JP3490342B2 - Clad material for induction heating and method for producing the same - Google Patents
Clad material for induction heating and method for producing the sameInfo
- Publication number
- JP3490342B2 JP3490342B2 JP18978799A JP18978799A JP3490342B2 JP 3490342 B2 JP3490342 B2 JP 3490342B2 JP 18978799 A JP18978799 A JP 18978799A JP 18978799 A JP18978799 A JP 18978799A JP 3490342 B2 JP3490342 B2 JP 3490342B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- sensitive magnetic
- conductive metal
- magnetic material
- clad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 162
- 238000010438 heat treatment Methods 0.000 title claims description 78
- 230000006698 induction Effects 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000696 magnetic material Substances 0.000 claims description 147
- 239000007769 metal material Substances 0.000 claims description 95
- 230000035699 permeability Effects 0.000 claims description 48
- 238000003466 welding Methods 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000002184 metal Substances 0.000 claims description 40
- 238000000137 annealing Methods 0.000 claims description 23
- 230000009467 reduction Effects 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 20
- 230000002265 prevention Effects 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- 238000001953 recrystallisation Methods 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 7
- 238000009792 diffusion process Methods 0.000 claims description 5
- 230000005389 magnetism Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 13
- 239000000956 alloy Substances 0.000 description 13
- 238000005304 joining Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 229910018487 Ni—Cr Inorganic materials 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 229910018054 Ni-Cu Inorganic materials 0.000 description 3
- 229910018481 Ni—Cu Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010411 cooking Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910019589 Cr—Fe Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000008157 edible vegetable oil Substances 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
- Cookers (AREA)
Description
【0001】[0001]
【発明が属する技術分野】本発明は、感温磁性材と良熱
伝導金属材とをクラッドした誘導加熱用クラッド材およ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clad material for induction heating in which a temperature-sensitive magnetic material and a good heat conductive metal material are clad, and a method for producing the same.
【0002】[0002]
【従来の技術】誘導加熱を利用した電磁調理器、加熱器
等に使用される加熱・保温プレート、鍋、内釜、容器等
は、例えば特開平4−220990号公報、特開平4−
242093号公報に記載されているように、温度によ
って透磁率が変化する感温磁性材と良好な熱伝導性を有
するアルミニウム等の金属材とが接合された誘導加熱用
クラッド材によって形成されており、このクラッド材は
70%以上の圧下率で冷間圧接することにより製造され
ている。2. Description of the Related Art For example, Japanese Patent Application Laid-Open No. 4-220990 and Japanese Patent Application Laid-Open No. 4-220990 disclose heating / heat-retaining plates, pots, inner pots, and containers used in induction cookers, heaters, and the like that utilize induction heating.
As described in Japanese Patent No. 242093, it is formed of a clad material for induction heating in which a temperature-sensitive magnetic material whose magnetic permeability changes with temperature and a metal material such as aluminum having good thermal conductivity are joined. The clad material is manufactured by cold pressure welding at a reduction rate of 70% or more.
【0003】前記感温磁性材は、キュリー点付近で透磁
率が急激に変化し、キュリー点を十分に超えた温度では
非磁性体化し、誘導加熱コイルからの交番磁界による渦
電流損が低減し、加熱出力が低下することから、自己温
度制御が可能であり、この種の加熱部材として好適な材
料である。もっとも、感温磁性材はそれ自体の熱伝導率
が低いため、単独で使用すると温度分布が不均一になる
ので、感温磁性材には熱伝導性に優れたアルミニウムな
どの金属材がクラッドされるのである。因みに、38wt
%Ni−8wt%Cr−Fe合金で形成された感温磁性材
の熱伝導率は0.03cal/cm・s ・℃程度であり、一方
アルミニウムの熱伝導率は0.56cal/cm・s ・℃程度
である。The magnetic permeability of the temperature-sensitive magnetic material changes rapidly near the Curie point, becomes non-magnetic at a temperature sufficiently above the Curie point, and eddy current loss due to the alternating magnetic field from the induction heating coil is reduced. Since the heating output is reduced, self-temperature control is possible and it is a suitable material for this kind of heating member. However, since the temperature-sensitive magnetic material itself has a low thermal conductivity, the temperature distribution will be uneven when used alone.Therefore, the temperature-sensitive magnetic material is clad with a metal material such as aluminum, which has excellent thermal conductivity. It is. By the way, 38wt
The thermal conductivity of the temperature-sensitive magnetic material formed of the% Ni-8 wt% Cr-Fe alloy is about 0.03 cal / cm · s · ° C, while the thermal conductivity of aluminum is 0.56 cal / cm · s ·. It is about ℃.
【0004】[0004]
【発明が解決しようとする課題】上記のように、誘導加
熱部材の均熱性を確保するには、感温磁性材単独では無
理であり、これに良熱伝導金属材をクラッドすることが
必須となるのであるが、図3に示すように、感温磁性材
21に良熱伝導金属材22をクラッドした2層構造の誘
導加熱用クラッド材では、AlやCu等の良熱伝導金属
材22は感温磁性材21に比して熱膨張率が大きいた
め、良熱伝導金属材22が感温磁性材21よりも伸びが
大きくなり、良熱伝導金属材22側が凸状に熱変形(わ
ん曲)する。この変形が大きいと、感温磁性材21側に
設置される誘導加熱コイルと感温磁性材21とが離反
し、加熱効率や温度制御性が低下する。また、加熱・保
温プレートなどの加熱器の場合、誘導加熱用クラッド材
と被加熱容器との接触面積が減少し、容器への伝熱効率
が低下するばかりか、容器がプレート上で回転したり、
滑りやすくなり、加熱姿勢が不安定になる。As described above, in order to ensure the uniform heating of the induction heating member, it is not possible to use the temperature-sensitive magnetic material alone, and it is essential to clad a good heat-conducting metal material to this. However, as shown in FIG. 3, in the induction heating clad material having a two-layer structure in which the good thermal conductive metal material 22 is clad to the temperature-sensitive magnetic material 21, the good thermal conductive metal material 22 such as Al or Cu is Since the coefficient of thermal expansion is larger than that of the temperature-sensitive magnetic material 21, the good heat-conducting metal material 22 expands more than the temperature-sensitive magnetic material 21, and the good heat-conducting metal material 22 side is thermally deformed in a convex shape (curved. ) Do. If this deformation is large, the induction heating coil installed on the temperature-sensitive magnetic material 21 side and the temperature-sensitive magnetic material 21 are separated from each other, and heating efficiency and temperature controllability are reduced. Further, in the case of a heater such as a heating / heat-retaining plate, the contact area between the clad material for induction heating and the heated container is reduced, and not only the efficiency of heat transfer to the container is decreased, but the container rotates on the plate,
It becomes slippery and the heating posture becomes unstable.
【0005】一方、本発明者は誘導加熱用クラッド材の
品質を調査する過程で、クラッド後の感温磁性材はクラ
ッド前のものに比して温度制御性が急激に低下すること
を見い出した。磁気特性の観点から温度制御性の低下の
原因を述べたところ、キュリー点における透磁率の温度
変化率dμ/dTがクラッドによって急激に低下するこ
とがわかった。すなわち、図4(A) 、(B) はクラッド前
後における感温磁性材の温度に対する透磁率の測定結果
を示すグラフであるが、図4(A) に示すように、クラッ
ド前ではキュリー点における透磁率μの温度変化率dμ
/dTが大きいものでも、同図(B) に示すように、クラ
ッド後には前記dμ/dTが急激に低下するようにな
る。例えば、38wt%Ni−8wt%Cr−Fe合金から
なる感温磁性材の場合、クラッド前に加工歪みを除去す
る磁性焼鈍を施した感温磁性材のキュリー点におけるd
μ/dTは10以上であるが、従来レベルの圧下率で圧
接したクラッド材を構成する感温磁性材のキュリー点に
おけるdμ/dTは6程度に低下してしまう。ただし、
前記dμ/dTの値は、キュリー点の前後における透磁
率の最大値を100、最小値を1としたときの相対的な
透磁率に対する値である。このように、クラッド後の感
温磁性材はキュリー点におけるdμ/dTが急激に低下
し、感温磁性材の温度変化に対する温度制御性が著しく
劣化するようになり、本来の磁気特性を犠牲にした状態
での使用を余儀なくされている。On the other hand, in the process of investigating the quality of the clad material for induction heating, the present inventor has found that the temperature controllability of the temperature-sensitive magnetic material after clad is drastically decreased as compared with that before clad. . From the viewpoint of magnetic properties, the cause of the decrease in temperature controllability was described, and it was found that the temperature change rate dμ / dT of the magnetic permeability at the Curie point was drastically decreased by the cladding. That is, FIGS. 4 (A) and 4 (B) are graphs showing the measurement results of the magnetic permeability with respect to the temperature of the temperature-sensitive magnetic material before and after the cladding, but as shown in FIG. 4 (A), before the cladding, at the Curie point, Permeability μ Temperature change rate dμ
Even if the value of / dT is large, the dμ / dT sharply decreases after the cladding, as shown in FIG. For example, in the case of a temperature-sensitive magnetic material composed of 38 wt% Ni-8 wt% Cr-Fe alloy, d at the Curie point of the temperature-sensitive magnetic material that has been magnetically annealed before the cladding to remove processing strain.
Although the μ / dT is 10 or more, the dμ / dT at the Curie point of the temperature-sensitive magnetic material forming the clad material pressed at the conventional reduction rate is reduced to about 6. However,
The value of dμ / dT is a value with respect to relative magnetic permeability when the maximum value of the magnetic permeability before and after the Curie point is 100 and the minimum value is 1. As described above, the dμ / dT at the Curie point of the temperature-sensitive magnetic material after clad abruptly decreases, and the temperature controllability of the temperature-sensitive magnetic material with respect to the temperature change is significantly deteriorated, but the original magnetic characteristics are sacrificed. It is forced to be used in the condition where it is.
【0006】本発明はかかる問題に鑑みなされたもの
で、誘導加熱の際に熱変形が生じにくく、また感温磁性
材が本来有している磁気特性を有効に利用することがで
きる、温度制御性に優れた誘導加熱用クラッド材、およ
びその製造方法を提供するものである。The present invention has been made in view of the above problems, and it is less likely that thermal deformation will occur during induction heating and that the magnetic characteristics originally possessed by the temperature-sensitive magnetic material can be effectively utilized. A clad material for induction heating having excellent properties and a method for producing the same.
【0007】[0007]
【課題を解決するための手段】請求項1に記載した本発
明の誘導加熱用クラッド材は、温度によって透磁率が変
化する感温磁性材と、良熱伝導金属材と、前記感温磁性
材と前記良熱伝導金属材との熱膨張率の差によって生じ
る熱変形を防止する熱変形防止材とが同順序で接合され
た誘導加熱用クラッド材であって、前記感温磁性材の板
厚が0.03〜0.5 mm であり、前記良熱伝導金属材の
板厚が0.3〜6.0 mm とされたものである。この発明
のクラッド材によれば、良熱伝導金属材の一面に感温磁
性材が、その他面に熱変形防止材が接合されるので、前
記感温磁性材と前記良熱伝導金属材との熱膨張率の差に
よって生じる、良熱伝導金属材側の大きな熱変形が熱変
形防止材によって拘束されるため、感温磁性材と良熱伝
導金属材とがクラッドされた2層クラッド材の場合に問
題になる熱変形を有効に防止することができ、引いては
誘導加熱コイルとの離反による加熱効率や温度制御性の
低下や、被加熱体への伝熱効率の低下や加熱姿勢の不安
定化を防止することができる。また、前記感温磁性材の
板厚の下限が0.03 mm とされているので、有効磁束の
減少による発熱量の不足や加工コスト高が防止され、一
方その上限が0.5 mm とされているので、表皮効果によ
り表層部に集中する磁束を有効に利用し、磁束が通る浸
透深さ以上の不要な厚さがないため、素材コスト高を抑
制することができる。また、前記良熱伝導金属材の板厚
の下限が0.3 mm とされているので、クラッド材の温度
均一性の劣化を防止することができ、一方その上限が
6.0 mm とされているので、圧接の困難や材料コストの
上昇を抑制することができる。 The clad material for induction heating of the present invention according to claim 1 is a temperature-sensitive magnetic material whose magnetic permeability changes with temperature, a good heat-conductive metal material, and the temperature-sensitive magnetic material. Is a clad material for induction heating, in which a thermal deformation preventing material for preventing thermal deformation caused by a difference in thermal expansion coefficient between the good thermal conductive metal material and the good thermal conductive metal material is joined in the same order, and the temperature sensitive magnetic material plate.
It has a thickness of 0.03 to 0.5 mm ,
In which the plate thickness is between 0.3 to 6.0 mm. According to the clad material of the present invention, since the temperature-sensitive magnetic material is bonded to one surface of the good heat-conducting metal material and the heat deformation preventing material is bonded to the other surface, the temperature-sensitive magnetic material and the good heat-conductive metal material are In the case of a two-layer clad material in which a temperature-sensitive magnetic material and a good heat conducting metal material are clad, since a large thermal deformation on the good heat conducting metal material side caused by a difference in thermal expansion coefficient is restrained by the heat deformation preventing material. This can effectively prevent thermal deformation, which is a problem with heat generation, which in turn lowers heating efficiency and temperature controllability due to separation from the induction heating coil, heat transfer efficiency to the heated object, and unstable heating posture. Can be prevented. In addition, the temperature-sensitive magnetic material
Since the lower limit of the plate thickness is 0.03 mm , the effective magnetic flux
Insufficient heat generation due to decrease and high processing cost are prevented.
On the other hand, the upper limit is set to 0.5 mm , which is due to the skin effect.
The magnetic flux concentrated on the
Since there is no unnecessary thickness greater than the penetration depth, high material costs are suppressed.
Can be controlled. Also, the plate thickness of the good heat conductive metal material
Since the lower limit of is 0.3 mm , the temperature of the cladding material
Uniformity degradation can be prevented, while the upper limit is
Since it is set to 6.0 mm , it is difficult to perform pressure welding and material cost is reduced.
The rise can be suppressed.
【0008】良熱伝導金属材は感温磁性材に比して熱膨
張率が一般的に大きいため、通常、熱変形防止材は良熱
伝導金属材の熱膨張率よりも小さい金属材が適用され
る。熱変形防止材を感温磁性材と同材質、同厚に形成す
ることで、熱変形を容易かつ完全に防止することができ
るが、必ずしも感温磁性材と同材質にする必要はなく、
熱変形が生じないように、材料力学的見地から熱膨張率
(線膨張係数)、弾性係数、板厚を決定し、これらの条
件を満足する適宜の材質を選定すればよい。勿論、熱変
形防止材には、感温特性を必要としないので、非磁性材
でもよく、磁性材であっても感温磁性材とキュリー点が
異なるものでもよい。Since a good thermal conductive metal material generally has a higher coefficient of thermal expansion than a temperature-sensitive magnetic material, a metal material having a thermal expansion coefficient smaller than that of the good thermal conductive metal material is usually used as the thermal deformation preventing material. To be done. By forming the thermal deformation prevention material in the same material and thickness as the temperature-sensitive magnetic material, it is possible to easily and completely prevent thermal deformation, but it is not always necessary to use the same material as the temperature-sensitive magnetic material.
In order to prevent thermal deformation, the coefficient of thermal expansion (linear expansion coefficient), the coefficient of elasticity, and the plate thickness may be determined from the viewpoint of material dynamics, and an appropriate material satisfying these conditions may be selected. Of course, the thermal deformation prevention material does not require temperature sensitive characteristics, and thus may be a non-magnetic material or a magnetic material having a Curie point different from that of the temperature sensitive magnetic material.
【0009】一方、本発明者は、感温磁性材と良熱伝導
金属材とを圧接する際の圧下率とキュリー点におけるd
μ/dTとの関係について鋭意研究したところ、従来レ
ベルの圧下率では圧下に伴う加工歪によりdμ/dTが
急激に劣化することを見い出した。請求項2に記載され
た発明等は、かかる知見に基づいて完成されてものであ
る。On the other hand, the inventor of the present invention has proposed a reduction ratio and a Curie point d when the temperature-sensitive magnetic material and the good thermal conductive metal material are pressure-welded to each other.
As a result of diligent research on the relationship with μ / dT, it was found that dμ / dT rapidly deteriorates due to processing strain associated with the reduction at the conventional level of reduction. The invention described in claim 2 is completed based on such knowledge.
【0010】すなわち、請求項2に記載した本発明の誘
導加熱用クラッド材は、温度によって透磁率が変化する
感温磁性材と、良熱伝導金属材と、前記感温磁性材と前
記良熱伝導金属材との熱膨張率の差によって生じる熱変
形を防止する熱変形防止材とが同順序で接合されたクラ
ッド材であって、前記クラッド材を構成する感温磁性材
のキュリー点の前後における透磁率の最大値を100、
最小値を1としたとき、当該感温磁性材のキュリー点に
おける透磁率の温度変化率dμ/dTが10以上とされ
たものである。この発明のクラッド材によれば、熱変形
防止材により感温磁性材と良熱伝導金属材との熱膨張率
の差に起因する熱変形を有効に防止することができる。
また、クラッド材を構成する感温磁性材のキュリー点に
おける相対的な透磁率の温度変化率すなわちdμ/dT
が10以上であるので、キュリー点付近での温度変化に
対して透磁率が速やかに変化するため、感温磁性材を通
る磁束ひいては渦電流損が速やかに変化し、これによっ
て温度変化に対する優れた応答性が得られるため、温度
制御性に優れる。前記dμ/dTは大きいほどよく、好
ましくは15以上、より好ましくは20以上とするのが
よい。That is, the clad material for induction heating according to the second aspect of the present invention is a temperature-sensitive magnetic material whose magnetic permeability changes with temperature, a good heat-conductive metal material, the temperature-sensitive magnetic material and the good heat-conductive material. A clad material in which a thermal deformation preventing material for preventing thermal deformation caused by a difference in coefficient of thermal expansion from the conductive metal material is joined in the same order, and before and after the Curie point of the temperature-sensitive magnetic material forming the clad material. The maximum value of magnetic permeability at 100,
When the minimum value is 1, the temperature change rate of magnetic permeability dμ / dT at the Curie point of the temperature-sensitive magnetic material is set to 10 or more. According to the clad material of the present invention, the thermal deformation preventing material can effectively prevent thermal deformation due to the difference in coefficient of thermal expansion between the temperature-sensitive magnetic material and the good thermal conductive metal material.
Further, the temperature change rate of the relative magnetic permeability at the Curie point of the temperature-sensitive magnetic material forming the clad material, that is, dμ / dT
Is 10 or more, the magnetic permeability changes rapidly with temperature changes near the Curie point, so that the magnetic flux passing through the temperature-sensitive magnetic material, and thus the eddy current loss, changes rapidly, which is excellent for temperature changes. Since responsiveness is obtained, the temperature controllability is excellent. The larger dμ / dT is, the better, and it is preferably 15 or more, more preferably 20 or more.
【0011】前記dμ/dTは、キュリー点の前後にお
ける透磁率の最大値を100、最小値を1としたときの
相対的な透磁率に対する値であり、最小値は非磁性状態
を示し、比透磁率が1であることに対応させたものであ
る。本発明において、dμ/dTを透磁率の相対値に対
して求めることとしたのは、透磁率は感温磁性材の成
分、測定条件によって大きく異なり、また本発明は透磁
率の絶対値が問題なのではなく、温度に対する変化が問
題であるので、透磁率の相対値に対するdμ/dTを規
定することにしたものである。なお、透磁率の最大値、
最小値は通常(キュリー点−100)℃から(キュリー
点+50)℃の温度範囲で現れるので、実際的には、こ
の温度範囲で測定すればよい。なお、本発明では感温磁
性材における温度変化に対する変化量として相対化した
透磁率を採ったが、磁束密度B、重量、あるいは電磁誘
導によって感温磁性材に誘導される電圧の最大値を10
0、最小値を1とする相対値に対する温度変化率を採っ
ても同様である。The dμ / dT is a value for relative magnetic permeability when the maximum value of the magnetic permeability before and after the Curie point is 100 and the minimum value is 1, and the minimum value indicates a non-magnetic state, and the ratio This corresponds to a magnetic permeability of 1. In the present invention, dμ / dT is determined with respect to the relative value of the magnetic permeability. The magnetic permeability varies greatly depending on the components of the temperature-sensitive magnetic material and the measurement conditions, and in the present invention, the absolute value of the magnetic permeability is a problem. However, since the change with respect to temperature is a problem, dμ / dT with respect to the relative value of magnetic permeability is defined. The maximum value of magnetic permeability,
Since the minimum value usually appears in the temperature range of (Curie point −100) ° C. to (Curie point +50) ° C., it is practically possible to measure in this temperature range. In the present invention, the relative magnetic permeability is used as the amount of change in the temperature-sensitive magnetic material with respect to the temperature change, but the maximum value of the magnetic flux density B, the weight, or the voltage induced in the temperature-sensitive magnetic material by electromagnetic induction is 10%.
The same applies even if the temperature change rate with respect to a relative value where 0 is the minimum value and 1 is the minimum value.
【0012】また、請求項3に記載した発明は、請求項
1または2に記載した誘導加熱用クラッド材において、
感温磁性材が40〜600℃のキュリー点を有する感温
磁性金属であり、良熱伝導金属材がAlを主成分とする
Al基金属あるいはCuを主成分とするCu基金属で形
成されたものである。この発明によると、感温磁性材と
してそのキュリー点が40〜600℃のものを用いるの
で、調理温度として好適な温度範囲での温度制御を実現
することができる。また、Alを主成分とするAl基金
属あるいはCuを主成分とするCu基金属は市場に多量
に供給され、低コストで熱伝導性に優れるため、これら
の金属を用いることにより、温度均一性に優れた、低コ
ストのクラッド材を容易に得ることができる。Al基金
属の場合は軽量化にも資することができる。Further, the invention described in claim 3 is the induction heating clad material according to claim 1 or 2.
The temperature-sensitive magnetic material is a temperature-sensitive magnetic metal having a Curie point of 40 to 600 ° C., and the good thermal conductive metal material is formed of an Al-based metal containing Al as a main component or a Cu-based metal containing Cu as a main component. It is a thing. According to the present invention, since the Curie point of 40 to 600 ° C. is used as the temperature-sensitive magnetic material, it is possible to realize temperature control in a temperature range suitable as a cooking temperature. In addition, since Al-based metal containing Al as a main component or Cu-based metal containing Cu as a main component is supplied to the market in a large amount and has excellent thermal conductivity at low cost, temperature uniformity can be improved by using these metals. It is possible to easily obtain a low-cost clad material excellent in heat resistance. The Al-based metal can also contribute to weight reduction.
【0013】このような40〜600℃のキュリー点を
備えた感温磁性材としては、例えばFe−Ni合金(好
ましくはNi≧30wt%)、Fe−Ni−Cr合金(好
ましくはNi:30〜65wt%、好ましくはCr≦20
wt%)、Ni−Cu合金(好ましくはCu≧35wt%以
上)あるいは純Niをあげることができる。一方、前記
Al基金属としては純Alのほか、好ましくはAlを9
0wt%以上含有する各種のAl合金を用いることができ
る。また、前記Cu基金属としては、純Cuのほか、好
ましくはCuを90wt%以上含有する各種のCu合金を
用いることができる。Examples of the temperature-sensitive magnetic material having the Curie point of 40 to 600 ° C. are, for example, Fe—Ni alloy (preferably Ni ≧ 30 wt%) and Fe—Ni—Cr alloy (preferably Ni: 30 to 30). 65 wt%, preferably Cr ≦ 20
wt%), Ni-Cu alloy (preferably Cu ≧ 35 wt% or more), or pure Ni. On the other hand, as the Al-based metal, in addition to pure Al, preferably 9 is Al.
Various Al alloys containing 0 wt% or more can be used. Further, as the Cu-based metal, in addition to pure Cu, preferably various Cu alloys containing 90 wt% or more of Cu can be used.
【0014】また、請求項4に記載した発明は、請求項
2に記載した誘導加熱用クラッド材において、感温磁性
材の厚さが0.03〜0.5mmであり、良熱伝導金属材
の厚さが0.3〜6.0mmとされたものである前記感温
磁性材の厚さは、薄過ぎると漏れ磁束が多くなって有効
磁束が減少し、発熱量が不足するようになり、また加工
コスト高を招来する。このため、感温磁性材の厚さの下
限を0.03mm、好ましくは0.1mmとする。一方、磁
束は表皮効果により表層部に集中するため、磁束が通る
浸透深さ以上の厚さは不要であり、また素材コスト高を
招来する。このため、感温磁性材の厚さの上限を0.5
mm、好ましくは0.3mmとする。一方、良熱伝導金属材
の厚さは、薄過ぎると大気中へ逸散する熱量に比して伝
導する熱量が少ないため、熱伝導が不十分となり、クラ
ッド材の温度均一性が劣化するようになる。このため、
良熱伝導金属材の厚さの下限を0.3mm、好ましくは
0.6mmとする。一方、厚過ぎると、均熱性は向上する
が、圧接が困難になり、また材料コストも上昇する。こ
のため、良熱伝導金属材の厚さの上限を6.0mm、好ま
しくは4.0mmとする。Further, the invention described in claim 4, claim
In the clad material for induction heating described in 2 , the temperature-sensitive magnetic material has a thickness of 0.03 to 0.5 mm, and the good heat conductive metal material has a thickness of 0.3 to 6.0 mm. If the thickness of the certain temperature-sensitive magnetic material is too thin, the leakage magnetic flux increases and the effective magnetic flux decreases, resulting in a shortage of the amount of heat generation, and also a high processing cost. Therefore, the lower limit of the thickness of the temperature-sensitive magnetic material is 0.03 mm, preferably 0.1 mm. On the other hand, since the magnetic flux concentrates on the surface layer due to the skin effect, it is not necessary to have a thickness greater than the penetration depth through which the magnetic flux passes, and the material cost increases. Therefore, the upper limit of the thickness of the temperature-sensitive magnetic material is 0.5.
mm, preferably 0.3 mm. On the other hand, if the thickness of the good thermal conductive metal material is too thin, the amount of heat that is conducted is smaller than the amount of heat that is dissipated into the atmosphere, so heat conduction will be insufficient and the temperature uniformity of the clad material will deteriorate. become. For this reason,
The lower limit of the thickness of the good heat conductive metal material is 0.3 mm, preferably 0.6 mm. On the other hand, if it is too thick, the soaking property is improved, but the pressure welding becomes difficult and the material cost also rises. Therefore, the upper limit of the thickness of the good heat conductive metal material is 6.0 mm, preferably 4.0 mm.
【0015】また、請求項5に記載した発明は、請求項
1〜4のいずれか1項に記載した誘導加熱用クラッド材
において、熱変形防止材はその板厚が良熱伝導金属材の
板厚以下とされたものである。この発明によると、熱変
形防止材はその板厚が良熱伝導金属材の板厚以下とされ
るので、熱変形防止材の板厚の増大による、良熱伝導金
属材の均熱効果の低下を軽減ないし防止することができ
る。熱変形防止材の板厚は、好ましくは良熱伝導金属材
の板厚の0.5倍以下、より好ましく0.3倍以下とす
るのがよく、またその材質も耐食性金属、例えばFe−
Ni合金、Fe−Cr合金、Fe−Ni−Cr合金が耐
腐食性に優れるため好ましい。特に、請求項6に記載し
たように、熱変形防止材を感温磁性材と同材質とするこ
とで、両者は熱膨張率が完全に同一になり、感温磁性材
と同一板厚の熱変形防止材を接合することにより、熱変
形の発生を容易かつ実質的に阻止することができ、良熱
伝導金属材による均熱効果の減少をも可及的に防止する
ことができる。 According to a fifth aspect of the present invention, in the induction heating clad material according to any one of the first to fourth aspects, the thermal deformation preventing material has a plate thickness of a good heat conductive metal material. It is considered to be less than the thickness. According to the present invention, since the plate thickness of the thermal deformation prevention material is equal to or less than the plate thickness of the good thermal conductive metal material, the increase of the plate thickness of the thermal deformation prevention material reduces the soaking effect of the good thermal conductive metal material. Can be reduced or prevented. The plate thickness of the thermal deformation preventing material is preferably 0.5 times or less, more preferably 0.3 times or less the plate thickness of the good heat conductive metal material, and the material is also a corrosion resistant metal such as Fe-.
Ni alloys, Fe-Cr alloys, and Fe-Ni-Cr alloys are preferable because they have excellent corrosion resistance. In particular, claim 6
The thermal deformation prevention material should be the same as the temperature-sensitive magnetic material.
The thermal expansion coefficient of both is completely the same, and the temperature-sensitive magnetic material
By joining a thermal deformation prevention material with the same plate thickness as
Good heat that can easily and practically prevent the formation of shapes
As much as possible to prevent the decrease of soaking effect due to the conductive metal material
be able to.
【0016】請求項7に記載した本発明の誘導加熱用ク
ラッド材は、温度によって透磁率が変化する感温磁性材
と、良熱伝導金属材と、前記感温磁性材と前記良熱伝導
金属材との熱膨張率の差によって生じる熱変形を防止す
る熱変形防止材とが同順序でロール圧接により接合され
たものであって、前記感温磁性材が40〜600℃のキ
ュリー点を有する感温磁性金属で形成され、前記良熱伝
導金属材がAlを主成分とするAl基金属あるいはCu
を主成分とするCu基金属で形成され、前記感温磁性材
の板厚が0.03 mm 以上であり、前記良熱伝導金属材の
板厚が0.3〜6.0 mm とされたものである。このクラ
ッド材によると、上記のとおり、前記熱変形防止材によ
り感温磁性材と良熱伝導金属材との熱膨張率の差に起因
する熱変形を有効に防止することができる。また、前記
クラッド材は、前記感温磁性材と良熱伝導金属材と熱変
形防止材とがロール圧接により接合されたものであるた
め、感温磁性材や良熱伝導金属材の板厚が薄いものでも
接合が容易で、生産性に優れる。また、前記クラッド材
は、前記感温磁性材が40〜600℃のキュリー点を有
する感温磁性金属で形成されているので、調理温度とし
て好適な温度範囲での温度制御を実現することができ
る。また、前記良熱伝導金属材を形成するAl基金属あ
るいはCu基金属は市場に多量に供給され、低コストで
熱伝導性に優れるため、温度均一性に優れた、低コスト
のクラッド材を提供することができる。Al基金属の場
合は軽量化にも資することができる。また、前記感温磁
性材の板厚が薄過ぎると漏れ磁束が多くなって有効磁束
が減少し、発熱量が不足するようになり、また加工コス
ト高を招来する。前記クラッド材では、前記感温磁性材
の板厚が0.03 mm 以上とされるので、かかる有効磁束
の減少や加工コスト高を抑制することができる。また、
前記良熱伝導金属材の板厚の下限が0.3 mm とされてい
るので、クラッド材の温度均一性の劣化を防止すること
ができ、一方その上限が6.0 mm とされているので、圧
接の困難や材料コストの上昇を抑制することができる。 The induction heating chamber of the present invention according to claim 7
Rudd material is a temperature-sensitive magnetic material whose permeability changes with temperature.
And a good heat conducting metal material, the temperature-sensitive magnetic material and the good heat conducting material.
Prevents thermal deformation caused by the difference in coefficient of thermal expansion from metal materials
And the thermal deformation prevention material are joined by roll pressure welding in the same order.
The temperature-sensitive magnetic material has a temperature of 40 to 600 ° C.
It is made of temperature-sensitive magnetic metal having a Curie point,
The conductive metal material is an Al-based metal whose main component is Al or Cu
The temperature-sensitive magnetic material formed of a Cu-based metal whose main component is
Has a plate thickness of 0.03 mm or more,
The plate thickness is 0.3 to 6.0 mm . This club
According to the pad material, as described above, the thermal deformation prevention material
Due to the difference in the coefficient of thermal expansion between the temperature-sensitive magnetic material and the good thermal conductive metal material
It is possible to effectively prevent thermal deformation. Also, the above
The clad material is composed of the above-mentioned temperature-sensitive magnetic material, good thermal conductive metal material, and thermal
The shape preventive material is joined by roll pressure welding.
Therefore, even if the thickness of the temperature-sensitive magnetic material or good heat conductive metal material is thin
Easy to join and excellent in productivity. Also, the clad material
The temperature-sensitive magnetic material has a Curie point of 40 to 600 ° C.
Because it is made of temperature-sensitive magnetic metal,
Temperature control in a suitable temperature range
It In addition, the Al-based metal alloy forming the good thermal conductive metal material
Rui or Cu-based metals are supplied to the market in large quantities, and at low cost.
Excellent thermal conductivity, excellent temperature uniformity, low cost
The clad material can be provided. Al-based metal field
In that case, it can also contribute to weight reduction. In addition, the temperature-sensitive magnetic
If the plate thickness of the elastic material is too thin, the leakage flux increases and the effective flux
Decrease, the heat generation becomes insufficient, and the processing cost
Invite high school. In the clad material, the temperature-sensitive magnetic material
Since the thickness of the is equal to or greater than 0.03 mm, such effective flux
Can be suppressed and the processing cost can be suppressed. Also,
The good heat lower limit of the thickness of the conductive metallic material is a 0.3 mm
Therefore, prevent the deterioration of temperature uniformity of the clad material.
However, since the upper limit is 6.0 mm , the pressure
It is possible to suppress difficulty in contact and increase in material cost.
【0017】請求項8は前記誘導加熱用クラッド材の好
適な製造方法を示すものであり、温度によって透磁率が
変化する感温磁性材に対してその再結晶温度以上、融点
未満の温度で加熱して加工歪を除去する磁性焼鈍を施し
た後、この感温磁性材と、良熱伝導金属材と、前記感温
磁性材と前記良熱伝導金属材との熱膨張率の差によって
生じる熱変形を防止する熱変形防止材とを同順序で圧下
率1〜15%で1×10-1Torr以下の真空下で圧接する
ものである。この発明によると、感温磁性材は圧接前に
再結晶温度以上、融点未満の温度で加熱して加工歪を除
去する磁性焼鈍が施されているので、キュリー点におけ
る透磁率の温度変化率dμ/dTの劣化のない、その感
温磁性材の本来有する磁気特性を利用することができ
る。そして、この感温磁性材と良熱伝導金属材と熱変形
防止材とを圧下率1〜15%で真空下で圧接するので、
圧接による加工歪が加わっても、その量が少ないので、
透磁率の最小値〜最大値を1〜100に相対化した透磁
率のキュリー点における温度変化率dμ/dTが10以
上の良好な磁気特性を備え、しかも熱変形防止材の接合
により熱変形が防止されたクラッド材を容易に製造する
ことができる。The eighth aspect of the present invention relates to a preferred method for producing the clad material for induction heating, wherein the temperature-sensitive magnetic material whose magnetic permeability changes with temperature is heated at a temperature not lower than its recrystallization temperature and lower than its melting point. After performing magnetic annealing to remove the processing strain, the temperature-sensitive magnetic material, the good heat-conducting metal material, and the heat generated by the difference in the coefficient of thermal expansion between the temperature-sensitive magnetic material and the good heat-conducting metal material. A thermal deformation preventing material for preventing deformation is pressed in the same order under a vacuum of 1 × 10 −1 Torr or less at a reduction rate of 1 to 15%. According to the present invention, the temperature-sensitive magnetic material is magnetically annealed before the pressure welding to remove the processing strain by heating at a temperature not lower than the recrystallization temperature and lower than the melting point, so that the temperature change rate dμ of the magnetic permeability at the Curie point is dμ. The magnetic characteristic originally possessed by the temperature-sensitive magnetic material without deterioration of / dT can be utilized. Since the temperature-sensitive magnetic material, the good thermal conductive metal material, and the thermal deformation preventing material are pressed against each other in a vacuum at a reduction rate of 1 to 15%,
Even if processing strain due to pressure welding is added, the amount is small, so
It has good magnetic characteristics such that the temperature change rate dμ / dT at the Curie point of the permeability in which the minimum value to the maximum value of the magnetic permeability is made relative to 1 to 100 is 10 or more, and the thermal deformation is caused by the joining of the thermal deformation preventing material. The prevented clad material can be easily manufactured.
【0018】本発明で行う圧接方法としては、感温磁性
材、良熱伝導金属材および熱変形防止材の各素材を重ね
合わせた重合材を一対の圧下用ロール間に通すことによ
って圧接するロール圧接が実施容易で、生産性に優れる
ため、好適である。圧接の際の圧下率は、1%未満では
真空下といえども接合力が不足し、接合が困難になる。
一方、15%を超えると、冷間での圧下であるため、加
工歪が増大し、増大した加工歪により前記dμ/dTが
10未満に低下するようになる。このため、圧下率の下
限を1%、好ましくは2%、より好ましくは4%とし、
またその上限を15%、好ましくは13%、より好まし
くは10%とする。また、圧接の際の圧力(真空度)
は、素材の圧接界面を清浄にすると共に圧接時に酸素等
の気体の巻き込みを防止して良好な接合を得るには低い
程良いが、必要以上に低くすることは設備コストの上昇
を招く割りには接合力が向上しない。このため、本発明
では圧接中の圧力を1×10-1Torr以下、好ましくは1
×10-2Torr以下とする。The pressure welding method used in the present invention is a roll in which a polymer material obtained by stacking materials such as a temperature-sensitive magnetic material, a good heat conductive metal material and a thermal deformation preventing material is passed between a pair of reduction rolls for pressure contact. It is preferable because the pressure welding is easy to carry out and the productivity is excellent. If the rolling reduction ratio at the time of pressure welding is less than 1%, the bonding force will be insufficient even under vacuum and the bonding will be difficult.
On the other hand, if it exceeds 15%, it is a cold reduction, so that the working strain increases, and due to the increased working strain, the dμ / dT decreases to less than 10. Therefore, the lower limit of the rolling reduction is 1%, preferably 2%, more preferably 4%,
The upper limit is set to 15%, preferably 13%, more preferably 10%. Also, the pressure at the time of pressure welding (vacuum degree)
Is better for cleaning the pressure contact interface of the material and preventing entrainment of gas such as oxygen during pressure contact to obtain good bonding, but lowering it more than necessary may increase equipment cost. Does not improve the bonding strength. Therefore, in the present invention, the pressure during pressure welding is 1 × 10 −1 Torr or less, preferably 1 × 10 −1 Torr or less.
X10 -2 Torr or less.
【0019】また、請求項9に記載された誘導加熱用ク
ラッド材の製造方法は、温度によって透磁率が変化する
感温磁性材に対してその再結晶温度以上、融点未満の温
度で加熱して加工歪を除去する磁性焼鈍を施した後、こ
の感温磁性材と、良熱伝導金属材と、前記感温磁性材と
前記良熱伝導金属材との熱膨張率の差によって生じる熱
変形を防止する熱変形防止材とを同順序で圧下率10〜
40%で、かつ200〜500℃の温度下で圧接するも
のである。この発明によると、感温磁性材は圧接前に再
結晶温度以上、融点未満の温度で加熱して加工歪を除去
する磁性焼鈍が施されているので、キュリー点における
透磁率の温度変化率dμ/dTの劣化のない、その感温
磁性材の本来有する磁気特性を利用することができる。
そして、この感温磁性材と良熱伝導金属材と熱変形防止
材とを圧下率10〜40%で所定温度の下で温間圧接す
るので、圧接による加工歪が加わっても、加熱下の圧下
であり、加工歪の生成が抑制されるため、透磁率の最小
値〜最大値を1〜100に相対化した透磁率のキュリー
点における温度変化率dμ/dTが10以上の良好な磁
気特性を備え、しかも熱変形防止材の接合により熱変形
が防止されたクラッド材を容易に製造することができ
る。In the method for producing the clad material for induction heating according to the ninth aspect , the temperature-sensitive magnetic material whose magnetic permeability changes with temperature is heated at a temperature not lower than the recrystallization temperature and lower than the melting point. After magnetic annealing to remove processing strain, this temperature-sensitive magnetic material, good thermal conductive metal material, thermal deformation caused by the difference in thermal expansion coefficient of the temperature-sensitive magnetic material and the good thermal conductive metal material In the same order as the thermal deformation prevention material to prevent
It is 40% and pressure-welded at a temperature of 200 to 500 ° C. According to the present invention, the temperature-sensitive magnetic material is magnetically annealed before the pressure welding to remove the processing strain by heating at a temperature not lower than the recrystallization temperature and lower than the melting point, so that the temperature change rate dμ of the magnetic permeability at the Curie point is dμ. The magnetic characteristic originally possessed by the temperature-sensitive magnetic material without deterioration of / dT can be utilized.
Then, since the temperature-sensitive magnetic material, the good thermal conductive metal material, and the thermal deformation prevention material are warm-pressed at a reduction rate of 10 to 40% under a predetermined temperature, even if a processing strain due to pressure welding is applied, the temperature-sensitive magnetic material is not heated. Since it is a rolling reduction and the generation of processing strain is suppressed, good magnetic characteristics that the temperature change rate dμ / dT at the Curie point of the magnetic permeability in which the minimum value to the maximum value of the magnetic permeability are made relative to each other is 10 or more. It is possible to easily manufacture the clad material which is provided with the above and whose thermal deformation is prevented by joining the thermal deformation preventing materials.
【0020】本発明で行う圧接方法としては前記のとお
りロール圧接が好適であり、圧接の際の圧下率は、10
%未満では加熱下といえども接合力が不足し、接合が困
難になる。一方、40%を超えると、温間圧接であって
も、加工歪が過大になり、前記dμ/dTが10未満に
低下するようになる。このため、圧下率の下限を10
%、好ましくは15%、より好ましくは20%とし、ま
たその上限を40%、好ましくは35%、より好ましく
は30%とする。また、圧接の際の温度は、200℃未
満では40%の圧下率でも圧接が困難であり、一方50
0℃を超えると接合力が劣化するようになったり、接合
力の向上効果が飽和するようになる。例えば、良熱伝導
金属材としてAlを主成分とするAl基金属(Al≧9
0wt%)を用いる場合ではFeAl3 などの金属間化合
物を生成し、接合力が劣化するようになり、またCuを
主成分とするCu基金属(Cu≧90wt%)を用いる場
合では加熱による接合力の向上効果が飽和するようにな
る。このため、圧接温度の下限を200℃、好ましくは
300℃とし、その上限を500℃、好ましくは450
℃とする。なお、良熱伝導金属材として前記Al基金属
を用いる場合、高温では表面酸化が促進されるため、4
00℃超の温度下で圧接を行う場合、窒素ガス等の非酸
化性雰囲気下で行うのがよい。As described above, the roll pressure welding is suitable as the pressure welding method used in the present invention, and the rolling reduction at the time of pressure welding is 10
If it is less than%, the joining strength is insufficient even under heating, and joining becomes difficult. On the other hand, when it exceeds 40%, the working strain becomes excessive even in the warm pressure welding, and the dμ / dT is reduced to less than 10. Therefore, the lower limit of the rolling reduction is 10
%, Preferably 15%, more preferably 20%, and its upper limit is 40%, preferably 35%, more preferably 30%. If the temperature at the time of pressure welding is less than 200 ° C., it is difficult to perform pressure welding even at a reduction rate of 40%.
If the temperature exceeds 0 ° C., the bonding strength will be deteriorated or the bonding strength improving effect will be saturated. For example, an Al-based metal (Al ≧ 9) having Al as a main component is used as the good heat conductive metal material.
(0 wt%) produces an intermetallic compound such as FeAl 3 and the bonding strength deteriorates. When a Cu-based metal (Cu ≧ 90 wt%) containing Cu as a main component is used, bonding by heating is performed. The power improvement effect becomes saturated. Therefore, the lower limit of the pressure contact temperature is 200 ° C., preferably 300 ° C., and the upper limit thereof is 500 ° C., preferably 450.
℃. When the Al-based metal is used as the good thermal conductive metal material, surface oxidation is promoted at high temperatures, so
When pressure welding is performed at a temperature higher than 00 ° C., it is preferable to perform the pressure welding in a non-oxidizing atmosphere such as nitrogen gas.
【0021】また、請求項10に記載した発明は、請求
項8または9に記載した製造方法において、感温磁性材
が40〜600℃のキュリー点を有する感温磁性金属で
あり、良熱伝導金属材がAlを主成分とするAl基金属
あるいはCuを主成分とするCu基金属で形成されたも
のである。この発明によれば、調理温度として好適な温
度範囲で温度制御することができる誘導加熱用クラッド
材を得ることができ、また低コストで、温度均一性に優
れたクラッド材を製造することができる。The invention described in claim 10 is a claim
In the manufacturing method described in Item 8 or 9 , the temperature-sensitive magnetic material is a temperature-sensitive magnetic metal having a Curie point of 40 to 600 ° C., and the good heat-conductive metal material is an Al-based metal or Cu containing Al as a main component. It is formed of a Cu-based metal as a main component. According to the present invention, it is possible to obtain an induction heating clad material capable of temperature control in a temperature range suitable as a cooking temperature , and it is possible to manufacture a clad material excellent in temperature uniformity at low cost. .
【0022】本発明の感温磁性材、Al基金属、Cu基
金属の具体例は前記のとおりであり、感温磁性材として
Fe−Ni合金、Fe−Ni−Cr合金、Ni−Cu合
金あるいは純Niを用いた場合、再結晶温度は700℃
以上であり、融点は概ね1450℃超であるので、感温
磁性材に施す磁性焼鈍の焼鈍温度は下限を700℃、好
ましくは800℃とし、上限を1450℃、好ましくは
1350℃とすればよい。磁性焼鈍の焼鈍時間は、加工
歪が除去された再結晶組織が得られるように設定すれば
よく、好ましくは10min 以上、より好ましくは15mi
n 以上にするのがよい。また、生産性向上の観点から
は、4hr以内、好ましくは3hr以内とするのがよ
い。なお、感温磁性材および良熱伝導金属材の厚さは、
好ましくは圧接後の厚さが、請求項4に記載したよう
に、感温磁性材では0.03〜0.5mm、良熱伝導金属
材では0.3〜6.0mmになるように、圧下率を考慮し
て素材厚さを設定すればよい。Specific examples of the temperature-sensitive magnetic material, the Al-based metal, and the Cu-based metal of the present invention are as described above. As the temperature-sensitive magnetic material, Fe-Ni alloy, Fe-Ni-Cr alloy, Ni-Cu alloy, or When pure Ni is used, the recrystallization temperature is 700 ℃
Since the melting point is higher than about 1450 ° C., the lower limit of the annealing temperature of the magnetic annealing applied to the temperature-sensitive magnetic material is 700 ° C., preferably 800 ° C., and the upper limit thereof is 1450 ° C., preferably 1350 ° C. . The annealing time of magnetic annealing may be set so as to obtain a recrystallized structure from which work strain is removed, preferably 10 min or more, more preferably 15 mi.
It should be n or more. Further, from the viewpoint of improving productivity, it is preferably within 4 hours, more preferably within 3 hours. The thickness of the temperature-sensitive magnetic material and the good heat conductive metal material is
It is preferable that the thickness after pressure welding is 0.03 to 0.5 mm for the temperature-sensitive magnetic material and 0.3 to 6.0 mm for the good heat conductive metal material as described in claim 4. The material thickness may be set in consideration of the rate.
【0023】また、請求項11に記載した発明は、請求
項8〜10のいずれか1項に記載した製造方法におい
て、感温磁性材と良熱伝導金属材と熱変形防止材とを圧
接後、前記感温磁性材、前記良熱伝導金属材あるいは前
記熱変形防止材の内の最も低い融点未満の温度にて拡散
焼鈍するものである。この発明によると、感温磁性材と
良熱伝導金属材と熱変形防止材とは、圧接後さらに拡散
焼鈍されるので、接合力が向上し、製造したクラッド材
のプレス成形性が優れたものになる。なお、拡散焼鈍
は、通常のように、圧接後の複合材を搬送する際、搬送
ラインに設けたトンネル炉にて実施すればよく、加熱時
間は搬送速度にもよるが、概ね3min 以下とされる。The invention described in claim 11 is a claim
In the manufacturing method described in any one of Items 8 to 10, the temperature-sensitive magnetic material, the good heat-conducting metal material, and the thermal deformation preventing material are pressure-welded, and then the temperature-sensitive magnetic material, the good heat-conducting metal material, or the Diffusion annealing is performed at a temperature lower than the lowest melting point of the thermal deformation preventing materials. According to the present invention, since the temperature-sensitive magnetic material, the good thermal conductive metal material, and the thermal deformation preventing material are further diffusion-annealed after pressure welding, the bonding strength is improved, and the manufactured clad material has excellent press formability. become. The diffusion annealing may be carried out in a tunnel furnace provided on the transfer line when the composite material after pressure welding is transferred as usual, and the heating time is generally 3 min or less, although it depends on the transfer speed. It
【0024】また、請求項12に記載した誘導加熱用ク
ラッド材の製造方法は、温度によって透磁率が変化する
感温磁性材と、良熱伝導金属材と、前記感温磁性材と前
記良熱伝導金属材との熱膨張率の差によって生じる熱変
形を防止する熱変形防止材とを同順序で圧接した後、前
記感温磁性材の再結晶温度以上、前記良熱伝導金属材あ
るいは前記熱変形防止材の内の低い方の融点未満の温度
で加熱して感温磁性材に存在する加工歪を除去する磁性
焼鈍を施すものである。この発明によると、感温磁性材
は良熱伝導金属材および熱変形防止材が圧接された後
に、感温磁性材の再結晶温度以上、良熱伝導金属材ある
いは熱変形防止材の内の低い方の融点未満の温度で加熱
して感温磁性材に存在する加工歪を除去する磁性焼鈍が
施されるので、圧接の際に導入された加工歪に起因し
た、キュリー点における透磁率の温度変化率dμ/dT
の劣化が解消され、クラッド材を構成する感温磁性材の
キュリー点の前後における透磁率の最大値を100、最
小値を1としたとき、当該感温磁性材のキュリー点にお
ける相対的な透磁率の温度変化率dμ/dTを10以
上、好ましくは15以上、より好ましくは20以上とす
ることができ、その感温磁性材が本来有する磁気特性を
有効に利用した良好な温度制御性を備え、しかも熱変形
防止材の接合により熱変形が防止されたクラッド材を容
易に製造することができる。In the method for manufacturing the clad material for induction heating according to the twelfth aspect of the present invention, the temperature-sensitive magnetic material whose magnetic permeability changes with temperature, the good heat-conductive metal material, the temperature-sensitive magnetic material and the good heat-conductive material. After pressure contact with a thermal deformation preventing material for preventing thermal deformation caused by a difference in coefficient of thermal expansion from the conductive metal material, in the same order, the recrystallization temperature of the temperature-sensitive magnetic material or more, the good heat conductive metal material or the heat The magnetic annealing is performed by heating at a temperature lower than the lower melting point of the deformation preventing material to remove the processing strain existing in the temperature-sensitive magnetic material. According to the present invention, the temperature-sensitive magnetic material has a temperature lower than the recrystallization temperature of the temperature-sensitive magnetic material after the good heat-conductive metal material and the heat deformation-preventing material are pressure-welded to each other. Since the magnetic annealing is performed by removing the processing strain existing in the temperature-sensitive magnetic material by heating at a temperature lower than the melting point of the other, the temperature of the magnetic permeability at the Curie point due to the processing strain introduced during pressure welding. Change rate dμ / dT
When the maximum value of the magnetic permeability before and after the Curie point of the temperature-sensitive magnetic material forming the clad material is 100 and the minimum value is 1, the relative permeability at the Curie point of the temperature-sensitive magnetic material is eliminated. The temperature change rate of magnetic susceptibility dμ / dT can be 10 or more, preferably 15 or more, more preferably 20 or more, and has good temperature controllability by effectively utilizing the magnetic characteristics originally possessed by the temperature-sensitive magnetic material. Moreover, it is possible to easily manufacture the clad material in which the thermal deformation is prevented by joining the thermal deformation preventing materials.
【0025】本発明で行う圧接方法としては前記のとお
りロール圧接が実施容易で、生産性に優れるため好適で
あり、圧接の種類としては冷間圧接、温間圧接、1×1
0-1Torr以下の真空雰囲気で圧接する真空圧接のいずれ
の方法でもよい。また、圧下率は、磁性焼鈍の際に接合
力が向上するため、感温磁性材と良熱伝導金属材と熱変
形防止材とが搬送に耐える程度の接合力が得られるよう
に設定すればよい。なお、クラッド材をプレス成形する
場合は、ある程度の接合力が必要であるので、圧接後に
感温磁性材、良熱伝導金属材あるいは熱変形防止材の融
点の内の最も低い融点未満の温度で数分間保持する拡散
焼鈍を行って接合力を向上させ、プレス成形を行った
後、磁性焼鈍を施せばよい。拡散焼鈍は既述したように
搬送ラインに設けられたトンネル炉にて行えばよい。ま
た、圧接前の感温磁性材および良熱伝導金属材の厚さ
は、前記のように、好ましくは圧接後の厚さが、感温磁
性材では磁束が通る浸透深さを確保するために0.03
〜0.5mmになるように、また良熱伝導金属材では良好
な温度均一性を確保するために0.3〜6.0mmになる
ように、圧下率を考慮して素材厚さを設定すればよい。As described above, as the pressure welding method performed in the present invention, roll pressure welding is preferable because it is easy to carry out and is excellent in productivity. The types of pressure welding are cold pressure welding, warm pressure welding, and 1 × 1.
Any method of vacuum pressure contacting in a vacuum atmosphere of 0 -1 Torr or less may be used. In addition, the rolling reduction is set so that the joining force is improved during magnetic annealing, so that the joining force of the temperature-sensitive magnetic material, the good thermal conductive metal material, and the thermal deformation prevention material can be withstood to be conveyed. Good. In addition, when press-molding the clad material, a certain degree of bonding force is required.Therefore, at a temperature lower than the lowest melting point of the temperature-sensitive magnetic material, the good thermal conductive metal material, or the thermal deformation preventing material after pressure welding. Diffusion annealing for holding for several minutes may be performed to improve the bonding strength, press molding may be performed, and then magnetic annealing may be performed. The diffusion annealing may be performed in the tunnel furnace provided in the transfer line as described above. Further, the thickness of the temperature-sensitive magnetic material and the heat-conductive metal material before pressure welding is, as described above , preferably the thickness after pressure welding in order to secure the penetration depth through which the magnetic flux passes in the temperature-sensitive magnetic material. 0.03
Set the material thickness in consideration of the rolling reduction so that it becomes ~ 0.5 mm, and in the case of a good heat conductive metal material, it becomes 0.3 ~ 6.0 mm to ensure good temperature uniformity. Good.
【0026】また、請求項13に記載した発明は、請求
項12に記載した製造方法において、感温磁性材が40
〜600℃のキュリー点を有する感温磁性金属であり、
良熱伝導金属材がCuを主成分とするCu基金属で形成
されたものである。この発明によると、感温磁性材とし
てそのキュリー点が40〜600℃のものを用いるの
で、調理温度として好適な温度範囲での温度制御が可能
な誘導加熱用クラッド材を得ることができ、また低コス
トで、温度均一性に優れたクラッド材を製造することが
できる。すなわち、Cuを主成分とするCu基金属の融
点は前記キュリー点が40〜600℃の感温磁性材の再
結晶温度以上であるため、圧接後に磁性焼鈍を容易に行
うことができる。このため、良熱伝導金属材としてCu
基金属を用いることにより、温度制御性、温度均一性に
優れた、低コストのクラッド材を容易に得ることができ
る。The invention described in claim 13 is a claim
In the manufacturing method described in Item 12 , the temperature-sensitive magnetic material is 40
A temperature-sensitive magnetic metal having a Curie point of ~ 600 ° C,
The good heat conductive metal material is formed of a Cu-based metal whose main component is Cu. According to the present invention, since the Curie point of 40 to 600 ° C. is used as the temperature-sensitive magnetic material, it is possible to obtain an induction heating clad material capable of temperature control in a temperature range suitable as a cooking temperature. A clad material having excellent temperature uniformity can be manufactured at low cost. That is, since the melting point of the Cu-based metal containing Cu as the main component is equal to or higher than the recrystallization temperature of the temperature-sensitive magnetic material having the Curie point of 40 to 600 ° C., magnetic annealing can be easily performed after pressure welding. Therefore, Cu is used as a good heat conductive metal material.
By using the base metal, it is possible to easily obtain a low-cost clad material having excellent temperature controllability and temperature uniformity.
【0027】本発明における感温磁性材、Cu基金属の
具体例は前記と同様であり、感温磁性材として前記Fe
−Ni合金、Fe−Ni−Cr合金、Ni−Cu合金あ
るいは純Niを用いる場合、再結晶温度は700℃以上
であり、Cu基金属の融点は概ね1000℃超であるの
で、磁性焼鈍は下限を700℃、好ましくは850℃と
し、上限を1000℃、好ましくは900℃とすればよ
い。加熱時間は、加工歪が除去された再結晶組織が得ら
れるように設定すればよく、好ましくは10min 以上、
より好ましくは15min 以上にするのがよい。また、生
産性向上の観点からは、4hr以内、好ましくは3hr
以内とするのがよい。[0027] The present invention temperature-sensitive magnetic material in a specific example of the Cu-based metal is as defined above, wherein the temperature-sensitive magnetic material Fe
When using -Ni alloy, Fe-Ni-Cr alloy, Ni-Cu alloy, or pure Ni, the recrystallization temperature is 700 ° C or higher, and the melting point of the Cu-based metal is more than 1000 ° C. Is 700 ° C., preferably 850 ° C., and the upper limit is 1000 ° C., preferably 900 ° C. The heating time may be set so as to obtain a recrystallized structure from which processing strain is removed, and preferably 10 minutes or more,
More preferably, it should be 15 min or more. Further, from the viewpoint of improving productivity, it is within 4 hours, preferably 3 hours.
It is better to stay within.
【0028】また、請求項14に記載したように、上記
請求項8〜13に記載した誘導加熱用クラッドの製造方
法において、熱変形防止材を感温磁性材と同材質とする
ことで、両者は熱膨張率が完全に同一になり、感温磁性
材と同一板厚の熱変形防止材を接合することにより、熱
変形の発生を容易かつ完全に阻止することができ、良熱
伝導金属材による均熱効果の減少をも可及的に防止する
ことができるクラッド材を容易に得ることができる。Further, as described in claim 14 , the above
In the method for manufacturing the clad for induction heating according to any one of claims 8 to 13 , the thermal deformation preventing material is made of the same material as the temperature-sensitive magnetic material, so that the two have completely the same thermal expansion coefficient, and the temperature-sensitive magnetic material. By joining a thermal deformation prevention material with the same plate thickness as the above, it is possible to easily and completely prevent the occurrence of thermal deformation, and to prevent the reduction of the soaking effect due to the good heat conductive metal material as much as possible. It is possible to easily obtain a clad material that can be obtained.
【0029】[0029]
【実施例】感温磁性材(38wt%Ni−8wt%Cr−F
e合金、キュリー点172℃)のフープ材をバッチ式焼
鈍炉にて1000℃にて30min 保持する磁性焼鈍を行
い、加工歪みを完全に除去して再結晶組織とした後、こ
の感温磁性材に99.9%の純Alのフープ材および熱
変形防止材のフープ材を同順序で重ね合わせて、表1に
示した接合条件にてロール圧接を行い、図1に示すよう
に、0.1mm厚さの感温磁性材2に1.0mm厚さの良熱
伝導金属材(純Al)3および熱変形防止材4が接合さ
れた3層誘導加熱用クラッド材1(試料No. 2〜6)を
製造した。また、比較のため、前記感温磁性材に純Al
のフープ材を重ね合わせて、同表に示した接合条件にて
ロール圧接を行い、0.1mm厚さの感温磁性材に1.0
mm厚さの良熱伝導金属材(純Al)が接合された2層誘
導加熱用クラッド材(試料No. 1)を製造した。Example: Temperature-sensitive magnetic material (38 wt% Ni-8 wt% Cr-F
(e alloy, Curie point 172 ° C) is subjected to magnetic annealing in a batch annealing furnace at 1000 ° C for 30 minutes to completely remove work strain and form a recrystallized structure. A 99.9% pure Al hoop material and a heat deformation preventing material hoop material were superposed in the same order, and roll pressure welding was performed under the bonding conditions shown in Table 1. As shown in FIG. Three-layer induction heating clad material 1 (Sample No. 2 to 2) in which a 1 mm thick temperature-sensitive magnetic material 2 and a 1.0 mm thick good heat conductive metal material (pure Al) 3 and thermal deformation prevention material 4 are joined. 6) was produced. For comparison, the temperature-sensitive magnetic material is made of pure Al.
The above hoop materials are overlaid, and roll pressure welding is performed under the bonding conditions shown in the same table.
A two-layer induction heating clad material (Sample No. 1) in which a good thermal conductive metal material (pure Al) having a thickness of mm was joined was manufactured.
【0030】一方、磁性焼鈍を施していない感温磁性材
(同材質)のフープ材に99.9%の純Cuのフープ材
および熱変形防止材のフープ材を同順序で重ね合わせ
て、同表に示した接合条件にてロール圧接を行い、前記
と同様に、0.1mm厚さの感温磁性材2に1.0mm厚さ
の良熱伝導金属材(純Cu)3および熱変形防止材4が
接合された誘導加熱用クラッド材1(試料No. 7〜1
0)を製造した。On the other hand, a hoop material of a temperature-sensitive magnetic material (same material) that has not been magnetically annealed, a hoop material of pure Cu of 99.9% and a hoop material of a thermal deformation preventing material are superposed in the same order, and the same. Roll pressure welding was performed under the joining conditions shown in the table, and similarly to the above, the temperature-sensitive magnetic material 2 having a thickness of 0.1 mm, the good heat conductive metal material (pure Cu) 3 having a thickness of 1.0 mm, and the thermal deformation prevention Induction heating clad material 1 (Sample No. 7-1)
0) was produced.
【0031】各クラッド材1から幅20mm、長さ30mm
の条材を切り取り、その回りに測定用コイル(1次コイ
ル、2次コイル)を付設し、これを加熱炉内に設置し、
室温からキュリー点+50℃まで温度を徐々に上げ、1
次コイルに基準電流を流した際に2次コイルに誘導され
た電圧を各温度ごとに測定し、この電圧を基にして透磁
率を求め、その最大値を100、最小値を1としてキュ
リー点における相対的な透磁率の温度変化率dμ/dT
を求めた。Width 20 mm, length 30 mm from each clad material 1
Cut off the strip of material, attach a measuring coil (primary coil, secondary coil) around it, and install it in the heating furnace.
Gradually raise the temperature from room temperature to Curie point + 50 ° C. 1
The voltage induced in the secondary coil when a reference current is applied to the secondary coil is measured at each temperature, and the magnetic permeability is calculated based on this voltage. The maximum value is 100 and the minimum value is 1, and the Curie point is set. Relative temperature change rate of magnetic permeability dμ / dT
I asked.
【0032】また、上記3層および2層クラッド材を1
00φmmの大きさに切断し、これを用いて反り量の測定
および温度制御試験を以下の要領で実施した。図2に示
すように、高周波コイル11の上に感温磁性材2がコイ
ル11側となるように誘導加熱用クラッド材1を設置
し、前記コイル11に周波数30kHz、最大電力12
00Wのインバータ電源を接続して加熱を開始し、クラ
ッド材1の上面の温度を熱電対にて測定し、室温から1
00℃になったときのクラッド材1の上面中心部の上昇
量をダイアルゲージにて測定し、その量を反り量δ(図
3参照)とした。その後、その上に非磁性容器(ステン
レス鋼容器)12を載置し、この容器12に食用油13
を満たし、加熱を続けて、容器12内の食用油13の温
度を測定した。食用油13の温度は当初急速に上昇する
が、やがてキュリー点付近で一定温度に落ちつく。この
定常状態における温度制御範囲を測定し、温度制御性を
評価した。温度制御性の評価は、キュリー点を中心とし
て±5℃内に温度制御された場合を優良◎、±10℃内
に温度制御された場合を良○、±10℃内から外れた場
合を不良×とした。これらの測定結果を表1に併せて示
す。The above three-layer and two-layer clad materials are
It was cut into a size of 00 mm, and the amount of warpage was measured and the temperature control test was carried out by using the same. As shown in FIG. 2, the induction heating clad material 1 is placed on the high-frequency coil 11 so that the temperature-sensitive magnetic material 2 is on the side of the coil 11, and the coil 11 has a frequency of 30 kHz and a maximum power of 12
Connect the 00W inverter power supply and start heating, measure the temperature of the upper surface of the clad material 1 with a thermocouple, and
The amount of rise of the central portion of the upper surface of the clad material 1 when the temperature reached 00 ° C. was measured with a dial gauge, and the amount was defined as the amount of warpage δ (see FIG. 3). After that, a non-magnetic container (stainless steel container) 12 is placed on the container 12, and cooking oil 13 is placed in the container 12.
Was satisfied, heating was continued, and the temperature of the edible oil 13 in the container 12 was measured. Initially, the temperature of the edible oil 13 rises rapidly, but eventually it reaches a constant temperature near the Curie point. The temperature control range in this steady state was measured and the temperature controllability was evaluated. Evaluation of temperature controllability is excellent when the temperature is controlled within ± 5 ° C centering on the Curie point, good when the temperature is controlled within ± 10 ° C, and bad when the temperature deviates from within ± 10 ° C. It was set to x. The results of these measurements are also shown in Table 1.
【0033】[0033]
【表1】 [Table 1]
【0034】表1より、発明例の3層クラッド材では、
反り量がほとんど無いか、有っても軽微であり、熱変形
が有効に防止されていることがわかる。また、試料No.
1とNo. 2は共に圧下率が70%の冷間圧接により圧接
されたものであるが、No. 2は熱変形防止材を備えた3
層構造であるので、熱変形がほとんど生じておらず、高
周波コイルとの離反がないため、dμ/dtが共に6で
あるにもかかわらず、No. 1に比して温度制御性が良好
であることがわかる。また、圧接前に磁性焼鈍を施し、
低圧下率で圧接した発明例(No. 3〜6)並びに圧接後
に磁性焼鈍を施した発明例(No. 7〜9)では、キュリ
ー点におけるdμ/dTが10以上となり、熱変形防止
材による高周波コイルからの離反が阻止されたことと相
まって、良好な温度制御性が得られている。From Table 1, in the three-layer clad material of the invention example,
It can be seen that there is little or no warpage, and even if it is present, thermal deformation is effectively prevented. In addition, sample No.
Both No. 1 and No. 2 were pressed by cold pressure welding with a rolling reduction of 70%, but No. 2 was equipped with a thermal deformation prevention material 3
Since it has a layered structure, there is almost no thermal deformation and there is no separation from the high frequency coil. Therefore, even though both dμ / dt are 6, the temperature controllability is better than No. 1. I know there is. Also, magnetic annealing is performed before pressure welding,
In the invention examples (No. 3 to 6) pressed at a low pressure rate and the invention examples (No. 7 to 9) subjected to magnetic annealing after the pressure contact, dμ / dT at the Curie point was 10 or more, which was due to the heat deformation preventing material. Good temperature controllability is obtained in combination with the prevention of separation from the high frequency coil.
【0035】[0035]
【発明の効果】本発明の誘導加熱用クラッド材によれ
ば、感温磁性材、良熱伝導金属材および熱変形防止材を
接合した3層構造としたので、熱変形が防止され、誘導
加熱コイルとの離反による加熱効率や温度制御性の低下
が防止され、また被加熱体への伝熱効率の低下や加熱姿
勢の不安定化も防止される。また、特に前記感温磁性材
の板厚を0.03〜0.5 mm とすることで、漏れ磁束が
多くなることによる有効磁束の減少、発熱量の不足や加
工コスト高、並びに磁束が通る浸透深さ以上の不要な厚
さがないので素材コスト高をも抑制することができる。
一方、感温磁性材のキュリー点における相対的な透磁率
のdμ/dTを10以上とすることで、感温磁性材の本
来の磁気特性を有効に利用することができ、良好な温度
制御性を得ることができる。また、本発明の製造方法に
よれば、前記3層構造の誘導加熱用クラッド材を容易に
製造することができ、量産性、生産性にも優れる。The induction heating clad material of the present invention has a three-layer structure in which a temperature-sensitive magnetic material, a good heat conducting metal material and a thermal deformation preventing material are joined, so that thermal deformation is prevented and induction heating is performed. It is possible to prevent deterioration of heating efficiency and temperature controllability due to separation from the coil, and also to prevent deterioration of heat transfer efficiency to the heated object and destabilization of the heating posture. In addition, especially the temperature-sensitive magnetic material
By setting the plate thickness of 0.03 to 0.5 mm , the leakage flux
Decrease in effective magnetic flux due to increase
High work cost and unnecessary thickness over the penetration depth of magnetic flux
Since there is no shortage, high material costs can be suppressed.
On the other hand , by setting the relative magnetic permeability dμ / dT at the Curie point of the temperature-sensitive magnetic material to 10 or more, the original magnetic characteristics of the temperature-sensitive magnetic material can be effectively used, and good temperature controllability can be obtained. Can be obtained. According to the manufacturing method of the present invention, the induction heating clad material having the three-layer structure can be easily manufactured, and mass productivity and productivity are excellent.
【図1】本発明にかかる誘導加熱用クラッド材の要部断
面図である。FIG. 1 is a sectional view of an essential part of a clad material for induction heating according to the present invention.
【図2】誘導加熱用クラッド材の温度制御試験の実施要
領説明図である。FIG. 2 is an explanatory diagram of an implementation procedure of a temperature control test of a clad material for induction heating.
【図3】従来の2層構造の誘導加熱用クラッドの誘導加
熱時における熱変形状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state of thermal deformation of a conventional two-layer structure induction heating clad during induction heating.
【図4】クラッド前の感温磁性材の透磁率の温度による
影響を説明したグラフ(A) 、および従来の誘導加熱用ク
ラッド材を構成する感温磁性材の透磁率の温度による影
響を示すグラフ(B) である。FIG. 4 is a graph (A) illustrating the effect of temperature on the magnetic permeability of the temperature-sensitive magnetic material before clad, and the effect of temperature on the magnetic permeability of the temperature-sensitive magnetic material that constitutes the conventional induction heating clad material. Graph (B).
1 誘導加熱用クラッド材 2 感温磁性材 3 良熱伝導金属材 4 熱変形防止材 1 Induction heating clad material 2 Temperature-sensitive magnetic material 3 Good heat conductive metal material 4 Thermal deformation prevention material
フロントページの続き (51)Int.Cl.7 識別記号 FI H05B 6/12 314 B23K 103:08 B23K 103:08 H01F 1/00 D (56)参考文献 特開 平6−141977(JP,A) 特開 平6−141979(JP,A) (58)調査した分野(Int.Cl.7,DB名) A47J 27/00 B23K 20/00 - 20/26 H05B 6/12 Continuation of front page (51) Int.Cl. 7 Identification code FI H05B 6/12 314 B23K 103: 08 B23K 103: 08 H01F 1/00 D (56) Reference JP-A-6-141977 (JP, A) Kaihei 6-141979 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A47J 27/00 B23K 20/00-20/26 H05B 6/12
Claims (14)
材と、良熱伝導金属材と、前記感温磁性材と前記良熱伝
導金属材との熱膨張率の差によって生じる熱変形を防止
する熱変形防止材とが同順序で接合された誘導加熱用ク
ラッド材であって、 前記感温磁性材の板厚が0.03〜0.5 mm であり、前
記良熱伝導金属材の板厚が0.3〜6.0 mm である誘導
加熱用クラッド材。 1. A thermal deformation preventing due to a difference in thermal expansion coefficient between a temperature-sensitive magnetic material whose magnetic permeability changes depending on temperature, a good heat-conductive metal material, and the temperature-sensitive magnetic material and the good heat-conductive metal material. A thermal deformation prevention material joined in the same order as described above , wherein the temperature-sensitive magnetic material has a plate thickness of 0.03 to 0.5 mm , and
Induction thickness of Kiyonetsu conductive metal material is 0.3 to 6.0 mm
Clad material for heating.
材と、良熱伝導金属材と、前記感温磁性材と前記良熱伝
導金属材との熱膨張率の差によって生じる熱変形を防止
する熱変形防止材とが同順序で接合されたクラッド材で
あって、 前記クラッド材を構成する感温磁性材のキュリー点の前
後における透磁率の最大値を100、最小値を1とした
とき、当該感温磁性材のキュリー点における透磁率の温
度変化率dμ/dTが10以上である誘導加熱用クラッ
ド材。2. A temperature-sensitive magnetic material whose magnetic permeability changes with temperature, a good heat-conductive metal material, and thermal deformation caused by a difference in coefficient of thermal expansion between the temperature-sensitive magnetic material and the good heat-conductive metal material. When the maximum value of the magnetic permeability before and after the Curie point of the temperature-sensitive magnetic material that constitutes the clad material is 100 and the minimum value is 1, A clad material for induction heating, wherein the temperature change rate dμ / dT of the magnetic permeability at the Curie point of the temperature-sensitive magnetic material is 10 or more.
点を有する感温磁性金属であり、良熱伝導金属材がAl
を主成分とするAl基金属あるいはCuを主成分とする
Cu基金属である請求項1または2に記載した誘導加熱
用クラッド材。3. The temperature-sensitive magnetic material is a temperature-sensitive magnetic metal having a Curie point of 40 to 600 ° C., and the good heat-conductive metal material is Al.
The clad material for induction heating according to claim 1 or 2, wherein the clad material is an Al-based metal whose main component is Cu or a Cu-based metal whose main component is Cu.
であり、良熱伝導金属材の板厚が0.3〜6.0mmであ
る請求項2に記載した誘導加熱用クラッド材。4. The thickness of the temperature-sensitive magnetic material is 0.03 to 0.5 mm.
The clad material for induction heating according to claim 2 , wherein the good heat conductive metal material has a plate thickness of 0.3 to 6.0 mm.
材の板厚以下である請求項1〜4のいずれか1項に記載
した誘導加熱用クラッド材。5. The clad material for induction heating according to claim 1, wherein the thermal deformation preventing material has a plate thickness equal to or less than the plate thickness of the good heat conductive metal material.
である請求項1〜5のいずれか1項に記載した誘導加熱
用クラッド材。6. The clad material for induction heating according to claim 1, wherein the thermal deformation preventing material is the same material as the temperature-sensitive magnetic material.
材と、良熱伝導金属材と、前記感温磁性材と前記良熱伝
導金属材との熱膨張率の差によって生じる熱変形を防止
する熱変形防止材とが同順序でロール圧接により接合さ
れた誘導加熱用クラッド材であって、 前記感温磁性材が40〜600℃のキュリー点を有する
感温磁性金属で形成され、前記良熱伝導金属材がAlを
主成分とするAl基金属あるいはCuを主成分とするC
u基金属で形成され、前記感温磁性材の板厚が0.03
mm 以上であり、前記良熱伝導金属材の板厚が0.3〜
6.0 mm である 誘導加熱用クラッド材。 7. Temperature-sensitive magnetism whose magnetic permeability changes with temperature
Material, good heat conductive metal material, the temperature-sensitive magnetic material, and the good heat transfer material.
Prevents thermal deformation caused by the difference in the coefficient of thermal expansion from the conductive metal material
The heat-deformation prevention material is joined by roll pressure welding in the same order.
A clad material for induction heating, wherein the temperature-sensitive magnetic material has a Curie point of 40 to 600 ° C.
It is made of temperature-sensitive magnetic metal, and the good thermal conductive metal material contains Al.
Al-based metal as main component or C as main component
The temperature-sensitive magnetic material is made of a u-based metal and has a plate thickness of 0.03.
mm or more, and the plate thickness of the good heat conductive metal material is 0.3 to
Induction heating the clad material is 6.0 mm.
材に対してその再結晶温度以上、融点未満の温度で加熱
して加工歪を除去する磁性焼鈍を施した後、この感温磁
性材と、良熱伝導金属材と、前記感温磁性材と前記良熱
伝導金属材との熱膨張率の差によって生じる熱変形を防
止する熱変形防止材とを同順序で圧下率1〜15%で1
×10-1Torr以下の真空下で圧接する誘導加熱用クラッ
ド材の製造方法。 8. A temperature-sensitive magnetic material, the magnetic permeability of which changes depending on temperature, is heated at a temperature not lower than its recrystallization temperature and lower than its melting point to carry out magnetic annealing to remove processing strain, and then the temperature-sensitive magnetic material. And a good thermal conductive metal material and a thermal deformation preventing material for preventing thermal deformation caused by a difference in thermal expansion coefficient between the temperature-sensitive magnetic material and the good thermal conductive metal material, in the same order, with a reduction rate of 1 to 15%. In 1
A method for producing a clad material for induction heating, which is pressure-welded under a vacuum of 10 -1 Torr or less.
材に対してその再結晶温度以上、融点未満の温度で加熱
して加工歪を除去する磁性焼鈍を施した後、この感温磁
性材と、良熱伝導金属材と、前記感温磁性材と前記良熱
伝導金属材との熱膨張率の差によって生じる熱変形を防
止する熱変形防止材とを同順序で圧下率10〜40%
で、かつ200〜500℃の温度下で圧接する誘導加熱
用クラッド材の製造方法。 9. A temperature-sensitive magnetic material whose magnetic permeability changes according to temperature, is heated at a temperature not lower than its recrystallization temperature and lower than its melting point to carry out magnetic annealing for removing processing strain, and then this temperature-sensitive magnetic material. And a good thermal conductive metal material, and a thermal deformation preventing material for preventing thermal deformation caused by a difference in coefficient of thermal expansion between the temperature-sensitive magnetic material and the good thermal conductive metal material in the same order in a rolling reduction of 10 to 40%.
And a method for producing a clad material for induction heating, which is pressure-welded at a temperature of 200 to 500 ° C.
ー点を有する感温磁性金属であり、良熱伝導金属材がA
lを主成分とするAl基金属あるいはCuを主成分とす
るCu基金属である請求項8または9に記載した誘導加
熱用クラッド材の製造方法。 10. The temperature-sensitive magnetic material is a temperature-sensitive magnetic metal having a Curie point of 40 to 600 ° C., and the good heat-conductive metal material is A.
The method for producing a clad material for induction heating according to claim 8 or 9 , wherein the clad material for induction heating is an Al-based metal mainly containing 1 or a Cu-based metal mainly containing Cu.
防止材とを圧接後、前記感温磁性材、前記良熱伝導金属
材あるいは前記熱変形防止材の内の最も低い融点未満の
温度にて拡散焼鈍する請求項8〜10のいずれか1項に
記載した誘導加熱用クラッド材の製造方法。 11. A pressure-sensitive magnetic material, a good thermal conductive metal material, and a thermal deformation preventing material are pressure-welded to each other, and thereafter, the temperature is less than the lowest melting point of the temperature sensitive magnetic material, the good thermal conductive metal material, or the thermal deformation preventing material. The method for producing a clad material for induction heating according to any one of claims 8 to 10 , wherein the diffusion annealing is performed at the temperature.
性材と、良熱伝導金属材と、前記感温磁性材と前記良熱
伝導金属材との熱膨張率の差によって生じる熱変形を防
止する熱変形防止材とを同順序で圧接した後、前記感温
磁性材の再結晶温度以上、前記良熱伝導金属材あるいは
前記熱変形防止材の内の低い方の融点未満の温度で加熱
して感温磁性材に存在する加工歪を除去する磁性焼鈍を
施す誘導加熱用クラッド材の製造方法。 12. A heat-sensitive magnetic material whose magnetic permeability changes with temperature, a good heat-conductive metal material, and thermal deformation caused by a difference in coefficient of thermal expansion between the temperature-sensitive magnetic material and the good heat-conductive metal material. After press-contacting with the heat distortion preventing material in the same order, heating at a temperature not lower than the recrystallization temperature of the temperature-sensitive magnetic material and lower than the lower melting point of the good thermal conductive metal material or the heat distortion preventing material. A method for producing a clad material for induction heating, in which magnetic annealing is performed to remove processing strain existing in the temperature-sensitive magnetic material.
ー点を有する感温磁性金属であり、良熱伝導金属材がC
uを主成分とするCu基金属で形成された請求項12に
記載した誘導加熱用クラッド材の製造方法。 13. The temperature-sensitive magnetic material is a temperature-sensitive magnetic metal having a Curie point of 40 to 600 ° C., and the good heat conductive metal material is C.
The method for producing a clad material for induction heating according to claim 12 , wherein the clad material is formed of a Cu-based metal containing u as a main component.
質である請求項8〜13のいずれか1項に記載した誘導
加熱用クラッド材の製造方法。 14. The method for producing a clad material for induction heating according to claim 8 , wherein the thermal deformation preventing material is the same material as the temperature-sensitive magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18978799A JP3490342B2 (en) | 1999-07-02 | 1999-07-02 | Clad material for induction heating and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18978799A JP3490342B2 (en) | 1999-07-02 | 1999-07-02 | Clad material for induction heating and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001018075A JP2001018075A (en) | 2001-01-23 |
JP3490342B2 true JP3490342B2 (en) | 2004-01-26 |
Family
ID=16247209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18978799A Expired - Fee Related JP3490342B2 (en) | 1999-07-02 | 1999-07-02 | Clad material for induction heating and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3490342B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181652A (en) * | 2001-12-12 | 2003-07-02 | Sumitomo Metal Ind Ltd | Clad plate for induction heating member and its manufacturing method and cooking device for induction heating cooking appliance |
JP2003332033A (en) * | 2002-05-15 | 2003-11-21 | Fuji Electric Co Ltd | Temperature control method for electromagnetic induction heating instrument |
JP3698116B2 (en) * | 2002-05-30 | 2005-09-21 | 松下電器産業株式会社 | Heating plate and pan for induction heating cooker |
JP2004008663A (en) * | 2002-06-11 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Coffee maker |
JP3956900B2 (en) * | 2002-06-14 | 2007-08-08 | 住友金属工業株式会社 | Clad material for induction heating and manufacturing method thereof |
JP3997925B2 (en) * | 2003-02-19 | 2007-10-24 | 松下電器産業株式会社 | Induction heating cooker |
JP4251936B2 (en) * | 2003-07-08 | 2009-04-08 | 東洋鋼鈑株式会社 | Manufacturing method of heat-generating laminate for transdermal absorption |
JP4193982B2 (en) * | 2003-07-08 | 2008-12-10 | 東洋鋼鈑株式会社 | Heating element laminate and parts using the heating element laminate |
JP3889414B2 (en) * | 2004-06-16 | 2007-03-07 | 株式会社三輝商事 | Cooking pot for induction heating |
JP4863286B2 (en) * | 2007-03-19 | 2012-01-25 | 株式会社Neomaxマテリアル | Clad material for induction heating |
WO2010143515A1 (en) | 2009-06-11 | 2010-12-16 | 株式会社Neomaxマテリアル | Bimetal for high temperature |
WO2011104442A1 (en) * | 2010-02-23 | 2011-09-01 | Arcelormittal Investigación Y Desarrollo Sl | Mold, method for making a mold and method for making a plastic-material or composite product using said mold |
JP5460787B2 (en) * | 2012-07-09 | 2014-04-02 | 株式会社Neomaxマテリアル | Inductive heating material for in-vehicle power module soldering by induction heating |
DE102017202168A1 (en) * | 2017-02-10 | 2018-08-16 | Wmf Group Gmbh | Cookware with improved sandwich construction and reduced soil movement as well as manufacturing process and use |
CN110115532B (en) * | 2018-02-06 | 2021-09-28 | 佛山市顺德区美的电热电器制造有限公司 | Stirring cup subassembly and food processor |
-
1999
- 1999-07-02 JP JP18978799A patent/JP3490342B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001018075A (en) | 2001-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3490342B2 (en) | Clad material for induction heating and method for producing the same | |
US6180931B1 (en) | Heater unit for semiconductor processing | |
EP1455622B1 (en) | Cooking vessel comprising a base made of a multilayer material and a side wall, and article of multilayer material | |
JP4256018B2 (en) | Aluminum / stainless steel clad material and manufacturing method thereof | |
JP2004522582A (en) | Composite aluminum sheet | |
JP4863286B2 (en) | Clad material for induction heating | |
KR100965301B1 (en) | Ferromagnetic alloy for induction heated cooking | |
JP3725730B2 (en) | Clad material for induction heating | |
JP7171216B2 (en) | Rolled bonded body and method for manufacturing rolled bonded body | |
EP0872159B1 (en) | Metallic high temperature resistant material and a method of producing it | |
US2657298A (en) | Method and apparatus for manufacturing composite plates | |
JP3437487B2 (en) | Manufacturing method of clad material for induction heating | |
JP2003105500A (en) | Stainless steel/copper clad, and manufacturing method therefor | |
JP4433164B2 (en) | Induction heating metal and its clad material and manufacturing method | |
JPS63172639A (en) | Double-sided clad steel band having excellent thermal conduction | |
JPH04157001A (en) | Manufacture of titanium clad steel sheet excellent in joining strength | |
JP2000117461A (en) | Manufacture of clad plate consisting of aluminum and stainless steel | |
JP5460787B2 (en) | Inductive heating material for in-vehicle power module soldering by induction heating | |
JPH0839269A (en) | Manufacture of stainless steel and aluminum clad material | |
US1685657A (en) | Composite metal article | |
KR102317210B1 (en) | Cladding plate and manufacturing method thereof | |
JP2003181652A (en) | Clad plate for induction heating member and its manufacturing method and cooking device for induction heating cooking appliance | |
JP4255993B2 (en) | Long pressure welded composite plate and manufacturing method thereof | |
JP2005224329A (en) | Container for electromagnetic cooker and method of manufacturing the same | |
JPH0255619A (en) | Straightening method for flatness of metallic plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091107 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101107 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |