JP3489943B2 - Wet and heat resistant polyvinyl alcohol fiber and method for producing the same - Google Patents

Wet and heat resistant polyvinyl alcohol fiber and method for producing the same

Info

Publication number
JP3489943B2
JP3489943B2 JP21703896A JP21703896A JP3489943B2 JP 3489943 B2 JP3489943 B2 JP 3489943B2 JP 21703896 A JP21703896 A JP 21703896A JP 21703896 A JP21703896 A JP 21703896A JP 3489943 B2 JP3489943 B2 JP 3489943B2
Authority
JP
Japan
Prior art keywords
compound
polyvinyl alcohol
fiber
carbon atoms
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21703896A
Other languages
Japanese (ja)
Other versions
JPH1060774A (en
Inventor
洋文 佐野
政弘 佐藤
幸男 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21703896A priority Critical patent/JP3489943B2/en
Publication of JPH1060774A publication Critical patent/JPH1060774A/en
Application granted granted Critical
Publication of JP3489943B2 publication Critical patent/JP3489943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐湿熱性と高強度が長
期間要求される漁網、ロープ、テント、土木シートなど
の一般産業資材やセメント、ゴム、プラスチックの補強
材に有効なポリビニルアルコール(以下PVAと略記)
系合成繊維及びその製造法に関するものであり、特にオ
ートクレーブ養生を行うセメント製品の補強に効果を発
揮するPVA系繊維に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to polyvinyl alcohol which is effective for general industrial materials such as fishing nets, ropes, tents and civil engineering sheets, which are required to have high humidity resistance and high strength for a long time, and reinforcing materials for cement, rubber and plastics ( (Hereinafter abbreviated as PVA)
TECHNICAL FIELD The present invention relates to a synthetic fiber and a method for producing the same, and more particularly to a PVA-based fiber that is effective in reinforcing a cement product subjected to autoclave curing.

【0002】[0002]

【従来の技術】PVA系繊維は汎用繊維の中で最も高強
力高弾性を有し、かつ接着性や耐アルカリ性が良好な
為、特に石綿代替のセメント補強材として脚光を浴びて
いる。しかしながらPVA系繊維は耐湿熱性に乏しく、
一般産業資材や衣料素材として用いられるにしても用途
が制限され、さらに高温でのオートクレーブ養生が不可
能であった。したがって現在セメント補強材にPVA系
繊維を使用する場合は、室温養生に頼っている。しかし
ながら室温養生したセメント製品は寸法安定性や強度が
十分でなく、かつ養生に要する日数が長いなどの欠点を
有していた。
2. Description of the Related Art PVA-based fibers have the highest strength and elasticity among general-purpose fibers, and have good adhesiveness and alkali resistance, and thus are in the spotlight as a cement reinforcing material as a substitute for asbestos. However, PVA-based fibers have poor wet heat resistance,
Even if it is used as a general industrial material or a clothing material, its use is limited, and it is impossible to cure the autoclave at high temperature. Therefore, at present, when PVA-based fibers are used for cement reinforcements, they rely on room temperature curing. However, cement products cured at room temperature have drawbacks such as insufficient dimensional stability and strength, and long curing days.

【0003】一方、高温オートクレーブ養生に炭素繊維
が一部用いられているが、セメントマトリックスとの接
着性が悪く、補強効果に乏しく、かつ高価であるなどの
問題点があった。したがってPVA系繊維の耐湿熱性を
改良しようとする試みは古くからなされて来た。たとえ
ば特公昭30−7360号公報や特公昭36−1456
5号公報には、ホルマリンを用い、PVAの水酸基と架
橋反応(ホルマール化)して疎水化することにより染色
や洗濯に耐えられるPVA系繊維が得られることが記載
されている。しかし、これらの繊維は強度が低く、本発
明に言う一般産業資材やセメント、ゴム、プラスチック
の補強材には向かない。また、高強力PVA繊維をホル
マール化することが特開昭63−120107号公報に
開示されているが、ホルマール化度が5〜15モル%と
低く、PVA系繊維の非晶領域の極く一部が疎水化され
ているに過ぎず、耐湿熱性は十分でなく、くり返し長期
間湿熱にさらされる産業資材や高温オートクレーブ養生
されるセメント補強材には到底満足できるものではな
い。
On the other hand, although some carbon fibers are used for curing in a high temperature autoclave, there are problems such as poor adhesiveness with cement matrix, poor reinforcing effect, and high cost. Therefore, attempts have been made for a long time to improve the wet heat resistance of PVA-based fibers. For example, Japanese Patent Publication No. 30-7360 and Japanese Patent Publication No. 36-1456.
Japanese Patent Publication No. 5 discloses that PVA-based fibers that can withstand dyeing and washing can be obtained by using formalin to crosslink (formalize) a hydroxyl group of PVA to make it hydrophobic. However, since these fibers have low strength, they are not suitable for general industrial materials and cement, rubber, and plastic reinforcing materials referred to in the present invention. Further, Japanese Patent Application Laid-Open No. 63-120107 discloses that high strength PVA fiber is formalized, but the degree of formalization is as low as 5 to 15 mol%, which is very small in the amorphous region of the PVA fiber. Since the part is only hydrophobized, it does not have sufficient resistance to moist heat and is not completely satisfactory for an industrial material that is repeatedly exposed to moist heat for a long period of time or a cement reinforcement material that is cured by a high temperature autoclave.

【0004】一方、特開平2−133605号公報や特
開平1−207435号公報には、アクリル酸系重合体
をブレンドするか、又は繊維表面を有機系過酸化物やイ
ソシアネート化合物、ウレタン系化合物、エポキシ化合
物などで架橋せしめる方法が記述されている。しかしア
クリル酸系重合体による架橋はエステル結合であるた
め、セメントのアルカリにより架橋結合が容易に加水分
解してその効果を失うこと、および他の架橋剤も繊維表
面架橋である為、オートクレーブ養生中やくり返し湿熱
にさらされている時に繊維の中心部から膨潤、溶解が起
こるなどの問題点を抱えている。
On the other hand, in JP-A-2-133605 and JP-A-1-207435, an acrylic acid polymer is blended, or the fiber surface is treated with an organic peroxide, an isocyanate compound, a urethane compound, A method of crosslinking with an epoxy compound or the like is described. However, since the cross-linking by acrylic acid polymer is an ester bond, the cross-linking bond is easily hydrolyzed by the alkali of cement to lose its effect, and other cross-linking agents are also fiber surface cross-links. It has problems such as swelling and dissolution from the center of the fiber when it is repeatedly exposed to heat and humidity.

【0005】他に酸を用いて脱水架橋によりPVA系繊
維の耐湿熱性を向上させる方法が特開平2−84587
号公報や特開平4−100912号公報などに記載され
ているが、本発明者らが追試したところ繊維内部まで架
橋させようとするとPVA系繊維の分解が激しく起こ
り、繊維強度が著しく低下することが判明した。一方、
ジアルデヒド化合物による架橋は特公昭29−6145
号公報や特公昭32−5819号公報などに明記されて
いるが、ジアルデヒド化合物と反応触媒である酸の混合
浴で乾熱延伸後の繊維を処理する方法であるため、繊維
分子が高度に配向結晶化した高強力繊維ではジアルデヒ
ド化合物が繊維内部まで浸透しずらく内部架橋が困難で
あった。
Another method for improving the moist heat resistance of PVA-based fibers by dehydration crosslinking using an acid is disclosed in Japanese Patent Laid-Open No. 2-84587.
As described in JP-A No. 4-100912 and the like, when the inventors of the present invention retested, when attempting to crosslink the inside of the fiber, the PVA-based fiber was severely decomposed and the fiber strength was significantly lowered. There was found. on the other hand,
Cross-linking with a dialdehyde compound is disclosed in Japanese Patent Publication No.
As disclosed in JP-B-32-5819 and JP-B-32-5819, the method is to treat the fiber after dry heat drawing in a mixed bath of a dialdehyde compound and an acid as a reaction catalyst, so that the fiber molecule is highly advanced. In the oriented high-strength fiber crystallized, it was difficult for the dialdehyde compound to penetrate into the inside of the fiber, and internal cross-linking was difficult.

【0006】また特開平5−163609号公報には、
ジアルデヒドを紡糸原糸に付与し、高倍率に乾熱延伸し
たあと酸処理により繊維内部に架橋を生じさせることが
記載されている。しかしながらこれは炭素数が6以下の
脂肪族ジアルデヒドや芳香族ジアルデヒド化合物である
為、耐湿熱性に有効なPVA系分子鎖間の架橋(分子間
架橋)が少ないか又は立体障害で繊維内部まで浸透が難
しく、かつ強度低下が起こり易いなどの問題点を有し、
耐湿熱性と高強度の両方を十分満足するものではない。
もっとも同公報にはジアルデヒドのアセタール化につい
ても記載されているが、具体的に記載されているジアル
デヒドのアセタール化はテトラメトキシプロパンであ
り、このようなジアルデヒド部分の炭素数の少ない化合
物では、上記したのと同一の問題点を有している。
Further, Japanese Patent Laid-Open No. 163609/1993 discloses that
It is described that a dialdehyde is applied to a spinning base yarn, dry-heat stretched at a high ratio, and then acid treatment is performed to cause crosslinking inside the fiber. However, since this is an aliphatic dialdehyde or aromatic dialdehyde compound having a carbon number of 6 or less, there is little cross-linking between PVA-based molecular chains (inter-molecular cross-linking) effective for moist heat resistance or steric hindrance to the inside of the fiber. It has problems that it is difficult to penetrate, and that strength is likely to decrease.
It does not fully satisfy both wet heat resistance and high strength.
Although the same publication describes the acetalization of dialdehydes, the specifically described acetalization of dialdehydes is tetramethoxypropane, and in such compounds having a small number of carbon atoms in the dialdehyde part. However, it has the same problem as described above.

【0007】さらに本発明者らは、先に炭素数6以上の
脂肪族ジアルデヒドのアセタール化合物により架橋され
たPVA系繊維に関して既に出願をしている。確かに、
この出願の技術を用いると従来の技術と比べて格段に高
強度で耐湿熱性のPVA系繊維が得られるが、この技術
でも、繊維内部までの架橋が十分ではないためか、人工
セメント液の溶出量を十分に押さえることが難しく、高
温養生後のスレート板曲げ強度とたわみ量が今一歩であ
った。
Further, the present inventors have already applied for a PVA-based fiber crosslinked with an acetal compound of an aliphatic dialdehyde having 6 or more carbon atoms. surely,
By using the technology of this application, PVA-based fibers having significantly higher strength and resistance to moist heat can be obtained as compared with the conventional technology. However, even with this technology, the cross-linking to the inside of the fiber is not sufficient, and the elution of the artificial cement liquid is likely. It was difficult to control the amount sufficiently, and the bending strength and the amount of flexure of the slate plate after high temperature curing were just another step.

【0008】[0008]

【発明が解決しようとする課題】以上の背景を踏まえ
て、本発明者らは如何に高い強度と伸度を維持しかつ耐
湿熱性向上に有効な分子間架橋(PVA分子鎖間の架
橋)を繊維内部まで十分生じさせるか、さらに架橋点を
増加できるか、鋭意検討を重ねた結果、長鎖脂肪族ジア
ルデヒドからなる化合物と、短鎖脂肪族ジアルデヒドか
らなる化合物又はホルムアルデヒドをある範囲でPVA
の水酸基と架橋反応させることが有効と判り、本発明に
至ったものである。
Based on the above background, the present inventors have found intermolecular crosslinking (crosslinking between PVA molecular chains) that is effective for maintaining high strength and elongation and improving wet heat resistance. As a result of extensive studies on whether to sufficiently generate the inside of the fiber or to further increase the cross-linking points, a compound consisting of a long-chain aliphatic dialdehyde and a compound consisting of a short-chain aliphatic dialdehyde or formaldehyde within a certain range.
It has been found that it is effective to carry out a cross-linking reaction with the hydroxyl group of, and the present invention has been completed.

【0009】[0009]

【課題を解決するための手段】本発明は、水酸基の一部
が下記(A)の化合物と下記(B)の化合物で架橋され
ており、かつ(A)と(B)の重量比が9:1〜5:5
の重量比であるポリビニルアルコール系ポリマーからな
り、単繊維強度が12g/d以上、伸度が5%以上で、
かつ150℃の人工セメント水溶液での2時間処理後の
溶出量が20重量%以下であることを特徴とする耐湿熱
性ポリビニルアルコール系繊維である。 (A)炭素数6以上の脂肪族ジアルデヒドのアセタール
化合物 (B)炭素数4以下の脂肪族ジアルデヒド、そのアセタ
ール化物及びホルムアルデヒドからなる群から選ばれる
少なくとも1種の化合物
According to the present invention, a part of the hydroxyl groups is crosslinked with the following compound (A) and the following compound (B), and the weight ratio of (A) and (B) is 9: : 1 to 5: 5
The weight ratio of the polyvinyl alcohol-based polymer is 12 g / d or more and the elongation is 5% or more.
In addition, it is a moisture-heat resistant polyvinyl alcohol fiber characterized by having an elution amount of 20% by weight or less after treatment with an artificial cement aqueous solution at 150 ° C. for 2 hours. (A) Acetal compound of aliphatic dialdehyde having 6 or more carbon atoms (B) At least one compound selected from the group consisting of aliphatic dialdehyde having 4 or less carbon atoms, acetalized product thereof and formaldehyde

【0010】さらにこのような繊維を製造する方法とし
て、ポリビニルアルコール系ポリマーの溶液を紡糸して
得られる紡糸原糸を乾燥し、総延伸倍率が14倍以上と
なるように乾熱延伸を行いポリビニルアルコール系繊維
を製造するに際し、乾燥までの工程で該紡糸原糸に上記
(A)の化合物と上記(B)の化合物を(A)と(B)
の重量比が9:1〜5:5になるように含有させ乾熱延
伸を行ったのち、酸処理して(A)及び(B)をポリビ
ニルアルコール系ポリマーと反応させることを特徴とす
る耐湿熱性ポリビニルアルコール系繊維の製造方法であ
り、またポリビニルアルコール系ポリマーの溶液を紡糸
して得られる紡糸原糸を乾燥し、総延伸倍率が14倍以
上となるように乾熱延伸を行いポリビニルアルコール系
繊維を製造するに際し、乾燥までの工程で、該紡糸原糸
に上記化合物(A)を含有させ、乾熱延伸を行ったの
ち、上記化合物(B)と酸を含有する液で処理して、
(A)と(B)の重量比が9:1〜5:5になるように
ポリビニルアルコール系ポリマーの水酸基を架橋させる
ことを特徴とする耐湿熱性ポリビニルアルコール系繊維
の製造方法である。
Further, as a method for producing such a fiber, a spun raw yarn obtained by spinning a solution of a polyvinyl alcohol polymer is dried and subjected to dry heat drawing so that the total draw ratio becomes 14 times or more. In producing alcohol fiber, the compound of (A) and the compound of (B) are added to (A) and (B) in the spun yarn in a process until drying.
The moisture resistance is characterized in that it is contained such that the weight ratio of is from 9: 1 to 5: 5, and is subjected to dry heat drawing, and then acid treated to react (A) and (B) with a polyvinyl alcohol-based polymer. A method for producing a heat-resistant polyvinyl alcohol-based fiber, wherein a spinning raw yarn obtained by spinning a solution of a polyvinyl alcohol-based polymer is dried and subjected to dry heat drawing so that the total draw ratio is 14 times or more. In the production of fibers, in the steps up to drying, the spinning raw yarn is made to contain the compound (A), dry-heat stretched, and then treated with a liquid containing the compound (B) and an acid,
A method for producing a heat-and-moisture resistant polyvinyl alcohol fiber, comprising cross-linking the hydroxyl groups of the polyvinyl alcohol polymer so that the weight ratio of (A) and (B) is 9: 1 to 5: 5.

【0011】以下本発明の内容をさらに詳細に説明す
る。本発明に言うPVA系ポリマーとは、粘度平均重合
度が1500以上のものであり、ケン化度が98.5モ
ル%以上、好ましくは99.0モル%以上で分岐度の低
い直鎖状のものである。PVA系ポリマーの平均重合度
が高いほど、結晶間を連結するタイ分子の数が多く、か
つ欠点となる分子末端数が少なくなるので、高強度、高
弾性率かつ高耐湿熱性の繊維が得られやすく、好ましく
は3000以上、さらに好ましくは6000以上であ
る。
The contents of the present invention will be described in more detail below. The PVA-based polymer referred to in the present invention has a viscosity average polymerization degree of 1500 or more, a saponification degree of 98.5 mol% or more, preferably 99.0 mol% or more, and a linear chain having a low branching degree. It is a thing. The higher the average degree of polymerization of the PVA-based polymer, the greater the number of tie molecules that connect the crystals, and the less the number of molecular terminals, which is a defect, so that fibers with high strength, high elastic modulus, and high humidity and heat resistance can be obtained. It is easy, preferably 3,000 or more, more preferably 6000 or more.

【0012】PVA系ポリマーの溶剤としては、例えば
グリセリン、エチレングリコール、ジエチレングリコー
ル、トリエチレングリコール、ブタンジオールなどの多
価アルコール類やジメチルスルホキシド、ジメチルホル
ムアミド、ジエチレントリアミン、水及びこれら2種以
上の混合溶剤などが挙げられる。但し、上記の化合物
(A)や化合物(B)を該溶剤に混合添加する場合に
は、該化合物を凝集させたり分離させる溶剤は好ましく
なく、化合物(A)や化合物(B)を均一分散又は溶解
する溶剤が好ましい。この点で上記したジメチルスルホ
キシドやエレングリコール、グリセリンなどの多価アル
コールが好ましい。またPVA系ポリマーを溶剤で溶解
する際に、ホウ酸、界面活性剤、分解抑制剤、染料、顔
料を添加しても支障ないが、紡糸性や延伸性を悪化させ
るものは好ましくない。
Examples of the solvent for the PVA polymer include polyhydric alcohols such as glycerin, ethylene glycol, diethylene glycol, triethylene glycol, butanediol, dimethyl sulfoxide, dimethylformamide, diethylenetriamine, water, and a mixed solvent of two or more thereof. Is mentioned. However, when the compound (A) or the compound (B) is mixed and added to the solvent, a solvent for aggregating or separating the compound is not preferable, and the compound (A) or the compound (B) is uniformly dispersed or Solvents that dissolve are preferred. In this respect, the above-mentioned polyhydric alcohols such as dimethyl sulfoxide, elene glycol and glycerin are preferable. Further, when dissolving the PVA-based polymer in a solvent, it is possible to add boric acid, a surfactant, a decomposition inhibitor, a dye, and a pigment, but it is not preferable to add spunability or stretchability.

【0013】このようにして得られた紡糸原液は常法に
より湿式、乾式、乾湿式のいずれかの方法でノズルより
吐出され固化される。湿式及び乾湿式紡糸方法では、凝
固浴にて吐出液を固化し繊維化させるが、その凝固剤と
してはメタノール、エタノールなどのアルコール類、ア
セトン、メチルエチルケトン、メチルブチルケトンなど
のケトン類、アルカリ水溶液、アルカリ金属塩水溶液な
どのいずれか又はこれら2種以上の混合液が用いられ
る。なお凝固における溶剤抽出をゆっくりさせて均一ゲ
ル構造を生成させ、より高い強度と耐湿熱性を得るた
め、該凝固剤に該溶剤を10重量%以上混合させるのが
好ましい。特にメタノールで代表されるアルコールと原
液溶剤との混合液が好ましい。なお乾湿式紡糸方法の場
合には、紡糸ノズルと凝固浴液面との間に空気で代表さ
れる気体層が存在する。
The spinning dope thus obtained is discharged from the nozzle and solidified by any of a wet method, a dry method, and a dry-wet method by a conventional method. In the wet and dry wet spinning methods, the discharge liquid is solidified in a coagulation bath to form fibers, and as the coagulant, alcohols such as methanol and ethanol, ketones such as acetone, methyl ethyl ketone, and methyl butyl ketone, an alkaline aqueous solution, Any one of alkali metal salt aqueous solution or a mixed solution of two or more thereof is used. It is preferable to mix 10% by weight or more of the solvent with the coagulant in order to slow the solvent extraction in the coagulation to form a uniform gel structure and to obtain higher strength and resistance to moist heat. Particularly, a mixed solution of an alcohol represented by methanol and a stock solution solvent is preferable. In the case of the dry-wet spinning method, there is a gas layer represented by air between the spinning nozzle and the liquid surface of the coagulation bath.

【0014】さらに、凝固浴温度を20℃以下にして吐
出液を急冷させるのも均一な微結晶構造のゲル繊維が得
られるため、高強力繊維を得るのに都合が良い。また繊
維間の膠着を少なくし、その後の乾熱延伸を容易にする
為に、凝固浴から取り出した紡糸原糸を溶剤を含んだ状
態で2倍以上の湿延伸をするのが望ましい。なお、アル
カリ凝固の場合は、湿熱延伸の前に張力下で中和を行う
のが良い。
Further, rapid cooling of the discharge liquid by setting the coagulation bath temperature to 20 ° C. or lower can obtain gel fibers having a uniform microcrystalline structure, which is convenient for obtaining high-strength fibers. Further, in order to reduce the sticking between fibers and facilitate the subsequent dry heat drawing, it is desirable that the spun raw yarn taken out from the coagulation bath is wet drawn twice or more in a state containing a solvent. In the case of alkali coagulation, it is preferable to perform neutralization under tension before wet heat stretching.

【0015】次いで紡糸原糸からの溶剤抽出を行うが、
抽出剤としてはメタノール、エタノール、プロパノール
などの第1級アルコール類やアセトン、メチルエチルケ
トン、メチルプロヒルケトン、メチルブチルケトンなど
のケトン類やジメチルエーテル、メチルエチルエーテル
などのエーテル類などが使用できる。続いて必要に応じ
油剤などを付与して該抽出剤を乾燥させるか、乾式の場
合は、凝固剤や抽出剤を使用せずに紡糸時及び紡糸後に
紡糸原液の溶剤を蒸発させて乾燥させる。
Next, solvent extraction from the spun yarn is carried out.
As the extractant, primary alcohols such as methanol, ethanol and propanol, ketones such as acetone, methyl ethyl ketone, methyl procyroketone and methyl butyl ketone, and ethers such as dimethyl ether and methyl ethyl ether can be used. Subsequently, if necessary, an oil agent or the like is added to dry the extractant, or in the case of a dry method, the solvent of the spinning dope is evaporated and dried at the time of spinning and after spinning without using a coagulant or an extractant.

【0016】本発明の特徴は、前記したように、(A)
炭素数6以上の脂肪族ジアルデヒドのアセタール化合物
と、(B)炭素数4以下の脂肪族ジアルデヒド、そのア
セタール化物及びホルムアルデヒドからなる群から選ば
れる少なくとも1種の化合物を紡糸原液から乾燥直前ま
でのいずれかの工程で紡糸原糸の内部まで含有させ、延
伸後に酸で処理すること、あるいは乾燥までの工程で該
紡糸原糸に上記化合物(A)を含有させ、乾熱延伸を行
ったのち、上記化合物(B)と酸を含有する液で処理す
ることである。乾燥後、乾熱延伸直前までに上記化合物
(A)を付与する場合は、該化合物(A)の分子量が大
きいため繊維内部に該化合物(A)が浸透しずらく、表
面架橋により耐湿熱性は十分満足するものが得難い。好
ましい付与方法は抽出浴のアルコールやケトン類などに
該化合物を溶解し、その中に膨潤状態の糸条、すなわち
湿潤状態の糸条を通過させて繊維内部へ含有させる方法
である。
The features of the present invention are, as described above, (A)
An acetal compound of an aliphatic dialdehyde having 6 or more carbon atoms, and (B) at least one compound selected from the group consisting of an aliphatic dialdehyde having 4 or less carbon atoms, an acetalized product thereof and formaldehyde, from a spinning dope to immediately before drying. In any one of the steps 1) to 2), the inside of the spun raw yarn is contained and treated with an acid after the drawing, or in the process until drying, the spun raw yarn is made to contain the above compound (A), and dry heat drawing is performed. Treatment with a liquid containing the compound (B) and an acid. When the above-mentioned compound (A) is applied after drying and just before the dry heat drawing, the compound (A) is difficult to penetrate into the fiber due to the large molecular weight of the compound (A), and the moist heat resistance by surface cross-linking is high. It's hard to get enough satisfaction. A preferred application method is a method in which the compound is dissolved in alcohol or ketones in the extraction bath, and a swollen yarn, that is, a wet yarn is passed through the compound to be contained inside the fiber.

【0017】本発明に言う炭素数6以上の脂肪族ジアル
デヒドのアセタール化合物(A)とは、例えばヘキサン
ジアール、ヘプタンジアール、オクタンジアール、ノナ
ンジアール、デカンジアール、2,4−ジメチルヘキサ
ンジアール、5−メチルヘプタンジアール、4−メチル
オクタンジアールなどのジアルデヒド類とメタノール、
エタノール、プロパノール、ブタノール、エチレングリ
コール、プロピレングリコールなどのアルコール類を反
応させ両末端又は片末端をアセタール化した化合物であ
る。なお、臭気や揮発性の点から炭素数7以上の脂肪族
ジアルデヒドのアセタール化合物が好ましく、例えば、
ノナンジアールとメタノールが反応した1,1,9,9
−テトラメトキシノナンやノナンジアールとエチレング
リコールが反応した1,1,9,9−ビスエチレンジオ
キシノナンなどが挙げられる。なお炭素数13を越える
脂肪族ジアルデヒドのアセタール化合物は製造上の点で
工業的に入手が難しい。
The acetal compound (A) of an aliphatic dialdehyde having 6 or more carbon atoms referred to in the present invention is, for example, hexanediar, heptanedial, octanedial, nonanedial, decandiar or 2,4-dimethylhexanediearl. Dialdehydes such as 5-methylheptanedial and 4-methyloctanedial and methanol,
It is a compound obtained by reacting alcohols such as ethanol, propanol, butanol, ethylene glycol and propylene glycol to acetalize both terminals or one terminal. From the viewpoint of odor and volatility, acetal compounds of aliphatic dialdehydes having 7 or more carbon atoms are preferable, for example,
Nonanedial and methanol reacted 1,1,9,9
Examples include 1,1,9,9-bisethylenedioxynonane obtained by reacting tetramethoxynonane and nonanedial with ethylene glycol. An acetal compound of an aliphatic dialdehyde having more than 13 carbon atoms is industrially difficult to obtain in terms of production.

【0018】一方、(B)炭素数4以下の脂肪族ジアル
デヒド、そのアセタール化物及びホルムアルデヒドから
なる群から選ばれる少なくとも1種の化合物とは、グリ
オキザール、マロンジアルデヒド、スクシンジアルデヒ
ドのジアルデヒド類あるいはそれらとメタノール、エタ
ノール、エチレングリコールなどのアルコール類を反応
させ、両末端又は片末端をアセタール化した化合物、あ
るいはホルマリンを意味し、これらの分子量の小さい化
合物は特にPVA系繊維内部への浸透が良く、繊維の内
部まで多くの架橋点が形成される。さらに前記化合物
(A)と併用されることにより、それぞれを単独で用い
た場合と比べて両者の相乗効果により、繊維の内部まで
分子間架橋が十分に行われることとなる。
On the other hand, (B) at least one compound selected from the group consisting of an aliphatic dialdehyde having 4 or less carbon atoms, its acetalized product and formaldehyde means dialdehydes such as glyoxal, malondialdehyde and succindialdehyde. Alternatively, it means a compound obtained by reacting them with alcohols such as methanol, ethanol, and ethylene glycol to acetalize both ends or one end, or formalin, and these compounds having a small molecular weight are particularly permeated into the PVA fiber. Well, many crosslinking points are formed inside the fiber. Further, when used in combination with the compound (A), intermolecular cross-linking is sufficiently carried out to the inside of the fiber due to the synergistic effect of both, as compared with the case where each is used alone.

【0019】本発明における該化合物(A)と該化合物
(B)の重量比は9:1〜5:5である。化合物(A)
が90重量%を超えると分子間架橋による耐湿熱性は向
上するが繊維内部まで均一に架橋しずらく、かつ架橋点
も少ないため、150℃の人工セメント液中で2時間処
理した後の溶出量が多くなり、ひいては高温オートクレ
ーブ後のスレート板曲げ強度やたわみ量が低下して外壁
材や瓦にした時の耐久性に問題を生じ易い。一方、化合
物(A)が50重量%未満では有効な分子間架橋が少な
く、耐湿熱性が不十分で人工セメント液の溶出量が非常
に多く、かつ化合物(B)が多いことで架橋点が多くな
りすぎ繊維の伸度が低下して、セメント補強材として付
加価値の高いものが得られない。
The weight ratio of the compound (A) to the compound (B) in the present invention is 9: 1 to 5: 5. Compound (A)
When it exceeds 90% by weight, the resistance to moist heat due to intermolecular cross-linking is improved, but it is difficult to cross-link evenly inside the fiber and there are few cross-linking points. Therefore, the amount eluted after treatment for 2 hours in an artificial cement liquid at 150 ° C As a result, the bending strength of the slate plate after high-temperature autoclaving and the amount of flexure are reduced, and a problem tends to occur in the durability when used as an outer wall material or roof tile. On the other hand, when the compound (A) is less than 50% by weight, there are few effective intermolecular crosslinks, the resistance to moist heat is insufficient, the elution amount of the artificial cement liquid is very large, and since the compound (B) is large, there are many crosslinking points. Since the elongation of the fiber becomes too low, a high value-added cement reinforcing material cannot be obtained.

【0020】またスレート板曲げ強度及びたわみ量を高
めるには、架橋後の単繊維強度が12g/d以上、伸度
が5%以上必要であり、その為に化合物(A)と化合物
(B)の合計付着量はPVA系繊維に対し1〜10重量
%が好ましい。付着量が1重量%未満では目的の耐湿熱
性、すなわち人工セメント液の溶出量が多くひいては高
温耐オートクレーブ性が不十分であり、10重量%を超
えるとPVA分子鎖の配向を乱したりPVAの分解が起
こり、繊維強度と伸度が低下するためスレート板曲げ強
度やたわみ量が小さく、耐久性のあるものは得難い。
Further, in order to increase the bending strength and the amount of flexure of the slate plate, the single fiber strength after cross-linking must be 12 g / d or more and the elongation must be 5% or more. Therefore, the compound (A) and the compound (B) are required. It is preferable that the total adhesion amount of 1 to 10% by weight with respect to the PVA fiber. If the adhered amount is less than 1% by weight, the desired moist heat resistance, that is, the amount of the artificial cement liquid eluted is large, and thus the high temperature autoclave resistance is insufficient, and if the adhered amount exceeds 10% by weight, the orientation of the PVA molecular chain is disturbed or the PVA Degradation occurs and the fiber strength and elongation decrease, so the bending strength of the slate plate and the amount of bending are small, and it is difficult to obtain a durable product.

【0021】次いで該化合物含有の乾燥後紡糸原糸を2
20℃以上で総延伸倍率が14倍以上、好ましくは16
倍以上となるように乾熱延伸する。ここで言う総延伸倍
率とは、湿延伸倍率と乾熱延伸倍率を掛け合わせた値を
意味する。14倍未満ではPVA分子鎖の配向が不十分
で架橋後の単繊維強度12g/d以上を得ることは難し
い。なお延伸温度は、PVAの重合度が高いほど高くし
て高倍率を維持するのが好ましいが、260℃を越える
とPVAの溶融や分解が起こり易く好ましくない。一方
220℃未満では高倍率延伸が難しくかつ結晶化もしず
らくなるので架橋処理及びオートクレーブ処理時に繊維
の収縮が起こり易く高強度のものが得難い。
Then, after the dried raw yarn containing the compound is spun into 2
At 20 ° C or higher, the total draw ratio is 14 times or higher, preferably 16
Dry heat drawing is performed so as to be double or more. The total draw ratio here means a value obtained by multiplying the wet draw ratio and the dry heat draw ratio. If it is less than 14 times, the orientation of PVA molecular chains is insufficient and it is difficult to obtain a single fiber strength of 12 g / d or more after crosslinking. It is preferable that the stretching temperature is increased as the degree of polymerization of PVA is higher to maintain a high stretching ratio, but if it exceeds 260 ° C., melting or decomposition of PVA is likely to occur, which is not preferable. On the other hand, if the temperature is less than 220 ° C., it is difficult to stretch at a high ratio and it is difficult to crystallize, so that the fiber tends to shrink during the crosslinking treatment and the autoclave treatment, and it is difficult to obtain a high strength material.

【0022】このようにして得られた上記化合物(A)
と化合物(B)を含有した高強力延伸糸を硫酸、リン
酸、塩酸、硝酸、クロム酸などの無機酸あるいはカルボ
ン酸、スルホン酸などの有機酸で濃度0.05規定以上
の水溶液に60〜90℃で5〜120分浸漬して、化合
物(A)と化合物(B)をPVAのOH基とアセタール
化させて架橋を生じさせる。また、紡糸原糸に化合物
(A)のみを含有させ、乾熱延伸後に酸と化合物(B)
を含有する液で処理し、化合物(A)と化合物(B)が
9:1〜5:5の重量比で架橋させる方法をもちいても
よい。なお化合物(B)が水に溶けない場合は乳化剤を
添加して水エマルジョン液にして処理しても支障ない。
The above compound (A) thus obtained
A high-strength drawn yarn containing the compound (B) and an inorganic acid such as sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, chromic acid or an organic acid such as carboxylic acid, sulfonic acid, etc. By immersing at 90 ° C. for 5 to 120 minutes, the compound (A) and the compound (B) are acetalized with the OH group of PVA to cause crosslinking. Moreover, only the compound (A) is contained in the spun raw yarn, and the acid and the compound (B) are added after dry heat drawing.
It is also possible to use a method in which the compound (A) and the compound (B) are crosslinked at a weight ratio of 9: 1 to 5: 5 by treating with a liquid containing When the compound (B) is not soluble in water, it may be treated with an emulsifier to prepare an aqueous emulsion.

【0023】本発明で得られた架橋PVA系繊維は、単
繊強度12g/d以上、伸度5%以上を有し、150℃
の人工セメント水溶液中で2時間処理後の溶出量が20
重量%以下であり、繊維内部まで架橋しており、高強度
で耐久性のあるセメント補強材として、住宅サイティン
グやビルディングの外壁材あるいは新生瓦などに活用さ
れるものである。また長期間、水や熱にさらされて使用
される漁網、ロープ、土木シートなどの一般産業資材や
ゴム、プラスチックの補強材などにも効果を発揮する。
The crosslinked PVA-based fiber obtained in the present invention has a single fiber strength of 12 g / d or more and an elongation of 5% or more,
The amount of elution after treatment for 2 hours in the artificial cement aqueous solution is 20
The content is less than 10% by weight, and the fiber is crosslinked to the inside of the fiber, and it is used as a cement reinforcing material with high strength and durability, which is used as an exterior wall material of a house sighting or a building or a new roof tile. It is also effective for general industrial materials such as fishing nets, ropes and civil engineering sheets that are exposed to water and heat for a long period of time, as well as rubber and plastic reinforcement materials.

【0024】[0024]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明はこれら実施例に限定されるものではない。
なお本発明における各種の物性値は以下の方法で規定さ
れたものである。 1)PVAの粘度平均重合度(PA) 未架橋延伸繊維を1〜10g/lの濃度になるように1
40℃以上の水で加圧溶解して得られた溶液の比粘度η
spをJIS K−6726に基づき、30℃で測定
し、下記式より極限粘度〔η〕を求め、さらに次式
より粘度平均重合度PAを算出した。 〔η〕=lim(C→0)ηsp/c …… PA=(〔η〕×104/8.29)1.613 ……
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
Various physical property values in the present invention are defined by the following methods. 1) Viscosity-average degree of polymerization (PA) of PVA To make the concentration of uncrosslinked drawn fiber 1 to 10 g / l,
Specific viscosity η of the solution obtained by pressure dissolution with water at 40 ° C or higher
sp was measured at 30 ° C. according to JIS K-6726, the intrinsic viscosity [η] was calculated from the following formula, and the viscosity average polymerization degree PA was calculated from the following formula. [Η] = lim (C → 0) ηsp / c ...... PA = ([η] × 10 4 /8.29) 1.613 ......

【0025】2)脂肪族ジアルデヒド又はそのアセター
ル化合物の含有量 未架橋延伸糸を120℃以上の重水素化したジメチルス
ルホキシドに溶解せしめNMRよりPVAのCH2基ピ
ークに対する化合物のピーク面積比を算出し、含有量を
求めた。また延伸後に酸と架橋剤を含有する液で架橋処
理した場合は重量増加率より含有量を求めた。 3)人工セメント液での溶出量(CS) 試料約1gを4〜8mmにカットし、人工セメント水溶
液((KOH3.5g/l+NaOH0.9g/l+C
a(OH)20.4g/l、pH≒13)に150℃で
2時間浸漬したあと、水洗、乾燥して、試料重量の低下
率より溶出量(CS)を求めた。
2) Content of aliphatic dialdehyde or its acetal compound The uncrosslinked drawn yarn was dissolved in deuterated dimethyl sulfoxide at 120 ° C. or higher and the peak area ratio of the compound to the CH 2 group peak of PVA was calculated by NMR. Then, the content was obtained. When the solution was cross-linked with a solution containing an acid and a cross-linking agent after stretching, the content was determined from the weight increase rate. 3) Dissolution amount (CS) in artificial cement liquid About 1 g of a sample was cut into 4 to 8 mm, and an artificial cement aqueous solution ((KOH 3.5 g / l + NaOH 0.9 g / l + C
After immersing in a (OH) 2 0.4 g / l, pH≅13) at 150 ° C. for 2 hours, washing with water and drying, the elution amount (CS) was determined from the reduction rate of the sample weight.

【0026】4)単繊維の引張強伸度 JIS L=1015に準じ予め調湿された単繊維を試
長10cmになるように台紙に貼り、25℃×65%R
Hに12時間以上放置。次いでインストロン1122で
2kg用チャックを用い、初荷重1/20g/d、引張
速度50%/minにて破断強伸度を求め、n≧10の
平均値を採用した。デニールは1/20g/d荷重下で
30cm長にカットし、重量法によりn≧10の平均値
で示した。なおデニール測定後の単繊維を用いて強伸度
を測定し、1本ずつデニールと対応させた。 5)耐オートクレーブ性(スレート板の湿潤曲げ強度W
BSとたわみ量) PVA系合成繊維を4〜8mmの長さに切断し、ハチェ
ックマシンで該繊維2重量部、パルプ3重量部、シリカ
38重量部、セメント57重量部の配合で湿式抄造し、
50℃で12時間一次養生したのち160℃×15hr
又は180℃×10hrでオートクレーブ養生を実施
し、スレート板を作成したあと25×70×4mmの試
験片を切り出し、JIS K−6911に準じて3日水
中に浸漬後、オートグラフを用いてスパン長5cm、圧
縮速度2mm/分で曲げ強度(kg/cm2)とたわみ
量(mm)を測定した。
4) Tensile strength / elongation of single fiber In accordance with JIS L = 1015, single fiber preliminarily conditioned to humidity is attached to a mount so that the test length is 10 cm, and 25 ° C. × 65% R
Leave in H for 12 hours or more. Next, using a 2 kg chuck with Instron 1122, the breaking strength and elongation were determined at an initial load of 1/20 g / d and a pulling speed of 50% / min, and an average value of n ≧ 10 was adopted. Denier was cut into a length of 30 cm under a load of 1/20 g / d, and shown by an average value of n ≧ 10 by a gravimetric method. The tenacity was measured using the single fibers after the denier measurement, and each fiber was made to correspond to the denier. 5) Autoclave resistance (wet bending strength W of slate plate)
BS and amount of deflection) PVA-based synthetic fiber is cut into a length of 4 to 8 mm, and wet-paper-making is carried out by using a Hatek machine in a combination of 2 parts by weight of the fiber, 3 parts by weight of pulp, 38 parts by weight of silica, and 57 parts by weight of cement. ,
After primary curing for 12 hours at 50 ℃, 160 ℃ × 15hr
Alternatively, autoclave curing is performed at 180 ° C. for 10 hours, a slate plate is created, and a 25 × 70 × 4 mm test piece is cut out and immersed in water for 3 days in accordance with JIS K-6911, and the span length is determined using an autograph. The bending strength (kg / cm 2 ) and the amount of deflection (mm) were measured at 5 cm and a compression rate of 2 mm / min.

【0027】実施例1,2及び比較例1,2 粘度平均重合度が1700(実施例1)と4000(実
施例2)でケン化度がいずれも99.5モル%のPVA
をそれぞれ濃度16重量%(実施例1)と10重量%
(実施例2)になるようにジメチルスルホキシド(DM
SO)に110℃で溶解し、得られた各溶液を400ホ
ールのノズルより吐出させ、メタノール/DMSO=7
/3(重量比)からなる8℃の凝固浴で湿式紡糸した。
さらに40℃メタノール浴で4倍湿延伸したあと、メタ
ノールで該溶剤をほとんど全部除去した。
Examples 1 and 2 and Comparative Examples 1 and 2 PVA having a viscosity average degree of polymerization of 1700 (Example 1) and 4000 (Example 2) and a saponification degree of 99.5 mol%.
16% by weight (Example 1) and 10% by weight, respectively.
(Example 2) Dimethyl sulfoxide (DM
SO) at 110 ° C., and each of the resulting solutions was discharged from a nozzle with 400 holes, and methanol / DMSO = 7
Wet spinning was carried out in a coagulation bath of 8/3 (weight ratio) at 8 ° C.
Further, the film was wet-stretched 4 times in a 40 ° C. methanol bath, and then almost all the solvent was removed with methanol.

【0028】最後のメタノール抽出浴に、化合物(A)
として1,1,9,9−テトラメトキシノナン(TM
N)を4重量%/浴及び化合物(B)として1,1,
3,3−テトラメトキシプロパン(TMP)を2重量%
/浴になるように添加し、均一溶液としたあと、この浴
に繊維を1.5分間滞留させてメタノール含有繊維の内
部及び表面に該ジアルデヒドのアセタール化合物を含有
させて120℃にて乾燥した。得られた紡糸原糸を実施
例1では170℃、200℃、230℃の3セクション
からなる熱風炉で総延伸倍率16.5倍に、実施例2で
は170℃、210℃、240℃の3セクションからな
る熱風炉で総延伸倍率17.2倍になるように延伸し、
約1500d/400fのマルチフィラメントを得た。
次いで両延伸糸を硫酸80g/lの水溶液中で75℃×
30分浸漬して架橋反応を起こさせた。比較例1として
実施例1でTMNのみ6重量%/浴になるように添加し
て同様の延伸と酸処理を行った。また、比較例2では、
実施例2でTMNを2重量%/浴及びTMPを4重量%
/浴になるように添加して同様の延伸と酸処理を行っ
た。得られた繊維中の架橋剤含量や架橋繊維の物性を表
1に示した。
The compound (A) was added to the final methanol extraction bath.
As 1,1,9,9-tetramethoxynonane (TM
N) 4% by weight / bath and 1,1 as compound (B)
2% by weight of 3,3-tetramethoxypropane (TMP)
/ Bath is added to form a homogeneous solution, and the fibers are allowed to stay in this bath for 1.5 minutes to contain the acetal compound of the dialdehyde in the inside and the surface of the methanol-containing fibers and dried at 120 ° C. did. The obtained spun raw yarn was made to have a total draw ratio of 16.5 times in a hot air stove consisting of three sections of 170 ° C., 200 ° C. and 230 ° C. in Example 1, and 170 ° C., 210 ° C. and 240 ° C. in Example 2. Draw in a hot blast stove consisting of sections so that the total draw ratio is 17.2 times,
A multifilament of about 1500d / 400f was obtained.
Then, both of the drawn yarns at 75 ° C. in an aqueous solution of sulfuric acid 80 g / l.
It was immersed for 30 minutes to cause a crosslinking reaction. As Comparative Example 1, only TMN in Example 1 was added in an amount of 6% by weight / bath and the same stretching and acid treatment were performed. In Comparative Example 2,
2% TMN / bath and 4% TMP in Example 2
/ Bath was added so as to form a bath and the same stretching and acid treatment were performed. Table 1 shows the content of the crosslinking agent in the obtained fibers and the physical properties of the crosslinked fibers.

【0029】実施例1の未架橋延伸糸の架橋剤含量はT
MN換算で3.5重量%、TMP換算で1.8重量%で
あった。架橋繊維の単糸強度は13.2g/d、伸度は
5.4%を示し、150℃の人工セメント液中での2時
間処理後の溶出量(CS)は15.9重量%であった。
未架橋延伸糸のCSは96.7重量%でほとんど全部が
溶出したのに比べると耐湿熱性が著しく向上した。また
160℃オートクレーブ後のスレート板曲げ強度WBS
は242kg/cm2、たわみ量は1.0mmを示し、
住宅サイディング用の壁材として優れたものとなった。
実施例2の未架橋延伸糸の架橋剤含量はTMNが3.1
重量%、TMPが1.3重量%であった。架橋後の単繊
維強度は15.9g/d、伸度は5.8%であり、CS
=9.7重量%よりほとんど繊維内部まで架橋している
ことが判明した。また160℃オートクレーブ後のWB
Sは338kg/cm2、たわみ量は1.4mm、18
0℃オートクレーブ後のWBSは271kg/cm2
たわみ量は0.6mmを示し、高温養生に耐える新生瓦
の補強材として価値ある繊維となった。また湿熱が関与
する一般産業資材や衣料素材にも適用できる事が判っ
た。
The crosslinker content of the uncrosslinked drawn yarn of Example 1 is T
It was 3.5% by weight in terms of MN and 1.8% by weight in terms of TMP. The single fiber strength of the crosslinked fiber was 13.2 g / d, the elongation was 5.4%, and the elution amount (CS) after treatment for 2 hours in the artificial cement liquid at 150 ° C. was 15.9% by weight. It was
The CS of the uncrosslinked drawn yarn was 96.7% by weight, and the wet heat resistance was remarkably improved as compared with the case where almost all was eluted. Also, the slate plate bending strength WBS after 160 ° C autoclave
Is 242 kg / cm 2 , and the amount of deflection is 1.0 mm,
It became an excellent wall material for residential siding.
The crosslinker content of the uncrosslinked drawn yarn of Example 2 was TMN 3.1.
% By weight and TMP was 1.3% by weight. The single fiber strength after cross-linking was 15.9 g / d and the elongation was 5.8%.
= 9.7 wt%, it was found that most of the fibers were crosslinked. WB after autoclaving at 160 ℃
S is 338 kg / cm 2 , deflection is 1.4 mm, 18
WBS after autoclaving at 0 ° C is 271 kg / cm 2 ,
The amount of deflection was 0.6 mm, which made it a valuable fiber as a reinforcing material for new tiles that can withstand high temperature curing. It was also found that it can be applied to general industrial materials and clothing materials that are associated with heat and humidity.

【0030】比較例1ではTMNのみを含有させたがそ
の量は5.4重量%であり、得られた架橋繊維の強伸度
は実施例1と同等であったが人工セメント液の溶出量は
28.0重量%と多く、繊維内部まで十分に架橋せず、
耐湿熱性に劣っていた。またスレート板のWBSやたわ
み量も実施例1より低くなった。比較例2は実施例2で
TMNよりもTMPの含量を多くしたものであるが、繊
維の伸度が少なく、CSが高い為、スレート板のWBS
やたわみ量が減少して、いずれも実施例2に見劣りする
ものであった。
In Comparative Example 1, only TMN was contained, but the amount was 5.4% by weight, and the strength and elongation of the obtained crosslinked fiber was the same as in Example 1, but the elution amount of the artificial cement liquid was Is as high as 28.0% by weight, which does not sufficiently crosslink inside the fiber,
It was inferior in moist heat resistance. Further, the WBS and the amount of deflection of the slate plate were also lower than those in Example 1. In Comparative Example 2, the content of TMP is larger than that of TMN in Example 2, but the elongation of the fiber is low and the CS is high. Therefore, WBS of the slate plate is used.
The amount of flexure was reduced, and both were inferior to Example 2.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例3 粘度平均重合度が8000でケン化度が99.9モル%
のPVAを濃度8重量%になるように170℃でエチレ
ングリコール(EG)に溶解した。得られた溶液を40
0ホールのノズルより吐出させ、乾湿式紡糸によりメタ
ノール/EG=7/3(重量比)からなる0℃の凝固浴
で急冷ゲル化させた。さらに40℃メタノール浴で4倍
湿延伸したあと、メタノールで該溶剤をほとんど全部除
去した。最後のメタノール抽出浴に1,1,9,9−ビ
スエチレンジオキシノナン(BEN)を8重量%/浴に
なるように添加し、均一溶液としたあと繊維を1.2分
間滞留させて繊維の内部及び表面に該アセタール化合物
を含有させ130℃にて乾燥した。得られた紡糸原糸を
180℃、248℃の2セクションからなる輻射炉で総
延伸倍率が18.5倍になるように延伸し、BEN含有
量4.9重量%の1000d/400fのマルチフィラ
メントを得た。次いで硫酸を60g/lおよびマロンジ
アルデヒドを30g/l含有する水溶液で80℃×60
分架橋処理をした。なお重量増加率よりマロンジアルデ
ヒド換算で2.2重量%含有していた。
Example 3 Viscosity average degree of polymerization is 8000 and degree of saponification is 99.9 mol%.
Was dissolved in ethylene glycol (EG) at 170 ° C. to a concentration of 8% by weight. The resulting solution is 40
The mixture was discharged from a 0-hole nozzle, and was rapidly cooled and gelated by dry-wet spinning in a 0 ° C. coagulation bath consisting of methanol / EG = 7/3 (weight ratio). Further, the film was wet-stretched 4 times in a 40 ° C. methanol bath, and then almost all the solvent was removed with methanol. 1,1,9,9-Bisethylenedioxynonane (BEN) was added to the final methanol extraction bath at 8 wt% / bath to form a uniform solution, and the fibers were allowed to stay for 1.2 minutes to obtain fibers. The acetal compound was added to the inside and the surface of the and dried at 130 ° C. The obtained spun raw yarn was drawn in a radiant furnace consisting of two sections at 180 ° C. and 248 ° C. so that the total draw ratio was 18.5 times, and a 1000d / 400f multifilament having a BEN content of 4.9% by weight. Got Then, with an aqueous solution containing 60 g / l of sulfuric acid and 30 g / l of malondialdehyde, 80 ° C. × 60
A cross-linking treatment was performed. From the weight increase rate, the content was 2.2% by weight in terms of malondialdehyde.

【0033】得られた架橋繊維の単糸強度は17.7g
/d、伸度は6.0%でありCSは5.9重量%と低
く、耐湿熱性に非常に優れることが判明した。180℃
オートクレーブ後のWBSも305kg/cm2と高
く、たわみ量も0.8mmあり高温養生用FRCとして
従来にない高付加価繊維となった。
The single fiber strength of the obtained crosslinked fiber is 17.7 g.
/ D, the elongation was 6.0% and the CS was as low as 5.9% by weight, and it was found that the wet heat resistance was very excellent. 180 ° C
The WBS after autoclaving was as high as 305 kg / cm 2 , and the amount of deflection was 0.8 mm, which was a high-value-added fiber that has never existed as a FRC for high temperature curing.

【0034】[0034]

【発明の効果】本発明は前記したように、2種類のアル
デヒド化合物を特定の割合で付与しPVA繊維を架橋さ
せ、高強度、高伸度を維持しながら繊維内部まで十分に
架橋させることにより従来にない、耐オートクレーブの
FRC用PVA系繊維を得るものである。本発明の繊維
はセメント補強材以外に耐湿熱性と耐久性が要求される
ロープ、漁網、テント、土木シートなどの一般産業資材
や衣料素材などにも幅広く利用できる。
As described above, according to the present invention, two kinds of aldehyde compounds are added in a specific ratio to crosslink PVA fibers, and the PVA fibers are crosslinked sufficiently while maintaining high strength and high elongation. An unprecedented autoclave resistant PVA-based fiber for FRC is obtained. The fiber of the present invention can be widely used for general industrial materials such as ropes, fishing nets, tents, and civil engineering sheets, which are required to have moist heat resistance and durability, as well as clothing materials, in addition to cement reinforcing materials.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−263311(JP,A) 特開 平5−163609(JP,A) 特開 平6−184810(JP,A) 特開 平5−321020(JP,A) (58)調査した分野(Int.Cl.7,DB名) D06M 13/137 D01F 6/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-263311 (JP, A) JP-A-5-163609 (JP, A) JP-A-6-184810 (JP, A) JP-A-5- 321020 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) D06M 13/137 D01F 6/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸基の一部が下記(A)の化合物と下
記(B)の化合物で架橋されており、かつ(A)と
(B)の重量比が9:1〜5:5の重量比であるポリビ
ニルアルコール系ポリマーからなり、単繊維強度が12
g/d以上、伸度が5%以上で、かつ150℃の人工セ
メント水溶液での2時間処理後の溶出量が20重量%以
下であることを特徴とする耐湿熱性ポリビニルアルコー
ル系繊維。 (A)炭素数6以上の脂肪族ジアルデヒドのアセタール
化合物 (B)炭素数4以下の脂肪族ジアルデヒド、そのアセタ
ール化物及びホルムアルデヒドからなる群から選ばれる
少なくとも1種の化合物
1. A part of the hydroxyl groups is crosslinked with the compound of the following (A) and the compound of the following (B), and the weight ratio of (A) and (B) is 9: 1 to 5: 5. It is made of polyvinyl alcohol-based polymer, which has a ratio of 12 per fiber.
A moist-heat-resistant polyvinyl alcohol fiber, which has a g / d or more, an elongation of 5% or more, and an elution amount of 20% by weight or less after treatment with an artificial cement aqueous solution at 150 ° C. for 2 hours. (A) Acetal compound of aliphatic dialdehyde having 6 or more carbon atoms (B) At least one compound selected from the group consisting of aliphatic dialdehyde having 4 or less carbon atoms, acetalized product thereof and formaldehyde
【請求項2】 ポリビニルアルコール系ポリマーの溶液
を紡糸して得られる紡糸原糸を乾燥し、総延伸倍率が1
4倍以上となるように乾熱延伸を行いポリビニルアルコ
ール系繊維を製造するに際し、乾燥までの工程で該紡糸
原糸に下記(A)の化合物と下記(B)の化合物を
(A)と(B)の重量比が9:1〜5:5になるように
含有させ乾熱延伸を行ったのち、酸処理して(A)及び
(B)をポリビニルアルコール系ポリマーと反応させる
ことを特徴とする耐湿熱性ポリビニルアルコール系繊維
の製造方法。 (A)炭素数6以上の脂肪族ジアルデヒドのアセタール
化合物 (B)炭素数4以下の脂肪族ジアルデヒド、そのアセタ
ール化物及びホルムアルデヒドからなる群から選ばれる
少なくとも1種の化合物
2. A spinning raw yarn obtained by spinning a solution of a polyvinyl alcohol-based polymer is dried to give a total draw ratio of 1
When a polyvinyl alcohol fiber is produced by carrying out dry heat drawing so as to have a draw ratio of 4 times or more, the compound of the following (A) and the compound of the following (B) are added to the (A) ( B) is contained in a weight ratio of 9: 1 to 5: 5, subjected to dry heat drawing, and then acid-treated to react (A) and (B) with a polyvinyl alcohol-based polymer. A method for producing a heat and moisture resistant polyvinyl alcohol fiber. (A) Acetal compound of aliphatic dialdehyde having 6 or more carbon atoms (B) At least one compound selected from the group consisting of aliphatic dialdehyde having 4 or less carbon atoms, acetalized product thereof and formaldehyde
【請求項3】 ポリビニルアルコール系ポリマーの溶液
を紡糸して得られる紡糸原糸を乾燥し、総延伸倍率が1
4倍以上となるように乾熱延伸を行いポリビニルアルコ
ール系繊維を製造するに際し、乾燥までの工程で、該紡
糸原糸に下記化合物(A)を含有させ、乾熱延伸を行っ
たのち、下記化合物(B)と酸を含有する液で処理し
て、(A)と(B)の重量比が9:1〜5:5になるよ
うにポリビニルアルコール系ポリマーの水酸基を架橋さ
せることを特徴とする耐湿熱性ポリビニルアルコール系
繊維の製造方法。 (A)炭素数6以上の脂肪族ジアルデヒドのアセタール
化合物 (B)炭素数4以下の脂肪族ジアルデヒド、そのアセタ
ール化物及びホルムアルデヒドからなる群から選ばれる
少なくとも1種の化合物
3. A spinning yarn obtained by spinning a solution of a polyvinyl alcohol-based polymer is dried to give a total draw ratio of 1
When a polyvinyl alcohol fiber is produced by dry heat drawing so as to have a draw ratio of 4 times or more, the following compound (A) is added to the spun raw yarn in the steps up to drying, and after dry heat drawing, A treatment with a liquid containing the compound (B) and an acid to crosslink the hydroxyl groups of the polyvinyl alcohol-based polymer so that the weight ratio of (A) and (B) is 9: 1 to 5: 5. A method for producing a heat and moisture resistant polyvinyl alcohol fiber. (A) Acetal compound of aliphatic dialdehyde having 6 or more carbon atoms (B) At least one compound selected from the group consisting of aliphatic dialdehyde having 4 or less carbon atoms, acetalized product thereof and formaldehyde
JP21703896A 1996-08-19 1996-08-19 Wet and heat resistant polyvinyl alcohol fiber and method for producing the same Expired - Fee Related JP3489943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21703896A JP3489943B2 (en) 1996-08-19 1996-08-19 Wet and heat resistant polyvinyl alcohol fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21703896A JP3489943B2 (en) 1996-08-19 1996-08-19 Wet and heat resistant polyvinyl alcohol fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1060774A JPH1060774A (en) 1998-03-03
JP3489943B2 true JP3489943B2 (en) 2004-01-26

Family

ID=16697874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21703896A Expired - Fee Related JP3489943B2 (en) 1996-08-19 1996-08-19 Wet and heat resistant polyvinyl alcohol fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3489943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859637B2 (en) * 2006-11-21 2012-01-25 日本合成化学工業株式会社 An aqueous emulsion composition and an adhesive using the same.

Also Published As

Publication number Publication date
JPH1060774A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
WO1997009472A1 (en) Polyvinyl alcohol fibers excellent in resistance to boiling water and process for the production thereof
JP3489943B2 (en) Wet and heat resistant polyvinyl alcohol fiber and method for producing the same
JP3366476B2 (en) High-strength polyvinyl alcohol-based fiber excellent in wet heat resistance and method for producing the same
JP3357215B2 (en) Wet heat resistant polyvinyl alcohol fiber and method for producing the same
JPH10310939A (en) Polyvinyl alcohol based fiber and its production
JP3043163B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH1181038A (en) Cross-linked polyvinyl alcohol fiber and its production
JP2001146679A (en) Polyvinyl alcohol-based fiber and cured material of water-curable material
JPH10310930A (en) Production of crosslinked polyvinyl alcohol-based fiber
JPH11350246A (en) Polyvinyl alcohol-based fiber and its production
JP3828246B2 (en) Polyvinyl alcohol synthetic fiber and method for producing the same
JP3266673B2 (en) Polyvinyl alcohol-based synthetic fiber
JPH09132816A (en) Polyvinyl alcohol fiber having excellent hot-water resistance and its production
JP3549682B2 (en) High moisture and heat resistant polyvinyl alcohol fiber
JP2888502B2 (en) Method for producing high strength polyvinyl alcohol fiber with excellent hot water resistance
JPH11140720A (en) Production of polyvinyl alcohol synthetic fiber
KR100531614B1 (en) Polyvinyl alcohol fiber having excellent hot water resistance
JPH10226958A (en) Production of polyvinyl alcohol base synthetic fiber
JPH11293560A (en) Polyvinyl alcohol-based fiber and its production
JPH1077572A (en) Hot water-resistant polyvinyl alcohol-based fiber and its production
JPH11286826A (en) Production of polyvinyl alcohol synthetic fiber
JP2000336574A (en) Polyvinyl alcohol fiber resistant to high-humidity and temperature and its production
JP3676049B2 (en) Method for producing polyvinyl alcohol-based synthetic fiber
JPH06212513A (en) Production of high-strength polyvinyl alcoholic fiber
JPH10168752A (en) Production of polyvinyl alcohol fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees