JP3489572B2 - Super water repellent film and method for producing the same - Google Patents

Super water repellent film and method for producing the same

Info

Publication number
JP3489572B2
JP3489572B2 JP2001175139A JP2001175139A JP3489572B2 JP 3489572 B2 JP3489572 B2 JP 3489572B2 JP 2001175139 A JP2001175139 A JP 2001175139A JP 2001175139 A JP2001175139 A JP 2001175139A JP 3489572 B2 JP3489572 B2 JP 3489572B2
Authority
JP
Japan
Prior art keywords
film
water
fluorine
same
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175139A
Other languages
Japanese (ja)
Other versions
JP2002053689A (en
Inventor
祐助 高田
庸三 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001175139A priority Critical patent/JP3489572B2/en
Publication of JP2002053689A publication Critical patent/JP2002053689A/en
Application granted granted Critical
Publication of JP3489572B2 publication Critical patent/JP3489572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、機能性を高めたプラス
チックフィルムに関するものであり、とりわけ、撥水性
フィルムに関するものである。 【0002】 【従来の技術】撥水性をもつ表面を得るためには、その
表面張力を水の表面張力よりも低くすることが必要にな
る。撥水性、すなわち、物質表面のぬれやすさを示す数
字として接触角という考え方がある。表面に水滴を置い
た場合、水滴と表面が接触する角度である。一般に、撥
水性を持つフィルムとしては、実用的には水の接触角で
160°近い超撥水状態が必要である。 【0003】従来の撥水性、透明性をもつフィルムとし
てはフッ素系の四フッ化エチレン−六フッ化プロピレン
共重合樹脂(FEP)などのフィルムなどが代表的であ
る。また、最近ではポリエステルフィルムなどの汎用フ
ィルムの表面に撥水性コーティング剤(たとえば、フッ
素系コーティング剤)を塗装することにより撥水性を付
与することが一般的に行われている。 【0004】 【発明が解決しようとする課題】しかしながら、従来の
フッ素系のフィルムでは透明性が得られるものの、撥水
性については水の接触角で100°程度と十分に満足で
きるものが得られない。そればかりかコストの面でも実
用的でない。この低コスト化に対応するため、上述のよ
うな汎用フィルム上に撥水性コーティング剤をコートす
ることにより、フィルム表面に機能性を付与する方法が
とられている。しかし、コスト面では改善されるが、撥
水性についてはフッ素系のフィルムと同程度であるのに
加え、耐環境性の面で劣ってしまう。最近、フィルムに
限らず、撥水性を向上させる方法として、フッ素系樹
脂、シリコーン系樹脂などに無機微粒子を均一に分散し
た複合塗料をコーティング剤に用いる方法やニッケルめ
っき液中にフッソ樹脂の微粒子を分散させめっきを行う
方法などがある。これらの方法を用いると被覆された表
面の形態的効果により水の接触角で160°近い超撥水
状態が得られているが、フィルム上に応用してもフィル
ムとの付着力が弱い、フィルムのもつ透明性が維持でき
ないなどの問題が生じてしまう。したがって、フィルム
の透明性を維持し、超撥水性をもった低コストで実用に
耐える撥水性フィルムの出現が望まれていた。 【0005】 【課題を解決するための手段】本発明は、上記の目的を
達成するために、片面もしくは両面に微小な突起を形成
したプラスチックフィルムとそのプラスチックフィルム
上に形成したシラン系フッ素化合物の化学吸着膜とから
構成されている。 【0006】 【作用】本発明の超撥水性フィルムは、フィルムの表面
を酸素を含んだプラズマ処理を施し、100nm前後の突
起を形成することによって撥水性を向上させる表面形態
的効果を得るだけでなく、形成された突起が100nm程
度であるために透明性を維持することができ、また、こ
の表面処理によりその上に形成される化学吸着単分子膜
が必要とする反応基をも付与するため、フィルムと化学
吸着単分子膜とが容易に強固な付着力を得ることがで
き、耐環境性、あるいは寿命、コスト面でも優れたもの
となる。 【0007】 【実施例】本発明のうち撥水性、透明性を例に挙げ、実
施例1で図面を参照しながら説明する。 【0008】(実施例1)以下、本発明の実施例1につ
いて図面を参照しながら説明する。 【0009】図1は本発明の超撥水性フィルムの構成図
である。図2は第1図の一部Bを分子レベルまで拡大し
た図である。 【0010】図1において、1は0.1mmの厚みのポリ
エステルフィルム、2はポリエステルフィルム1を酸素
ガスによるプラズマ処理を行って形成された高さ85nm
のポリエステル表面の微小な突起、3はフッ素含有のク
ロロシラン系化合物(化1)からなる化学吸着膜であ
る。 【0011】 【化1】 【0012】最初に、超撥水性フィルムの作製手順につ
いて述べる。まず、ポリエステルフィルム1を酸素分圧
10Paの真空容器内で0.2W/cm2、5分のプラズマ
処理を行う。その結果、図1に示すように、フィルム表
面から先端までの高さAが85nmの微小な突起が形成さ
れ、同時に、フィルム表面が親水化される。このように
して処理されたポリエステルフィルム1を容器から取り
出し、シクロヘキサンの溶媒で希釈した1×10-2 Mol
/l濃度のフッ素含有クロロシラン系化合物(化1)の溶
液中に10分浸漬する。ポリエステルの表面は酸素のプ
ラズマ処理によって親水化されているため表面で(化
2)の結合が形成され、フッ素含有のクロロシラン系化
合物(化1)による単分子膜4よりなる吸着膜3が形成
される。(図2) 【0013】 【化2】 【0014】このようにしてできた超撥水性フィルムの
撥水性、透明性の評価を行うため、水の接触角、透過率
について測定した。比較サンプルとして、FEPフィル
ム、フッ素系樹脂をコーティングしたポリエステルフィ
ルム、シリコーン系樹脂に無機微粒子(シリカ)を均一
に分散した複合塗料をコーティングしたポリエステルフ
ィルム、表面に突起を形成せず本発明と同じフッ素系ク
ロロシラン系化合物を使って化学吸着膜を形成したポリ
エステルフィルムの4つを用い、同様に、水の接触角、
透過率について測定した。なお、フィルム厚は、すべて
0.1mmである。 【0015】測定結果を(表1)に示す。 【0016】 【表1】【0017】この(表1)から明らかなように、本実施
例1により作製した超撥水性フィルムは撥水性、透明性
の両面で優れた機能性フィルムであることがわかる。 【0018】(実施例2)以下、本発明の実施例2につ
いて説明する。 【0019】超撥水性フィルムの作製手順について図面
を参照しながら説明する。図3は本発明の超撥水性フィ
ルムを作製するための化学吸着膜形成装置の概略図であ
る。図3において、5は真空容器、6は密閉容器に入っ
ているフッ素含有のクロロシラン系化合物(化1)、7
は密閉容器のコックである。 【0020】実施例1と同様のプラズマ処理を行いフィ
ルム表面に微小な突起を形成した後、真空容器内を1×
10-3Paになるまで排気する。次に、密閉容器のコック
7を開きフッ素含有のクロロシラン系化合物6の原液を
気化させる。すると、プラズマ処理を行ったフィルムの
表面が親水化されているため、気化した(化1)とフィ
ルム表面とで(化2)の結合が形成され、フッ素含有の
クロロシラン系化合物による単分子膜4よりなる吸着膜
3が形成される。 【0021】このようにしてできた超撥水性フィルムを
実施例1と同様の評価を行った。測定結果を(表2)に
示す。 【0022】 【表2】【0023】この(表2)から明らかなように、本実施
例2により作製した超撥水性フィルムは、実施例1と同
様に、撥水性、透明性の両面に渡り優れた機能性フィル
ムであると同時に、同じ真空容器内で一括して膜形成ま
でできるため工程時間の短縮、低コスト化も実現可能と
なる。 【0024】なお、実施例1または2においてクロロシ
ラン系化合物として(化1)を用いたが、他のフッ素含
有クロロシラン系化合物、例えば、(化3)や(化4)
などを用いても同じ効果は得られる。 【0025】 【化3】 【0026】 【化4】 【0027】また、本実施例では吸着させる化合物にク
ロロシラン系化合物を用いたが、メトキシシラン系、ま
たは、エトキシシラン系、または、クロロシラン系を含
めた混合系化合物であっても同様の効果を得ることがで
きる。 【0028】また、フィルム表面の突起の高さを今回は
85nmとしたが、10nm以下になると十分な撥水性が得
られなくなり、また、500nmを越えるとフィルム表面
の機械的強度が極力弱くなるため、望ましくは10〜5
00nmである。 【0029】なお、実施例2で、クロロシラン系化合物
の分子量が大きくなる、すなわち、炭素の数が大きくな
ると蒸発しにくくなるが、原液を適度に加熱することで
対応できるが、直鎖状の場合で炭素の数が25程度まで
が望ましい。 【0030】さらに、本実施例ではポリエステルフィル
ムを使用したが、他のプラスチックフィルムでも同様の
結果が得られることはいうまでもない。 【0031】 【発明の効果】以上のように本発明は、片面もしくは両
面に微小な突起を形成したシラン系フッ素化合物の化学
吸着膜を形成することで、透明で優れた撥水性をもった
機能性フィルムを手軽に安価に提供でき、工業的かつ実
用的効果は多大である。
BACKGROUND OF THE INVENTION DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a plastic film arm with enhanced functionality, among other things, relates to water repellent <br/> fill arm . [0002] In order to obtain a surface having water repellency, it is necessary to make the surface tension lower than the surface tension of water. There is a concept of a contact angle as a number indicating the water repellency, that is, the wettability of the material surface. When a water droplet is placed on the surface, it is the angle at which the water droplet contacts the surface. In general, a film having water repellency needs to be in a super water repellent state with a contact angle of water close to 160 ° in practical use. [0003] As a conventional film having water repellency and transparency, a film such as fluorine-based ethylene tetrafluoride-propylene hexafluoride copolymer resin (FEP) is typical. In recent years, it has been common practice to impart water repellency by applying a water repellent coating agent (for example, a fluorine-based coating agent) on the surface of a general-purpose film such as a polyester film. [0004] However, although the conventional fluorine-based film can provide transparency, the water repellency cannot be sufficiently satisfactory as the contact angle of water is about 100 °. . Not only that, but it is not practical in terms of cost. In order to cope with this cost reduction, a method of imparting functionality to the film surface by coating a general-purpose film as described above with a water-repellent coating agent has been adopted. However, although the cost is improved, the water repellency is about the same as that of the fluorine-based film, and the environmental resistance is inferior. Recently, not only films but also methods for improving water repellency include using a coating material of a composite paint in which inorganic fine particles are uniformly dispersed in a fluorine-based resin, silicone-based resin, etc., or using fine particles of fluorine resin in a nickel plating solution. There is a method of dispersing and plating. With these methods, a super-water-repellent state with a contact angle of water close to 160 ° has been obtained due to the morphological effect of the coated surface, but the adhesion to the film is weak even when applied on a film. Problems such as the inability to maintain the transparency of the device. Therefore, there has been a demand for a water-repellent film which maintains the transparency of the film and has a super-water repellency and which can be used practically at low cost. [0005] The present invention SUMMARY OF THE INVENTION In order to achieve the above object, silane-based fluorine formed and on its plastic film plastic film formed with fine projections on one side or both sides And a chemical adsorption film of the compound. The super-water-repellent film of the present invention is only subjected to a plasma treatment containing oxygen on the surface of the film to form projections of about 100 nm, thereby obtaining a surface morphological effect of improving water repellency. In addition, since the formed protrusions are about 100 nm, transparency can be maintained, and the surface treatment also provides reactive groups required by the chemisorbed monolayer formed thereon. In addition, the film and the chemically adsorbed monomolecular film can easily obtain a strong adhesive force, and are excellent in environmental resistance, life, and cost. The present invention will be described in Example 1 with reference to the drawings, taking water repellency and transparency as examples. (Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a structural view of the super water-repellent film of the present invention. FIG. 2 is an enlarged view of part B of FIG. 1 to the molecular level. In FIG. 1, 1 is a polyester film having a thickness of 0.1 mm, and 2 is a polyester film 1 having a height of 85 nm formed by performing a plasma treatment with oxygen gas.
The fine projections 3 on the polyester surface are chemical adsorption films made of a fluorine-containing chlorosilane compound (Chemical Formula 1). [0011] First, a procedure for producing a super water-repellent film will be described. First, the polyester film 1 is subjected to a plasma treatment of 0.2 W / cm2 for 5 minutes in a vacuum vessel having an oxygen partial pressure of 10 Pa. As a result, as shown in FIG. 1, minute projections having a height A from the film surface to the tip of 85 nm are formed, and at the same time, the film surface is hydrophilized. The polyester film 1 thus treated is taken out of the container and diluted with a solvent of cyclohexane to 1 × 10 −2 Mol.
immersion in a solution of a fluorine-containing chlorosilane-based compound (chemical formula 1) at a concentration of 1 / l for 10 minutes. Since the surface of the polyester is hydrophilized by the oxygen plasma treatment, the bond of the chemical formula (2) is formed on the surface, and the adsorption film 3 composed of the monomolecular film 4 of the fluorine-containing chlorosilane-based compound (chemical formula 1) is formed. You. (FIG. 2) In order to evaluate the water repellency and the transparency of the super water repellent film thus produced, the contact angle of water and the transmittance were measured. As a comparative sample, an FEP film, a polyester film coated with a fluorine-based resin, a polyester film coated with a composite paint in which inorganic fine particles (silica) are uniformly dispersed in a silicone-based resin, the same fluorine as the present invention without forming protrusions on the surface Using the four polyester films that have formed a chemisorption film using a chlorosilane-based compound,
The transmittance was measured. The film thicknesses are all 0.1 mm. The measurement results are shown in (Table 1). [Table 1] As is clear from Table 1, the super water-repellent film produced in Example 1 is a functional film excellent in both water repellency and transparency. (Embodiment 2) Hereinafter, Embodiment 2 of the present invention will be described. The procedure for producing the super water-repellent film will be described with reference to the drawings. FIG. 3 is a schematic view of a chemical adsorption film forming apparatus for producing the super water-repellent film of the present invention. In FIG. 3, 5 is a vacuum vessel, 6 is a fluorine-containing chlorosilane-based compound (chemical formula 1) contained in a closed vessel, 7
Is a cock of a closed container. After performing the same plasma treatment as in Example 1 to form minute projections on the film surface, the inside of the vacuum container was
Exhaust until 10-3Pa. Next, the cock 7 of the closed container is opened, and the stock solution of the chlorosilane-based compound 6 containing fluorine is vaporized. Then, since the surface of the film subjected to the plasma treatment is hydrophilized, a bond of (Chemical Formula 2) is formed between the vaporized (Chemical Formula 1) and the film surface, and the monomolecular film 4 of the fluorine-containing chlorosilane-based compound is formed. The adsorption film 3 is formed. The super water-repellent film thus produced was evaluated in the same manner as in Example 1. The measurement results are shown in (Table 2). [Table 2] As is clear from Table 2, the super water-repellent film produced in Example 2 is a functional film excellent in both water repellency and transparency, as in Example 1. At the same time, since film formation can be performed collectively in the same vacuum vessel, the process time can be reduced and the cost can be reduced. In Example 1 or 2, (Chemical Formula 1) was used as the chlorosilane-based compound, but other fluorine-containing chlorosilane-based compounds such as (Chemical Formula 3) and (Chemical Formula 4)
The same effect can be obtained by using such a method. Embedded image Embedded image In this embodiment, a chlorosilane compound is used as the compound to be adsorbed. However, the same effect can be obtained by using a methoxysilane compound, an ethoxysilane compound, or a mixed compound including a chlorosilane compound. be able to. The height of the projections on the film surface was 85 nm in this case. However, if the height is less than 10 nm, sufficient water repellency cannot be obtained. , Preferably 10-5
00 nm. In Example 2, the evaporation of the chlorosilane-based compound becomes difficult when the molecular weight of the chlorosilane-based compound is increased, that is, when the number of carbons is increased. And the number of carbons is preferably up to about 25. Further, although a polyester film is used in this embodiment, it goes without saying that a similar result can be obtained with other plastic films. The invention as described above, according to the present invention, by forming a chemically adsorbed film of one side or silane-based fluorine compounds form minute projections on both sides, with a transparent and had excellent water repellency Functional films can be easily and inexpensively provided, and the industrial and practical effects are enormous.

【図面の簡単な説明】 【図1】実施例1および2における超撥水性フィルムの
構成図 【図2】実施例1および2における第1図中のB部を膜
形成後、分子レベルまで拡大した断面図 【図3】実施例2における化学吸着膜形成方法の概略図 【符号の説明】 1 ポリエステルフィルム 2 プラズマ処理によって形成された微小な突起 3 フッ素含有のクロロシラン系化合物による単分子膜
により形成された化学吸着膜 4 化学吸着した単分子膜 5 真空容器 6 密閉容器に入ったフッ素含有クロロシラン系化合物 7 密閉容器のコック
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural view of a super-water-repellent film in Examples 1 and 2. FIG. 2 is an enlarged view of a portion B in FIG. FIG. 3 is a schematic diagram of a method for forming a chemically adsorbed film in Example 2. [Description of References] 1 Polyester film 2 Fine protrusions formed by plasma treatment 3 Formed by monomolecular film of fluorine-containing chlorosilane-based compound Chemically adsorbed film 4 Chemically adsorbed monomolecular film 5 Vacuum container 6 Fluorine-containing chlorosilane compound in closed container 7 Cock of closed container

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08J 7/00 C08J 7/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C08J 7/00 C08J 7/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】プラスチックフイルムの片面もしくは両面
、少なくとも酸素を含んだガスによるプラズマ処理で
表面からの高さが10〜500nmである微小な突起を
形成し、前記微小な突起に沿ってシラン系フッ素化合物
化学吸着単分子膜を形成してなる超撥水性フイルム。
(57) [Claims 1] A plasma treatment using a gas containing at least oxygen on one or both surfaces of a plastic film.
Small projections with a height from the surface of 10 to 500 nm
A super water-repellent film formed by forming a chemically adsorbed monomolecular film of a silane-based fluorine compound along the fine projections .
JP2001175139A 2001-06-11 2001-06-11 Super water repellent film and method for producing the same Expired - Fee Related JP3489572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175139A JP3489572B2 (en) 2001-06-11 2001-06-11 Super water repellent film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175139A JP3489572B2 (en) 2001-06-11 2001-06-11 Super water repellent film and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18073292A Division JP3245972B2 (en) 1992-07-08 1992-07-08 Manufacturing method of super water repellent film

Publications (2)

Publication Number Publication Date
JP2002053689A JP2002053689A (en) 2002-02-19
JP3489572B2 true JP3489572B2 (en) 2004-01-19

Family

ID=19016327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175139A Expired - Fee Related JP3489572B2 (en) 2001-06-11 2001-06-11 Super water repellent film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3489572B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300091B (en) * 2014-09-17 2017-02-15 合肥京东方光电科技有限公司 Oled device packaging structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002053689A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
Zhuang et al. Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition
Teare et al. Pulsed plasma deposition of super-hydrophobic nanospheres
Hsieh et al. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating
JP2774743B2 (en) Water repellent member and method of manufacturing the same
Shi et al. Constructing superhydrophobicity by self‐assembly of SiO2@ polydopamine core‐shell nanospheres with robust oil‐water separation efficiency and anti‐corrosion performance
CN1946646B (en) Substrate, notably of glass, with a hydrophobic surface having an improved durability of the hydrophobic properties
JP3358131B2 (en) Water / oil repellent film and method for producing the same
KR100605613B1 (en) Method of producing mold used in production of polymer substrate with hydrophobic surface
Balu et al. Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching
JP2017522172A (en) Novel process for producing superhydrophobic or superhydrophilic surfaces
Tada et al. Chemical vapor surface modification of porous glass with fluoroalkyl-functional silanes. 1. Characterization of the molecular layer
US9238350B2 (en) Method for affixing water-and-oil-repellent layer to amorphous carbon film layer, and laminated body formed by said method
JP2545642B2 (en) Glass
CN111962049A (en) Plasma chemical vapor deposition nano super-hydrophobic coating and preparation method thereof
JP3245972B2 (en) Manufacturing method of super water repellent film
Shi et al. Fabrication of transparent and superhydrophobic nanopaper via coating hybrid SiO2/MWCNTs composite
CN113710752A (en) Improvements relating to superhydrophobic surfaces
KR101463050B1 (en) Article including Ultra Hydrophobic Coating and Method for Fabrication thereof
JP2004017410A (en) Method for manufacturing hard-coated amorphous polyolefin resin and resin article
JP3489572B2 (en) Super water repellent film and method for producing the same
CN110747449B (en) Preparation method of self-cleaning hydrophobic film layer for electronic screen
JPH04359031A (en) Water-and-oil repellent film
Li et al. Water and mildew proof SiO 2 & ZnO/silica sol superhydrophobic composite coating on a circuit board
JP2004043689A (en) Amorphous polyolefin resin article covered with modified surface layer and production method used for the same
JP2000080465A (en) Stain preventive vapor depositing material and reflection preventive member using this

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees