】上記の起電力を計測しても、ボイラ等の熱
流束を直接求めることは出来ない為、起電力と熱量の検
定が必要となる。図6は、検定する場合の概略図を表し
ている。検定は一般に黒体炉31を用いる。耐火材33
とヒータ32からなり、小さな空洞が設けられている。
その空洞部に熱流計30を挿入して熱量と電圧08の関
係を得ることができる。熱量は以下のふく射量の計算式
で求められる。 Q=4.88×10-8*ε1 *ε2 (TW 4 −TH 4 ) Kcal/m2 h ここに、 ε1 :炉壁面からの放射率(黒体炉でありε1 =1) ε2 :熱流計受熱面の吸収率(通常ε2 ≒1となるよう
に面に黒体塗料等を塗布する) TW :炉壁面の絶体温度(°K) TH :受熱板の絶体温度(°K)(通常無視出来る) 4.88×10-8:ステファンボルツマン定数(Kca
l/m2 h°K) すなわち、黒体炉31の炉壁面の温度と、熱流計30の
電圧08を求めることによって、図7に示す様な、縦軸
熱量、横軸電圧にて検定カーブを得ることが出来る。こ
の検定カーブから実際の加熱炉、ボイラ等の熱流束を求
めることが可能となる。 【0009】 【発明が解決しようとする課題】上記従来の熱流計は構
造上及び製作面で下記のような問題点があった。 1).受熱板と側筒の溶接は、異種金属同志の結合とな
る。これらは熱膨張率が違うため、特に受熱面で溶接後
の冷却時にクラックが発生し、製作上歩止まりが悪い。 2).受熱板及び側筒に起電力を得るため芯線を小穴に
挿入して溶接するが、余りに芯線が細いため溶接不良が
発生する場合もある。 3).内管と側筒も通常は、1)同様異種金属の溶接と
なるため、不完全結合となり、冷却水の漏洩(極少であ
るが)、引いては芯線同志に絶縁不良が発生する。 4).熱電対に用いる材質は、熱流束に対する起電力値
を大きく得るためには、受熱板は熱伝導率が小さいクロ
メル、側筒は受熱面の表面温度を小さくするため、熱伝
導率が良いアルメルが通常最適である。 【0010】しかし、従来の様な構造ではアルメル棒,
クロメル棒を加工するため、原材料を特注する必要があ
る。(国外、国内のメーカでも入手が困難) 5).熱流計を実験のボイラ等にて挿入して熱流束を計
測する場合、炉壁面に受熱面をきっちり合わせることは
むずかしく、従って余分に炉内に挿入するのが通常であ
る。このとき側筒の周囲(側面)から熱流束を受け、起
電力値に若干の誤差を発生させる。 6).メンテナンス空間に若干の水分があれば絶縁不良
の原因となる。(受熱面と側筒の溶接不良から空気が出
入りして空気中の水分がいたずらするときもある。) 本発明は上記問題点を解決することを課題とする。 【0011】 【課題を解決するための手段】本発明は、上記課題を解
決するため次の手段を講ずる。 【0012】すなわち、側面に熱絶縁用溝を持つととも
に後面に貫通穴および部分貫入穴を持つ受熱板と、同受
熱板の側面に上記熱絶縁用溝を覆いかつ前端を揃えて固
着される側筒と、上記受熱板の基端部側面を覆い、固着
される外管と、同外管の内部に上記受熱板から先端を離
して配置される冷却水用の内管と、上記貫通穴に挿入固
着される第1のシース熱電対と、上記部分貫入穴に挿入
固着される第2のシース熱電対とを備え、上記受熱板お
よび側筒を同一材料製としたことを特徴とする熱流計。 【0013】以上において、先端部が計測対象の火炉内
に挿入される。そして、外管と内管間に冷却水が導入さ
れ、先端部で内管の内側からリターンされる。受熱板の
先端面は熱負荷を直接受けるため、高い温度になる。ま
たその側面は側筒で熱遮へいされ、かつ熱絶縁用溝で熱
絶縁されるとともに基端部は冷却されるので、大きい温
度傾斜がえられる。これらは第1の熱電対と第2の熱電
対により検出され、火炉内の熱流束が算出される。 【0014】また受熱板および側筒を同一材料としたた
め、固着性がよい。さらに構成上、これらは例えばステ
ンレス等の常用材料製でよいので安価となる。このよう
にして、構成が簡単で、安価かつ耐久性のよい熱流計が
えられる。 【0015】 【発明の実施の形態】本発明の実施の一形態を図1〜図
3により説明する。 【0016】図1と図2にて、受熱板2の側面には熱絶
縁用溝bが形成されている。また後面の中央部には貫通
穴cと、板厚の約1/3程度の深さの部分貫入穴dがあ
けられる。 【0017】受熱板2の厚みより長さの小さい側筒3
が、前端を揃えて熱絶縁用溝bを覆うように結合され
る。結合部は溶接gされる。また基端部は側面を覆うよ
うに外管4が結合され、溶接hされる。また内管5がそ
の先端を受熱板2と所定の間隔をあけて、同軸に配置さ
れる。 【0018】受熱板2の貫通穴cには第1のシース熱電
対7aが挿入され、その外管は溶接kされる。また部分
貫入穴dには第2のシース熱電対7bが挿入され、溶接
mされる。以上で、受熱板2、側筒3、シース熱電対7
a,7bの外管は、例えばステンレス製とする。なお図
1中、8は端末ボックス、9は冷却水供給管、10は冷
却水もどし管、11はターミナルボックス、12はリー
ド線である。 【0019】熱電対7a,7b部の回路図を図3に示
す。図中03aはアルメル線、03cはクロメル線、0
8は電圧計(電圧)である。これらは差動式にターミナ
ルボックス11で結線され、電圧08はクロメル線03
c間で計測される。 【0020】以上において、先端部が計測対象の火炉内
に挿入される。そして、外管4と内管5間に冷却水が導
入され、先端部で内管の内側からリターンされる。受熱
板2の先端面は熱負荷を直接受けるため、高い温度にな
る。またその側面は側筒3で熱遮へいされ、かつ熱絶縁
用溝bで熱絶縁されるとともに基端部は冷却されるので
大きい温度傾斜がえられる。これらは第1の熱電対7a
と第2の熱電対7bにより差動検出され、火炉内の熱流
束が算出される。 【0021】以上のようにして、次のような作用、効果
がえられる。 1).受熱板2と、側筒3を一体型とし、熱電対の外
管、外管4、内管5を同じ材質にしたため、溶接性が良
い。また常用材料のステンレス製としたために、安価に
できる。 2).従来型同様に夫々のシース熱電対を差動式にする
ことにより、温度差を起電力として検出出来る。 3).メンテナンス空間をなくすることにより、受熱板
2の後面が直接冷却水に接触されるため温度差が大きく
なり、かつ起電力も大きくなる。又低温側熱電対7bの
挿入深さ調整で発生起電力も調整できる。 4).側筒3の周囲に空気層を設ることにより、側面か
らの熱流束を遮断するため、起電力に誤差が生じない。 5).シース熱電対を用いることにより水分による絶縁
不良がなくなる。 【0022】 【発明の効果】以上に説明したように本発明によれば次
の効果を奏する。 【0023】側面に熱絶縁用溝を持つ受熱板、受熱板の
側面に熱絶縁用溝を覆いかつ前端を揃えて固着される側
筒、受熱板の貫通穴に挿入されるシース熱電対および部
分貫入穴に挿入されるシース熱電対とを設けた。これに
より、構成が簡単となり、常用材料が使用でき、安価で
耐久性のよい熱流計がえられる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat flow meter in a furnace such as a commercial or industrial boiler or a heating furnace. 2. Description of the Related Art A conventional heat flow meter will be described with reference to FIGS. In FIG. 4, the front end of a cylindrical side tube 01 whose base end is closed has a step with a large diameter, and a heat receiving plate 02 is inserted and welded. There is a hole in the center of the base end, the inner tube 06 is inserted and welded. Further, there is a groove in the base end peripheral surface, and the outer tube 04 is inserted and welded. A middle tube 05 is coaxially arranged between the inner tube 06 and the outer tube 04 at a predetermined distance from the base end surface of the side tube 01. [0005] The heat receiving plate 02 is made of chromel having a small thermal conductivity so that the thermal resistance is large and a temperature difference can be obtained. The side cylinder 01 is made of alumel having a high thermal conductivity in order to enhance the cooling effect and increase the temperature difference from the center of the heat receiving surface. In the inner tube 06, a two-core wire (Alumel 03a-
A sheath tube 07 of alumel 03b) is passed through. And
A small hole is made in the center of the heat receiving plate 02 and the base end near the inner tube 06, and the core wires are passed through and welded. The maintenance space a between the heat receiving plate 02 and the base end is indispensable for welding the heat receiving plate 02 and the core wire. The cooling water is introduced between the outer pipe 04 and the middle pipe 05, and returns from between the middle pipe 05 and the inner pipe 06. FIG. 5 shows a circuit diagram. [0007] By welding the heat receiving plate 02 (chromel material) and the core wire alumel 03a, an electromotive force at the temperature contact b is generated, and by welding the side tube 01 (alumel material) and the core wire alumel 03b, the periphery of the heat receiving plate 02 is formed. An electromotive force at the temperature contact c is generated at the welded portion of the cylinder 01. As shown in the figure, if the voltage 08 is measured with the alumel wire and the other, the differential type of the thermocouple is established and the heat receiving plate 0
2, a difference between the temperature at the center and the temperature around the heat receiving plate, that is, a temperature difference electromotive force is generated. [0008] Even if the above-mentioned electromotive force is measured, the heat flux of the boiler or the like cannot be directly obtained, so that it is necessary to verify the electromotive force and the amount of heat. FIG. 6 shows a schematic diagram in the case of performing the test. In general, a blackbody furnace 31 is used for the verification. Refractory material 33
And a heater 32, and a small cavity is provided.
The relationship between the calorific value and the voltage 08 can be obtained by inserting the heat flow meter 30 into the cavity. The amount of heat is determined by the following formula for calculating the amount of radiation. Q = 4.88 × 10 -8 * ε 1 * ε 2 (T W 4 -T H 4) Kcal / m 2 h here, epsilon 1: emissivity of the furnace wall (a blackbody furnace epsilon 1 = 1) ε 2: the absorption of the heat flow meter heat receiving surface (usually applying the black body paint or the like on the surface so that ε 2 ≒ 1) T W: furnace wall of absolute body temperature (° K) T H: heat receiving plate Absolute temperature (° K) (usually negligible) 4.88 × 10 -8 : Stefan-Boltzmann constant (Kca
1 / m 2 h ° K) That is, by obtaining the temperature of the furnace wall surface of the black body furnace 31 and the voltage 08 of the heat flow meter 30, a calibration curve is obtained with the vertical axis calorie and the horizontal axis voltage as shown in FIG. Can be obtained. From this verification curve, it is possible to obtain the actual heat flux of the heating furnace, boiler, and the like. The above-mentioned conventional heat flow meter has the following problems in terms of structure and production. 1). The welding of the heat receiving plate and the side tube is a joining of different metals. Since these have different coefficients of thermal expansion, cracks are generated during cooling after welding, particularly on the heat-receiving surface, and the production yield is poor. 2). A core wire is inserted into a small hole and welded to obtain an electromotive force on the heat receiving plate and the side tube, but welding is sometimes poor because the core wire is too thin. 3). The inner tube and the side tube are also usually 1) welded of dissimilar metals likewise, resulting in incomplete connection, leakage of cooling water (although it is extremely small), and poor insulation between the core wires. 4). In order to obtain a large electromotive force value for the heat flux, the material used for the thermocouple is made of chromel, which has a small thermal conductivity for the heat receiving plate, and alumel, which has a good thermal conductivity for the side tube to reduce the surface temperature of the heat receiving surface. Usually optimal. However, in a conventional structure, an alumel rod,
Raw materials need to be specially ordered to process chromel bars. (It is difficult for foreign and domestic manufacturers to obtain them.) 5). When the heat flux is measured by inserting a heat flow meter in an experimental boiler or the like, it is difficult to exactly match the heat receiving surface to the furnace wall, and therefore, it is usual to insert an extra amount into the furnace. At this time, the heat flux is received from the periphery (side surface) of the side cylinder, and a slight error is generated in the electromotive force value. 6). A slight amount of water in the maintenance space may cause insulation failure. (In some cases, air enters and exits due to poor welding between the heat receiving surface and the side tube, and the moisture in the air is altered.) It is an object of the present invention to solve the above problems. The present invention employs the following means to solve the above-mentioned problems. That is, a heat receiving plate having a heat insulating groove on the side surface and having a through hole and a partially penetrating hole on the rear surface, and a side which covers the heat insulating groove on the side surface of the heat receiving plate and is fixedly aligned at the front end. A tube, an outer tube that covers the base end side surface of the heat receiving plate and is fixed thereto, an inner tube for cooling water that is disposed inside the outer tube with a distal end apart from the heat receiving plate, and the through hole A heat flow meter comprising: a first sheath thermocouple inserted and fixed; and a second sheath thermocouple inserted and fixed into the partial penetration hole, wherein the heat receiving plate and the side tube are made of the same material. . In the above, the tip is inserted into the furnace to be measured. Then, cooling water is introduced between the outer tube and the inner tube, and is returned from the inside of the inner tube at the tip. The tip end surface of the heat receiving plate receives a thermal load directly, and thus has a high temperature. Further, the side surface is thermally shielded by the side tube, and is thermally insulated by the heat insulating groove, and the base end portion is cooled, so that a large temperature gradient is obtained. These are detected by the first thermocouple and the second thermocouple, and the heat flux in the furnace is calculated. Further, since the heat receiving plate and the side tube are made of the same material, the fixing property is good. Further, due to the configuration, these may be made of a common material such as stainless steel, so that they are inexpensive. In this way, a simple and inexpensive and highly durable heat flow meter can be obtained. An embodiment of the present invention will be described with reference to FIGS. In FIGS. 1 and 2, a heat insulating groove b is formed on the side surface of the heat receiving plate 2. A through hole c and a partial penetration hole d having a depth of about 1/3 of the plate thickness are formed in the center of the rear surface. The side tube 3 having a length smaller than the thickness of the heat receiving plate 2
Are joined so that the front ends thereof are aligned to cover the heat insulating groove b. The joint is welded. The outer tube 4 is connected to the base end so as to cover the side surface, and is welded. Further, the inner tube 5 is coaxially arranged with the tip thereof at a predetermined distance from the heat receiving plate 2. A first sheath thermocouple 7a is inserted into the through hole c of the heat receiving plate 2, and its outer tube is welded k. The second sheath thermocouple 7b is inserted into the partial penetration hole d and welded m. As described above, the heat receiving plate 2, the side cylinder 3, the sheath thermocouple 7
The outer tubes a and 7b are made of, for example, stainless steel. 1, 8 is a terminal box, 9 is a cooling water supply pipe, 10 is a cooling water return pipe, 11 is a terminal box, and 12 is a lead wire. FIG. 3 shows a circuit diagram of the thermocouples 7a and 7b. In the figure, 03a is an alumel wire, 03c is a chromel wire, 0
8 is a voltmeter (voltage). These are differentially connected by the terminal box 11 and the voltage 08 is the chromel wire 03
It is measured between c. In the above, the tip is inserted into the furnace to be measured. Then, cooling water is introduced between the outer pipe 4 and the inner pipe 5, and is returned from the inside of the inner pipe at the distal end. Since the front end face of the heat receiving plate 2 receives the heat load directly, the temperature becomes high. The side surface is thermally shielded by the side tube 3 and is thermally insulated by the heat insulating groove b, and the base end portion is cooled, so that a large temperature gradient is obtained. These are the first thermocouple 7a
Is detected differentially by the second thermocouple 7b and the heat flux in the furnace is calculated. As described above, the following operations and effects can be obtained. 1). Since the heat receiving plate 2 and the side tube 3 are integrated, and the outer tube, the outer tube 4 and the inner tube 5 of the thermocouple are made of the same material, the weldability is good. In addition, it is inexpensive because it is made of stainless steel, which is a common material. 2). The temperature difference can be detected as an electromotive force by making each sheath thermocouple a differential type similarly to the conventional type. 3). By eliminating the maintenance space, the rear surface of the heat receiving plate 2 is brought into direct contact with the cooling water, so that the temperature difference increases and the electromotive force also increases. The generated electromotive force can also be adjusted by adjusting the insertion depth of the low-temperature-side thermocouple 7b. 4). By providing an air layer around the side cylinder 3, the heat flux from the side surface is cut off, so that no error occurs in the electromotive force. 5). By using a sheath thermocouple, insulation failure due to moisture is eliminated. As described above, according to the present invention, the following effects can be obtained. A heat receiving plate having a heat insulating groove on the side surface, a side tube covering the heat insulating groove on the side surface of the heat receiving plate and fixed to the front end thereof, a sheath thermocouple and a part inserted into a through hole of the heat receiving plate. A sheath thermocouple inserted into the penetration hole was provided. As a result, the configuration becomes simple, a common material can be used, and an inexpensive and highly durable heat flow meter can be obtained.

【図面の簡単な説明】 【図1】本発明の実施の一形態の部分断面全体図であ
る。 【図2】上記一形態の前部詳細断面図である。 【図3】上記一形態の回路図である。 【図4】従来例の前部断面図である。 【図5】同従来例の回路図である。 【図6】同従来例の作用説明図である。 【図7】同従来例の作用説明図である。 【符号の説明】 01 側筒 02 受熱板 03a,03b アルメル線 03c クロメル線 04 外管 05 中管 06 内管 07 シース管 08 電圧計(電圧) 1 熱流計 2 受熱板 3 側筒 4 外管 5 内管 7a,7b 熱電対 8 端末ボックス 9 冷却水供給管 10 冷却水もどし管 11 ターミナルボックス 12 リード線 30 熱流計 31 黒体炉 32 ヒータ 33 耐火材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall partial cross-sectional view of an embodiment of the present invention. FIG. 2 is a detailed front sectional view of the embodiment. FIG. 3 is a circuit diagram of the embodiment. FIG. 4 is a front sectional view of a conventional example. FIG. 5 is a circuit diagram of the conventional example. FIG. 6 is an operation explanatory view of the conventional example. FIG. 7 is an operation explanatory view of the conventional example. [Description of Signs] 01 Side tube 02 Heat receiving plates 03a, 03b Alumel wire 03c Chromel wire 04 Outer tube 05 Middle tube 06 Inner tube 07 Sheath tube 08 Voltmeter (voltage) 1 Heat flow meter 2 Heat receiving plate 3 Side tube 4 Outer tube 5 Inner tubes 7a, 7b Thermocouple 8 Terminal box 9 Cooling water supply tube 10 Cooling water return tube 11 Terminal box 12 Lead wire 30 Heat flow meter 31 Black body furnace 32 Heater 33 Refractory

Claims (1)

(57)【特許請求の範囲】 【請求項1】 側面に熱絶縁用溝を持つとともに後面に
貫通穴および部分貫入穴を持つ受熱板と、同受熱板の側
面に上記熱絶縁用溝を覆いかつ前端を揃えて固着される
側筒と、上記受熱板の基端部側面を覆い、固着される外
管と、同外管の内部に上記受熱板から先端を離して配置
される冷却水用の内管と、上記貫通穴に挿入固着される
第1のシース熱電対と、上記部分貫入穴に挿入固着され
る第2のシース熱電対とを備え、上記受熱板および側筒
を同一材料製としたことを特徴とする熱流計。
(1) A heat receiving plate having a heat insulating groove on a side surface and having a through hole and a partially penetrating hole on a rear surface, and covering the heat insulating groove on a side surface of the heat receiving plate. And a side tube fixed to the front end and fixed, an outer tube covering the base end side surface of the heat receiving plate and fixed thereto, and a cooling water disposed inside the outer tube at a distal end from the heat receiving plate. , A first sheath thermocouple inserted and fixed in the through hole, and a second sheath thermocouple inserted and fixed in the partial penetration hole, wherein the heat receiving plate and the side tube are made of the same material. Heat flow meter characterized by the following.
JP22137897A 1997-08-18 1997-08-18 Heat flow meter Expired - Fee Related JP3492161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22137897A JP3492161B2 (en) 1997-08-18 1997-08-18 Heat flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22137897A JP3492161B2 (en) 1997-08-18 1997-08-18 Heat flow meter

Publications (2)

Publication Number Publication Date
JPH1164120A JPH1164120A (en) 1999-03-05
JP3492161B2 true JP3492161B2 (en) 2004-02-03

Family

ID=16765855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22137897A Expired - Fee Related JP3492161B2 (en) 1997-08-18 1997-08-18 Heat flow meter

Country Status (1)

Country Link
JP (1) JP3492161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470374B (en) * 2018-11-13 2020-11-10 中国航天空气动力技术研究院 Rudder spindle heat flow measuring device in gap of 3-4mm

Also Published As

Publication number Publication date
JPH1164120A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP3492135B2 (en) Heat flux meter
US3038951A (en) Fast acting totally expendable immersion thermocouple
US5348395A (en) Aspirating pyrometer with platinum thermocouple and radiation shields
CN101968385B (en) Method for follow-up testing of temperature of steel billet in furnace
US6152595A (en) Measuring tip for a radiation thermometer
KR101630452B1 (en) Temperature sensor
US4971452A (en) RTD assembly
US3321974A (en) Surface temperature measuring device
US4245500A (en) Sensor for determining heat flux through a solid medium
CN102353468B (en) Device for measuring temperature of solar cell sintering furnace and using method thereof
CN108204863A (en) High-temperature exhaust air sensor
JP3492161B2 (en) Heat flow meter
US3354720A (en) Temperature sensing probe
CN106352995A (en) Thermocouple-based temperature measurement device
US5314247A (en) Dual active surface, miniature, plug-type heat flux gauge
US4162175A (en) Temperature sensors
Diller et al. Heat flux measurement
JPS6145462Y2 (en)
EP3249369B1 (en) Contactless temperature sensor for copper wires in movement
US2472808A (en) Thermocouple junction with radiation shield
JPS60209158A (en) Sample cell for heat flux differential scanning calorimeter
JP2006512182A (en) Electric rice cooker
JPH01267427A (en) Temperature detector for monitoring surface temperature
JP2000019030A (en) Heat flux meter
JPH07104214B2 (en) Sheath type thermocouple with airtight terminal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031014

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040316

LAPS Cancellation because of no payment of annual fees