JP3487236B2 - Field emission type electron source and method of manufacturing the same - Google Patents

Field emission type electron source and method of manufacturing the same

Info

Publication number
JP3487236B2
JP3487236B2 JP23906399A JP23906399A JP3487236B2 JP 3487236 B2 JP3487236 B2 JP 3487236B2 JP 23906399 A JP23906399 A JP 23906399A JP 23906399 A JP23906399 A JP 23906399A JP 3487236 B2 JP3487236 B2 JP 3487236B2
Authority
JP
Japan
Prior art keywords
conductive
drift
electron source
field emission
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23906399A
Other languages
Japanese (ja)
Other versions
JP2001068012A (en
Inventor
卓哉 菰田
崇 幡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23906399A priority Critical patent/JP3487236B2/en
Publication of JP2001068012A publication Critical patent/JP2001068012A/en
Application granted granted Critical
Publication of JP3487236B2 publication Critical patent/JP3487236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体材料を用い
て電界放射により電子線を放射するようにした加熱を必
要としない電界放射型電子源およびその製造方法に関
し、特に平面型光源、フラットディスプレイ素子、固体
真空デバイスなどに応用することのできる電界放射型電
子源およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission type electron source which uses a semiconductor material and does not require heating for emitting an electron beam by field emission, and a method for manufacturing the same, and more particularly to a flat light source and a flat display. The present invention relates to a field emission electron source that can be applied to elements, solid-state vacuum devices, and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、電界放射型電子源として、例
えば米国特許3665241号などに開示されているい
わゆるスピント(Spindt)型電極と呼ばれるものがあ
る。このスピント型電極は、微小な三角錐状のエミッタ
チップを多数配置した基板と、エミッタチップの先端部
を露出させる放射孔を有するとともにエミッタチップに
対して絶縁された形で配置されたゲート層とを備え、真
空中にてエミッタチップをゲート層に対して負極として
高電圧を印加することにより、エミッタチップの先端か
ら放射孔を通して電子線を放射するものである。
2. Description of the Related Art Conventionally, there is a so-called Spindt type electrode disclosed in US Pat. No. 3,665,241 as a field emission type electron source. This Spindt-type electrode has a substrate on which a large number of minute triangular pyramid-shaped emitter chips are arranged, and a gate layer which has a radiation hole for exposing the tip of the emitter chip and which is arranged insulated from the emitter chip. By applying a high voltage with the emitter tip serving as a negative electrode with respect to the gate layer in vacuum, an electron beam is emitted from the tip of the emitter tip through the emission hole.

【0003】しかしながら、スピント型電極は、製造プ
ロセスが複雑であるとともに、多数の三角錐状のエミッ
タチップを精度良く構成することが難しく、例えば平面
発光装置やディスプレイなどへ応用する場合に大面積化
が難しいという問題があった。また、スピント型電極
は、電界がエミッタチップの先端に集中するので、エミ
ッタチップの先端の周りの真空度が低くて残留ガスが存
在するような場合、放射された電子によって残留ガスが
プラスイオンにイオン化され、プラスイオンがエミッタ
チップの先端に衝突するから、エミッタチップの先端が
ダメージ(例えば、イオン衝撃による損傷)を受け、放
射される電子の電流密度や効率などが不安定になった
り、エミッタチップの寿命が短くなってしまうという問
題が生じる。したがって、スピント型電極では、この種
の問題の発生を防ぐために、高真空(10−5Pa〜1
−6Pa)で使用する必要があり、コストが高くなる
とともに、取扱いが面倒になるという不具合があった。
However, the Spindt-type electrode has a complicated manufacturing process, and it is difficult to form a large number of triangular pyramid-shaped emitter chips with high precision. There was a problem that it was difficult. In addition, since the electric field is concentrated on the tip of the emitter tip in the Spindt-type electrode, when the vacuum degree around the tip of the emitter tip is low and residual gas exists, the residual gas becomes positive ions due to the emitted electrons. Since the positive ions are ionized and collide with the tip of the emitter tip, the tip of the emitter tip is damaged (for example, by ion bombardment) and the current density and efficiency of the emitted electrons become unstable, There is a problem that the life of the chip is shortened. Therefore, in the Spindt-type electrode, in order to prevent the occurrence of this kind of problem, high vacuum (10 −5 Pa to 1
It is necessary to use it at 0 −6 Pa), resulting in high cost and troublesome handling.

【0004】この種の不具合を改善するために、MIM
(Metal Insulator Metal)方式やMOS(Metal Oxid
e Semiconductor)型の電界放射型電子源が提案されて
いる。前者は金属−絶縁膜−金属、後者は金属−酸化膜
−半導体の積層構造を有する平面型の電界放射型電子源
である。しかしながら、このタイプの電界放射型電子源
において電子の放出効率を高めるためには(多くの電子
を放射させるためには)、上記絶縁膜や上記酸化膜の膜
厚を薄くする必要があるが、上記絶縁膜や上記酸化膜の
膜厚を薄くしすぎると、上記積層構造の上下の電極間に
電圧を印加した時に絶縁破壊を起こす恐れがあり、この
ような絶縁破壊を防止するためには上記絶縁膜や上記酸
化膜の膜厚の薄膜化に制約があるので、電子の放出効率
(引き出し効率)をあまり高くできないという不具合が
あった。
In order to improve this kind of problem, MIM
(Metal Insulator Metal) method and MOS (Metal Oxid)
A field emission electron source of the e Semiconductor) type has been proposed. The former is a plane-type field emission electron source having a laminated structure of metal-insulating film-metal and the latter metal-oxide film-semiconductor. However, in order to increase the electron emission efficiency (in order to emit many electrons) in this type of field emission electron source, it is necessary to reduce the film thickness of the insulating film and the oxide film. If the thickness of the insulating film or the oxide film is too thin, there is a risk of causing dielectric breakdown when a voltage is applied between the upper and lower electrodes of the laminated structure. There is a problem that the electron emission efficiency (drawing efficiency) cannot be made so high because there is a restriction on thinning of the insulating film and the oxide film.

【0005】また、近年では、特開平8−250766
号公報に開示されているように、シリコン基板などの単
結晶の半導体基板を用い、その半導体基板の主表面側の
全面を陽極酸化することにより多孔質半導体層(例え
ば、ポーラスシリコン層)を形成して、その多孔質半導
体層上に金属薄膜よりなる表面電極を形成し、半導体基
板と表面電極との間に電圧を印加して電子を放射させる
ように構成した電界放射型電子源(半導体冷電子放出素
子)が提案されている。
Further, in recent years, Japanese Patent Laid-Open No. 8-250766.
As disclosed in Japanese Patent Publication (Kokai) No. Heisei, a single crystal semiconductor substrate such as a silicon substrate is used, and a porous semiconductor layer (for example, a porous silicon layer) is formed by anodizing the entire main surface side of the semiconductor substrate. Then, a surface electrode made of a metal thin film is formed on the porous semiconductor layer, and a voltage is applied between the semiconductor substrate and the surface electrode so that electrons are emitted. Electron emitting devices) have been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
特開平8−250766号公報に記載の電界放射型電子
源では、電子放出時にいわゆるポッピング現象が発生し
やすいという不具合がある。電子放出時にポッピング現
象が発生する電界放射型電子源では、放出電子量にむら
が起こりやすいので、平面発光装置やディスプレイ装置
などに応用した場合に、発光むらができてしまうという
不具合がある。
However, the field emission type electron source described in Japanese Patent Laid-Open No. 8-250766 mentioned above has a problem that a so-called popping phenomenon is likely to occur during electron emission. A field emission electron source in which a popping phenomenon occurs at the time of electron emission tends to have unevenness in the amount of emitted electrons. Therefore, when applied to a flat light emitting device, a display device, etc., there is a problem that uneven light emission occurs.

【0007】ところで、本発明者は、鋭意研究の結果、
上述の特開平8−250766号公報に記載の電界放射
型電子源では、単結晶シリコン基板の主表面側の全面を
多孔質化することにより形成された多孔質シリコン層が
電子の注入される強電界ドリフト層を構成しているの
で、強電界ドリフト層の熱伝導率がn形シリコン基板1
よりも低くて電界放射型電子源の断熱性が高く、電圧が
印加され電流が流れた場合の基板温度の上昇が比較的大
きいという知見を得た。さらに、該温度上昇により電子
が熱的に励起されるとともに単結晶半導体基板の抵抗が
下がり、電子の放出量が増えるので、これにより電子放
出時にポッピング現象が生じやすく、放出電子量にむら
が起こりやすいとの知見を得た。
By the way, as a result of earnest research, the present inventor has found that
In the field emission electron source described in the above-mentioned Japanese Patent Laid-Open No. 8-250766, the porous silicon layer formed by making the entire main surface side of the single crystal silicon substrate porous is a strong electron injection. Since the electric field drift layer is formed, the thermal conductivity of the strong electric field drift layer is n-type silicon substrate 1.
It has been found that the field emission electron source has a higher thermal insulation than the above, and the substrate temperature rises relatively when a voltage is applied and a current flows. Furthermore, since the electrons are thermally excited by the temperature rise and the resistance of the single crystal semiconductor substrate is lowered, and the electron emission amount is increased, the popping phenomenon is likely to occur at the time of electron emission, resulting in uneven emission electron amount. I got the knowledge that it was easy.

【0008】本発明は上記事由に鑑みて為されたもので
あり、その目的は、電子を安定して高効率で放出できる
低コストの電界放射型電子源およびその製造方法を提供
することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a low-cost field emission electron source capable of stably and highly efficiently emitting electrons, and a method for manufacturing the same. .

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、導電性基板と、導電性基板の一
表面側に形成された強電界ドリフト部と、該強電界ドリ
フト部上に形成された導電性薄膜よりなる表面電極とを
備え、表面電極を導電性基板に対して正極として直流電
圧を印加することにより導電性基板から注入された電子
が強電界ドリフト部をドリフトし表面電極を通して放出
される電界放射型電子源であって、強電界ドリフト部
は、導電性基板の厚み方向に沿った埋込穴が形成され高
熱伝導性を有する放熱部と、埋込穴に充填され上記電子
がドリフトするドリフト部とからなり、ドリフト部は、
粒径がナノメータサイズの導電性微粒子と、導電性微粒
子の表面を覆う絶縁膜とからなることを特徴とするもの
であり、強電界ドリフト部では導電性基板から注入され
た電子が導電性微粒子に衝突せずに絶縁膜に印加されて
いる電界で加速されてドリフトし、ドリフト部で発生し
た熱が放熱部を通して放熱されるので、電子放出時にポ
ッピング現象が発生せず安定して高効率で電子を放出す
ることができる。
In order to achieve the above object, the invention of claim 1 is a conductive substrate, a strong electric field drift portion formed on one surface side of the conductive substrate, and the strong electric field drift. Electrons injected from the conductive substrate drift in the strong electric field drift portion by applying a DC voltage with the surface electrode made of a conductive thin film formed on the portion and using the surface electrode as a positive electrode with respect to the conductive substrate. In the field emission type electron source that is emitted through the surface electrode, the strong electric field drift portion includes a heat dissipation portion having a high thermal conductivity in which an embedded hole is formed along the thickness direction of the conductive substrate and an embedded hole. The drift part is filled with the drifting electrons, and the drift part is
It is characterized by comprising conductive particles having a particle size of nanometer and an insulating film covering the surface of the conductive particles. In the strong electric field drift part, electrons injected from the conductive substrate become conductive particles. It is accelerated by the electric field applied to the insulating film without collision and drifts, and the heat generated in the drift part is radiated through the heat dissipation part, so the popping phenomenon does not occur at the time of electron emission and the electron is stable and highly efficient. Can be released.

【0010】請求項2の発明は、請求項1の発明におい
て、上記導電性基板および上記放熱部が、それぞれシリ
コンよりなるので、上記導電性基板および上記放熱部を
1枚のシリコン基板から構成することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the conductive substrate and the heat radiating portion are made of silicon, so that the conductive substrate and the heat radiating portion are formed of one silicon substrate. be able to.

【0011】請求項3の発明は、請求項1の発明におい
て、上記放熱部が、ポリシリコン若しくはアモルファス
シリコンよりなるので、導電性基板としてシリコン基板
の他にガラス基板などに導電性膜を形成した基板などを
使用することができるから、従来のように半導体基板を
多孔質化した多孔質半導体層を利用する場合やスピント
型電極に比べて、電子源の大面積化および低コスト化が
可能になる。
According to a third aspect of the present invention, in the first aspect of the present invention, since the heat dissipation portion is made of polysilicon or amorphous silicon, a conductive film is formed on a glass substrate or the like as a conductive substrate in addition to the silicon substrate. Since it is possible to use a substrate, etc., it is possible to increase the area and cost of the electron source compared to the case of using a porous semiconductor layer in which a semiconductor substrate is made porous as in the past and a Spindt-type electrode. Become.

【0012】請求項4の発明は、請求項3の発明におい
て、上記導電性基板が、絶縁性基板と絶縁性基板の一表
面上に形成された導電性膜とからなり、ドリフト部が、
導電性膜上に形成されているので、導電性基板として単
結晶シリコン基板などの半導体基板を用いる場合に比べ
て大面積化および低コスト化が可能となる。
According to a fourth aspect of the invention, in the third aspect of the invention, the conductive substrate comprises an insulating substrate and a conductive film formed on one surface of the insulating substrate, and the drift portion comprises
Since it is formed on the conductive film, the area and cost can be reduced as compared with the case where a semiconductor substrate such as a single crystal silicon substrate is used as the conductive substrate.

【0013】請求項5の発明は、請求項1ないし請求項
4の発明において、上記導電性微粒子がシリコンよりな
ることを特徴とする。
The invention of claim 5 is characterized in that, in the inventions of claims 1 to 4, the conductive fine particles are made of silicon.

【0014】請求項6の発明は、請求項1ないし請求項
4の発明において、上記導電性微粒子がカーボンよりな
ることを特徴とする。
The invention of claim 6 is characterized in that, in the inventions of claims 1 to 4, the conductive fine particles are made of carbon.

【0015】請求項7の発明は、請求項1ないし請求項
4の発明において、上記導電性微粒子が金属よりなるこ
とを特徴とする。
The invention of claim 7 is characterized in that, in the invention of claims 1 to 4, the conductive fine particles are made of metal.

【0016】請求項8の発明は、請求項4記載の電界放
射型電子源の製造方法であって、導電性基板の一表面上
に高熱伝導性を有する高熱伝導層を形成した後、高熱伝
導層上に所定形状のマスク材料層を形成し、該マスク材
料層をマスクとして異方性エッチングによって高熱伝導
層のうち上記導電性膜に重複する部位へ上記埋込穴を開
孔することにより高熱伝導層からなる上記放熱部を形成
し、その後、表面が絶縁膜により覆われた上記導電性微
粒子を上記埋込穴へ充填して上記ドリフト部を形成し、
次いで、上記ドリフト部と上記放熱部とからなる強電界
ドリフト部上に導電性薄膜よりなる表面電極を形成する
ことを特徴とし、上記マスク材料層のパターンによって
ドリフト部と放熱部とのパターン形状を制御することが
でき、電子放出時にポッピング現象が発生せず安定して
高効率で電子を放出することが可能な電界放射型電子源
を低コストで実現することができる。
The invention of claim 8 is the method for manufacturing a field emission type electron source according to claim 4, wherein a high thermal conductive layer having high thermal conductivity is formed on one surface of the conductive substrate, and then the high thermal conductive layer is formed. A mask material layer having a predetermined shape is formed on the layer, and by using the mask material layer as a mask, the embedded hole is formed in a portion of the high thermal conductive layer that overlaps with the conductive film by anisotropic etching to achieve high thermal conductivity. Forming the heat dissipation part made of a conductive layer, then forming the drift part by filling the embedded hole with the conductive fine particles whose surface is covered with an insulating film,
Next, a surface electrode made of a conductive thin film is formed on the strong electric field drift portion including the drift portion and the heat radiation portion, and the pattern shape of the drift portion and the heat radiation portion is formed by the pattern of the mask material layer. A field emission electron source that can be controlled and does not generate a popping phenomenon at the time of electron emission and can stably and efficiently emit electrons can be realized at low cost.

【0017】請求項9の発明は、請求項8の発明におい
て、上記絶縁膜を、マイクロカプセルの形成方法を利用
して上記導電性微粒子の表面を覆うように形成するの
で、上記埋込穴への表面が絶縁膜により覆われた上記導
電性微粒子の充填率を高めることが可能になる。
According to a ninth aspect of the present invention, in the eighth aspect, the insulating film is formed so as to cover the surface of the conductive fine particles by using a method of forming a microcapsule. It is possible to increase the filling rate of the conductive fine particles whose surface is covered with an insulating film.

【0018】[0018]

【発明の実施の形態】(実施形態1)図1に本実施形態
の電界放射型電子源10の概略構成図を、図2および図
3に電界放射型電子源10の製造方法における主要工程
断面図を示す。なお、本実施形態では、導電性基板とし
て抵抗率が導体の抵抗率に比較的近い単結晶のn形シリ
コン基板1(例えば、抵抗率が略0.1Ωcmの(10
0)基板)を用いている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 is a schematic configuration diagram of a field emission electron source 10 of the present embodiment, and FIGS. 2 and 3 are cross-sectional views of main steps in a method for manufacturing the field emission electron source 10. The figure is shown. In this embodiment, a single crystal n-type silicon substrate 1 having a resistivity relatively close to that of a conductor (for example, a resistivity of about 0.1 Ωcm (10
0) substrate) is used.

【0019】本実施形態の電界放射型電子源10は、図
1に示すように、n形シリコン基板1の主表面側に強電
界ドリフト部6が形成され、強電界ドリフト部6上に導
電性薄膜(例えば、金薄膜)よりなる表面電極7が形成
されている。また、n形シリコン基板1の裏面にはオー
ミック電極2が形成されている。
In the field emission electron source 10 of this embodiment, as shown in FIG. 1, the strong electric field drift portion 6 is formed on the main surface side of the n-type silicon substrate 1, and the conductive electric field is formed on the strong electric field drift portion 6. A surface electrode 7 made of a thin film (for example, a gold thin film) is formed. An ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 1.

【0020】この電界放射型電子源10では、表面電極
7を真空中に配置するとともに表面電極7に対向してコ
レクタ電極(図示せず)を配置し、表面電極7をオーミ
ック電極2に対して正極として直流電圧を印加するとと
もに、コレクタ電極を表面電極7に対して正極として直
流電圧を印加することにより、n形シリコン基板1から
強電界ドリフト部6へ注入された電子が強電界ドリフト
部6をドリフトし表面電極7を通して放出される。ここ
において、表面電極7とオーミック電極2との間に流れ
る電流をダイオード電流と称し、コレクタ電極と表面電
極7との間に流れる電流を放出電子電流と称し、ダイオ
ード電流に対する放出電子電流が大きいほど電子の放出
効率が高くなる。なお、本実施形態の電界放射型電子源
10では、表面電極7とオーミック電極2との間の直流
電圧を10〜20V程度の低電圧としても電子を放出さ
せることができる。
In this field emission electron source 10, the surface electrode 7 is arranged in a vacuum, and a collector electrode (not shown) is arranged so as to face the surface electrode 7, and the surface electrode 7 is arranged with respect to the ohmic electrode 2. Electrons injected from the n-type silicon substrate 1 into the strong electric field drift portion 6 are applied by applying a direct current voltage as the positive electrode and a direct current voltage with the collector electrode to the surface electrode 7 as the positive electrode. And is emitted through the surface electrode 7. Here, the current flowing between the surface electrode 7 and the ohmic electrode 2 is referred to as a diode current, and the current flowing between the collector electrode and the surface electrode 7 is referred to as an emission electron current. The electron emission efficiency is increased. In addition, in the field emission electron source 10 of the present embodiment, electrons can be emitted even when the DC voltage between the surface electrode 7 and the ohmic electrode 2 is a low voltage of about 10 to 20V.

【0021】本実施形態における強電界ドリフト部6
は、導電性基板たるn形シリコン基板1の厚み方向に沿
った埋込穴63が形成され高熱伝導性を有する放熱部6
2と、埋込穴63に充填され上記電子がドリフトするド
リフト部61とからなる。ここにおいて、放熱部62
は、n形シリコン基板1の一部により構成されており、
n形シリコン基板1の厚み方向に直交する断面が格子状
(網目状)に形成されている。要するに、ドリフト部6
1は、放熱部62の網目の中に満たされており、n形シ
リコン基板1の厚み方向に平行な角柱状に形成されてい
る。なお、放熱部62はドリフト部61よりも熱伝導性
が良い。
The strong electric field drift portion 6 in this embodiment.
Is a heat dissipation portion 6 having a high thermal conductivity in which an embedded hole 63 is formed along the thickness direction of the n-type silicon substrate 1 which is a conductive substrate.
2 and a drift portion 61 filled in the embedding hole 63 and in which the electrons drift. Here, the heat dissipation portion 62
Is composed of a part of the n-type silicon substrate 1,
A cross section orthogonal to the thickness direction of the n-type silicon substrate 1 is formed in a lattice shape (mesh shape). In short, the drift unit 6
1 is filled in the mesh of the heat dissipation portion 62, and is formed in a prism shape parallel to the thickness direction of the n-type silicon substrate 1. The heat dissipation part 62 has better thermal conductivity than the drift part 61.

【0022】ところで、ドリフト部61は、粒径がナノ
メータサイズの導電性微粒子と、導電性微粒子の表面を
覆う絶縁膜とからなる。すなわち、ドリフト部61は、
表面を上記導電性微粒子の粒径よりも小さな膜厚の絶縁
膜により覆われた上記導電性微粒子の集合からなる。こ
こにおいて、本実施形態では、上記導電性微粒子とし
て、粒径が略10nmのカーボン(炭素)を採用してい
るが、シリコンや金属(例えば、チタン、クロム、ニッ
ケル、鉄、コバルト、銅、銀、亜鉛、モリブデン、タン
グステン、イリジウム、白金、金、錫、アンチモンな
ど)を採用してもよい。また、上記絶縁膜としては、高
分子樹脂のような有機物を採用している。
By the way, the drift portion 61 is composed of conductive fine particles having a particle size of nanometer size, and an insulating film covering the surface of the conductive fine particles. That is, the drift unit 61
The surface is composed of a collection of the conductive fine particles whose surface is covered with an insulating film having a film thickness smaller than the particle size of the conductive fine particles. Here, in the present embodiment, carbon (carbon) having a particle size of about 10 nm is adopted as the conductive fine particles, but silicon or metal (for example, titanium, chromium, nickel, iron, cobalt, copper, silver) is used. , Zinc, molybdenum, tungsten, iridium, platinum, gold, tin, antimony, etc.) may be employed. Further, an organic material such as a polymer resin is adopted as the insulating film.

【0023】しかして、ドリフト部61では、n形シリ
コン基板1から注入された電子が導電性微粒子に衝突せ
ずに絶縁膜に印加されている電界で加速されてドリフト
し、ドリフト部61で発生した熱が放熱部62を通して
放熱されるので、電子放出時にポッピング現象が発生せ
ず安定して高効率で電子を放出することができる。
In the drift portion 61, however, the electrons injected from the n-type silicon substrate 1 do not collide with the conductive fine particles but are accelerated and drifted by the electric field applied to the insulating film, and are generated in the drift portion 61. Since the generated heat is radiated through the heat radiating portion 62, the popping phenomenon does not occur at the time of electron emission, and the electrons can be emitted stably and highly efficiently.

【0024】なお、本実施形態では、導電性基板として
n形シリコン基板1(抵抗率が0.1Ωcmの(10
0)基板)を用いているが、導電性基板はn形シリコン
基板に限定されるものではなく、例えば、ガラス基板な
どの絶縁性基板の一表面上に導電性膜(クロム膜やIT
O膜)を形成した基板や、金属基板などを用いてもよ
く、n形シリコン基板1などの半導体基板を用いる場合
に比べて電子源の大面積化および低コスト化が可能にな
る。なお、本実施形態では表面電極7を金薄膜により構
成しているが、表面電極7の材料は金に限定されるもの
ではなく、仕事関数の小さな材料であればよい。また、
表面電極7は、厚み方向に積層された少なくとも二層の
薄膜電極層により構成してもよい。二層の薄膜電極層に
より構成する場合には、上層の薄膜電極層の材料として
例えば金などを採用し、下層の薄膜電極層(強電界ドリ
フト部6側の薄膜電極層)の材料として例えば、クロ
ム、ニッケル、白金、チタン、イリジウムなどを採用す
ればよい。
In this embodiment, an n-type silicon substrate 1 (having a resistivity of 0.1 Ωcm (10
0) substrate) is used, the conductive substrate is not limited to an n-type silicon substrate. For example, a conductive film (chrome film or IT film) is formed on one surface of an insulating substrate such as a glass substrate.
A substrate on which an O film) is formed, a metal substrate, or the like may be used, and the area of the electron source can be increased and the cost can be reduced as compared with the case of using a semiconductor substrate such as the n-type silicon substrate 1. In the present embodiment, the surface electrode 7 is composed of a gold thin film, but the material of the surface electrode 7 is not limited to gold, and any material having a small work function may be used. Also,
The surface electrode 7 may be composed of at least two thin film electrode layers stacked in the thickness direction. When the thin film electrode layer is composed of two layers, for example, gold or the like is used as the material of the upper thin film electrode layer, and as the material of the lower thin film electrode layer (thin film electrode layer on the strong electric field drift portion 6 side), for example, Chromium, nickel, platinum, titanium, iridium or the like may be adopted.

【0025】以下、上述の電界放射型電子源10の製造
方法について図2および図3を参照しながら説明する。
A method of manufacturing the above-mentioned field emission type electron source 10 will be described below with reference to FIGS. 2 and 3.

【0026】まず、n形シリコン基板1の裏面にオーミ
ック電極2を形成することによって、図2(a)に示す
構造が得られる。その後、n形シリコン基板1の主表面
側を酸化してシリコン酸化膜3を形成することによって
図2(b)に示す構造が得られる。なお、シリコン酸化
膜3を形成する代わりに、n形シリコン基板1の主表面
側にシリコン窒化膜を形成してもよい。
First, by forming the ohmic electrode 2 on the back surface of the n-type silicon substrate 1, the structure shown in FIG. 2A is obtained. Thereafter, the main surface side of n-type silicon substrate 1 is oxidized to form silicon oxide film 3, whereby the structure shown in FIG. 2B is obtained. Instead of forming the silicon oxide film 3, a silicon nitride film may be formed on the main surface side of the n-type silicon substrate 1.

【0027】次に、シリコン酸化膜3上にフォトレジス
ト層(図示せず)を塗布形成し、図4に示すようなフォ
トマスクMを利用し上記フォトレジスト層を格子状のパ
ターンにパターニングした後、該フォトレジスト層をマ
スクとして反応性イオンエッチング(RIE)装置など
によってシリコン酸化膜3をエッチングし、さらにその
後、上記フォトレジスト層を除去することによって図2
(c)に示す構造が得られる。なお、上記フォトマスク
Mは、上記フォトレジストの開口の平面形状が微小な略
正方形になるように構成されているが、上記フォトレジ
スト層の開口の平面形状が正方形以外の微小な多角形
状、微小な円形状、微小な星形などになるように構成し
てもよい。
Next, a photoresist layer (not shown) is formed on the silicon oxide film 3 by coating, and the photoresist layer is patterned into a grid pattern using a photomask M as shown in FIG. 2, the silicon oxide film 3 is etched by a reactive ion etching (RIE) device or the like using the photoresist layer as a mask, and then the photoresist layer is removed.
The structure shown in (c) is obtained. Although the photoresist mask M is configured so that the planar shape of the opening of the photoresist is a minute and substantially square shape, the planar shape of the opening of the photoresist layer is a minute polygonal shape other than a square shape and a minute shape. It may be configured to have a circular shape, a minute star shape, or the like.

【0028】次に、マスク材料層たるシリコン酸化膜3
をマスクとして反応性イオンエッチング装置などによっ
てn形シリコン基板1を所定深さまで異方性エッチング
してn形シリコン基板1の厚み方向に沿った縦穴よりな
る上記埋込穴63を形成することによって図2(d)に
示す構造が得られる。ここに、図2(d)中の62はn
形シリコン基板1の一部よりなる放熱部を示す。この放
熱部62は、n形シリコン基板1の厚み方向(図2
(d)における上下方向)に直交する断面が格子状に形
成される。
Next, the silicon oxide film 3 as a mask material layer
The n-type silicon substrate 1 is anisotropically etched to a predetermined depth by a reactive ion etching device or the like using the mask as a mask to form the embedded holes 63 formed by vertical holes along the thickness direction of the n-type silicon substrate 1. The structure shown in 2 (d) is obtained. Here, 62 in FIG. 2D is n
1 shows a heat radiating portion formed of a part of the silicon substrate 1. This heat dissipation portion 62 is formed in the thickness direction of the n-type silicon substrate 1 (see FIG. 2).
A cross section orthogonal to (the vertical direction in (d)) is formed in a lattice shape.

【0029】その後、上記導電性微粒子を高分子樹脂か
らなる絶縁膜にてカプセル化した微粒子が分散されたア
セトンなどの有機溶剤(あるいは水)よりなる溶液を回
転塗布(スピンコート)することによって、該溶液を上
記埋込穴63に充填することにより、図3(a)に示す
構造が得られる。ここに、図3(a)中の60は上記埋
込穴63に充填された上記溶液を示す。なお、本実施形
態では、上記絶縁膜を、マイクロカプセルの形成方法を
利用して上記導電性微粒子の表面を覆うように形成して
いるので、上記埋込穴63への表面が絶縁膜により覆わ
れた上記導電性微粒子の充填率を高めることが可能にな
る。
Then, a solution of an organic solvent (or water) such as acetone in which the fine particles obtained by encapsulating the conductive fine particles with an insulating film made of a polymer resin is dispersed is spin-coated by spin coating. By filling the embedding hole 63 with the solution, the structure shown in FIG. 3A is obtained. Here, 60 in FIG. 3A shows the solution filled in the embedding hole 63. In this embodiment, since the insulating film is formed so as to cover the surface of the conductive fine particles by using the method of forming the microcapsules, the surface of the embedding hole 63 is covered with the insulating film. It is possible to increase the filling rate of the conductive fine particles that have been removed.

【0030】次に、100℃程度でベーキング(乾燥)
して不要な上記有機溶剤(あるいは水分)を取り除く
(飛ばす)ことによってドリフト部61が形成され(つ
まり、強電界ドリフト部6が形成され)、続いて、ドリ
フト部61と放熱部62とからなる強電界ドリフト部6
上へ導電性薄膜(例えば、金薄膜)からなる表面電極7
を例えば蒸着法によって形成することによって図3
(b)に示す構造が得られる。ここにおいて、表面電極
7の膜厚は10nmとしたが、この膜厚は特に限定する
ものではなく、表面電極7となる導電性薄膜(例えば、
金薄膜)の形成方法も蒸着法に限定されるものではな
く、例えばスパッタ法を用いてもよい。なお、電界放射
型電子源10は表面電極7を正極(アノード)とし、オ
ーミック電極2を負極(カソード)とするダイオードが
構成される。この正極と負極との間に直流電圧を印加し
たときに流れる電流がダイオード電流である。
Next, baking (drying) at about 100 ° C.
Then, the drift portion 61 is formed (that is, the strong electric field drift portion 6 is formed) by removing (skipping) the unnecessary organic solvent (or water), and then the drift portion 61 and the heat dissipation portion 62 are formed. Strong electric field drift section 6
Surface electrode 7 made of a conductive thin film (eg, gold thin film)
Is formed by, for example, a vapor deposition method.
The structure shown in (b) is obtained. Here, the film thickness of the surface electrode 7 is set to 10 nm, but this film thickness is not particularly limited, and a conductive thin film (for example,
The method for forming the gold thin film is not limited to the vapor deposition method, and for example, the sputtering method may be used. The field emission electron source 10 is a diode having the surface electrode 7 as a positive electrode (anode) and the ohmic electrode 2 as a negative electrode (cathode). The current that flows when a DC voltage is applied between the positive electrode and the negative electrode is the diode current.

【0031】上述の製造方法により製造された電界放射
型電子源10は、放出電子電流の経時変化が少なくてポ
ッピングノイズがなく、電子が安定して高効率で放出さ
れる。また、この電界放射型電子源10は、電子放出特
性(例えば、電子放出電流)の真空度依存性が小さく、
低真空度でも良好な電子放出特性が得られたので、従来
のような高真空で使用する必要がないから、電界放射型
電子源10を利用する装置の低コスト化が図れるととも
に取り扱いが容易になる。
The field emission electron source 10 manufactured by the above-described manufacturing method has a small change in the emitted electron current with time, has no popping noise, and stably emits electrons with high efficiency. Further, the field emission electron source 10 has a small degree of vacuum dependence of electron emission characteristics (for example, electron emission current),
Since good electron emission characteristics were obtained even at a low degree of vacuum, there is no need to use it in a high vacuum as in the prior art, so that the cost of the device using the field emission electron source 10 can be reduced and the handling is easy. Become.

【0032】ところで、本実施形態の電界放射型電子源
10における強電界ドリフト部6は、マスク材料層たる
シリコン酸化膜3をマスクとした異方性エッチングによ
って埋込穴63を形成した後、埋込穴63へ導電性微粒
子を充填してドリフト部61を形成しているので、上記
マスク材料層のパターンによってドリフト部61と放熱
部62とのパターン形状を制御することができ、電子放
出時にポッピング現象が発生せず安定して高効率で電子
を放出することが可能な電界放射型電子源を低コストで
実現することができ、また、電気伝導性の制御性および
構造的・熱的安定性からみれば、従来のように単結晶シ
リコン基板の主表面側の全面を多孔質化することにより
得られた強電界ドリフト層よりも優れた性質をもつと考
えられる。
By the way, the strong electric field drift portion 6 in the field emission electron source 10 of the present embodiment is formed by forming the embedding hole 63 by anisotropic etching using the silicon oxide film 3 which is a mask material layer as a mask, and then burying it. Since the drift portion 61 is formed by filling the conductive holes in the insertion hole 63, the pattern shape of the drift portion 61 and the heat radiation portion 62 can be controlled by the pattern of the mask material layer, and the popping occurs at the time of electron emission. It is possible to realize a field emission electron source that can emit electrons stably and highly efficiently without causing a phenomenon at low cost, controllability of electrical conductivity, and structural and thermal stability. From the viewpoint, it is considered that the single crystal silicon substrate has a property superior to that of the strong electric field drift layer obtained by making the entire main surface side of the single crystal silicon substrate porous.

【0033】すなわち、本実施形態の電界放射型電子源
10では、次のようなモデルで電子放出が起こると考え
られる。表面電極7をn形シリコン基板1(オーミック
電極2)に対して正極として印加する直流電圧が所定値
(臨界値)に達すると、n形シリコン基板1側から強電
界ドリフト部6へ熱的励起により電子が注入される。一
方、強電界ドリフト部6のドリフト部61には粒径がナ
ノメータサイズの導電性微粒子が多数存在し、各導電性
微粒子の表面には導電性微粒子の粒径(本実施形態では
約10nm)よりも小さな膜厚の絶縁膜が形成されてい
るので、強電界ドリフト部6に印加された電界はほとん
ど導電性微粒子の表面に形成された絶縁膜にかかるか
ら、注入された電子は当該絶縁膜にかかっている強電界
により加速されドリフト部61内を表面に向かってドリ
フトする。ここに、導電性微粒子の粒径は電子の平均自
由行程(シリコン中の電子の平均自由行程は50nm程
度といわれている)よりも十分に小さいので、電子は導
電性微粒子にほとんど衝突することなくドリフト部61
の表面に到達する。要するに、ドリフト部61に注入さ
れた電子は、衝突による散乱を起こすことなく、導電性
微粒子の表面の絶縁膜にかかっている電界で加速され
て、次の導電性微粒子の絶縁膜に突入するという現象を
繰り返してエネルギが増大していく。したがって、ドリ
フト部61の表面に到達した電子はホットエレクトロン
であって、ホットエレクトロンは熱平衡状態よりも数k
T以上のエネルギを有するので、表面電極7を容易にト
ンネルし真空中に放出される。
That is, in the field emission electron source 10 of this embodiment, it is considered that electron emission occurs in the following model. When the DC voltage applied to the surface electrode 7 as a positive electrode with respect to the n-type silicon substrate 1 (ohmic electrode 2) reaches a predetermined value (critical value), the n-type silicon substrate 1 side is thermally excited to the strong electric field drift portion 6. Causes electrons to be injected. On the other hand, in the drift portion 61 of the strong electric field drift portion 6, a large number of conductive fine particles having a particle size of nanometer are present, and the surface of each conductive fine particle is smaller than the particle diameter of the conductive fine particles (about 10 nm in this embodiment). Since an insulating film having a small thickness is formed, most of the electric field applied to the strong electric field drift portion 6 is applied to the insulating film formed on the surface of the conductive fine particles. It is accelerated by the strong electric field applied and drifts in the drift portion 61 toward the surface. Since the particle size of the conductive fine particles is sufficiently smaller than the average free path of electrons (the average free path of electrons in silicon is said to be about 50 nm), the electrons hardly collide with the conductive fine particles. Drift part 61
To reach the surface of. In short, the electrons injected into the drift portion 61 are accelerated by the electric field applied to the insulating film on the surface of the conductive fine particles without being scattered by collision, and enter the insulating film of the next conductive fine particle. The energy is increased by repeating the phenomenon. Therefore, the electrons that have reached the surface of the drift portion 61 are hot electrons, and the hot electrons are several ks more than in the thermal equilibrium state.
Since it has energy of T or more, it easily tunnels through the surface electrode 7 and is discharged into a vacuum.

【0034】ところで、本実施形態の電界放射型電子源
10では、ポッピングノイズが発生せずに高効率で安定
して電子を放出することができるが、これは、電圧の印
加により強電界ドリフト部6のドリフト部61に発生し
た熱が放熱部62を伝導して外部に放出され、温度上昇
が抑制されるからであると推考される。
By the way, in the field emission type electron source 10 of the present embodiment, electrons can be emitted with high efficiency and stability without generating popping noise. It is considered that this is because the heat generated in the drift portion 61 of No. 6 is conducted through the heat radiation portion 62 and is released to the outside, and the temperature rise is suppressed.

【0035】以上をまとめると、強電界ドリフト部6
は、強電界が存在しうる半絶縁性を備え、また、電子散
乱が少なくドリフト長が大きく、さらに、ダイオード電
流の熱暴走を抑えるだけの熱伝導性を有するので、高効
率で安定して電子を放出することができるのだと考えら
れる。
In summary, the strong electric field drift section 6
Has a semi-insulating property in which a strong electric field can exist, has a small drift of electrons, has a large drift length, and has thermal conductivity enough to suppress thermal runaway of the diode current. Is believed to be able to be released.

【0036】ところで、本実施形態では、上述のよう
に、導電性基板たるn形シリコン基板1の主表面側の部
分が放熱部62を構成しているが、n形シリコン基板1
上に単結晶シリコン層あるいはポリシリコン層よりなり
高熱伝導性を有する高熱伝導層を形成し、該高熱伝導層
に上記埋込穴63を形成することによって該高熱伝導層
からなる放熱部62を構成してもよい。
By the way, in the present embodiment, as described above, the portion on the main surface side of the n-type silicon substrate 1 which is a conductive substrate constitutes the heat dissipation portion 62, but the n-type silicon substrate 1
A high heat conductive layer having a high heat conductivity made of a single crystal silicon layer or a polysilicon layer is formed thereon, and the embedding hole 63 is formed in the high heat conductive layer to form the heat dissipation portion 62 made of the high heat conductive layer. You may.

【0037】(実施形態2)本実施形態の電界放射型電
子源10は図5に示すような構成であって、その基本構
成は実施形態1と略同じなので実施形態1と相違する点
についてのみ説明する。
(Embodiment 2) The field emission electron source 10 of this embodiment has a structure as shown in FIG. 5, and the basic structure thereof is substantially the same as that of the first embodiment, so only the points different from the first embodiment will be described. explain.

【0038】ところで、実施形態1では、導電性基板と
してn形シリコン基板を採用していたが、本実施形態で
は、導電性基板を、ガラスよりなる絶縁性基板11と、
絶縁性基板11の一表面上に形成された導電性材料より
なる下部電極12とで構成している。なお、下部電極1
2は、実施形態1におけるn形シリコン基板1とドリフ
ト部61との界面近傍に相当する部位に形成されてい
る。したがって、下部電極12は、マトリクス状に配設
されている。
By the way, in the first embodiment, the n-type silicon substrate is adopted as the conductive substrate, but in the present embodiment, the conductive substrate is the insulating substrate 11 made of glass,
The insulating substrate 11 and the lower electrode 12 made of a conductive material are formed on one surface of the insulating substrate 11. The lower electrode 1
2 is formed in a portion corresponding to the vicinity of the interface between the n-type silicon substrate 1 and the drift portion 61 in the first embodiment. Therefore, the lower electrodes 12 are arranged in a matrix.

【0039】本実施形態の電界放射型電子源10は、図
5に示すように、一表面上に下部電極12が形成された
絶縁性基板11の上記一表面側に強電界ドリフト部6が
形成され、強電界ドリフト部6上に導電性薄膜(例え
ば、金薄膜)よりなる表面電極7が形成されている。
In the field emission electron source 10 of this embodiment, as shown in FIG. 5, the strong electric field drift portion 6 is formed on the one surface side of the insulating substrate 11 having the lower electrode 12 formed on the one surface. The surface electrode 7 made of a conductive thin film (for example, a gold thin film) is formed on the strong electric field drift portion 6.

【0040】なお、本実施形態の電界放射型電子源10
では、表面電極7を真空中に配置するとともに表面電極
7に対向してコレクタ電極(図示せず)を配置し、表面
電極7を下部電極12に対して正極として直流電圧を印
加するとともに、コレクタ電極を表面電極7に対して正
極として直流電圧を印加することにより、n形シリコン
基板1から強電界ドリフト部6へ注入された電子が強電
界ドリフト部6をドリフトし表面電極7を通して放出さ
れる。ここにおいて、表面電極7と下部電極12との間
に流れる電流をダイオード電流と称し、コレクタ電極と
表面電極7との間に流れる電流を放出電子電流と称し、
ダイオード電流に対する放出電子電流が大きいほど電子
の放出効率が高くなる。なお、本実施形態の電界放射型
電子源10では、表面電極7と下部電極12との間の直
流電圧を10〜20V程度の低電圧としても電子を放出
させることができる。
The field emission electron source 10 of this embodiment is used.
Then, the surface electrode 7 is arranged in a vacuum, and a collector electrode (not shown) is arranged so as to face the surface electrode 7, and a DC voltage is applied to the lower electrode 12 with the surface electrode 7 as a positive electrode. By applying a DC voltage with the electrode serving as a positive electrode with respect to the surface electrode 7, electrons injected from the n-type silicon substrate 1 into the strong electric field drift portion 6 drift in the strong electric field drift portion 6 and are emitted through the surface electrode 7. . Here, the current flowing between the surface electrode 7 and the lower electrode 12 is called a diode current, the current flowing between the collector electrode and the surface electrode 7 is called an emission electron current,
The larger the emitted electron current with respect to the diode current, the higher the electron emission efficiency. In addition, in the field emission electron source 10 of the present embodiment, electrons can be emitted even when the DC voltage between the surface electrode 7 and the lower electrode 12 is a low voltage of about 10 to 20V.

【0041】本実施形態における強電界ドリフト部6
は、導電性基板たるn形シリコン基板1の厚み方向に沿
った埋込穴63が形成され高熱伝導性を有する高熱伝導
層(例えば、ポリシリコン層若しくはアモルファスシリ
コン層)よりなる放熱部62と、埋込穴63に充填され
上記電子がドリフトするドリフト部61とからなる。こ
こにおいて、放熱部62は、n形シリコン基板1の厚み
方向に直交する断面が格子状(網目状)に形成されてい
る。要するに、ドリフト部61は、放熱部62の網目の
中に満たされており、n形シリコン基板1の厚み方向に
平行な角柱状に形成されている。なお、放熱部62はド
リフト部61よりも熱伝導性が良い。
Strong electric field drift section 6 in the present embodiment.
Is a heat dissipation portion 62 formed of a high thermal conductivity layer (for example, a polysilicon layer or an amorphous silicon layer) having a high thermal conductivity in which a buried hole 63 is formed along the thickness direction of the n-type silicon substrate 1 which is a conductive substrate. The buried portion 63 is filled with a drift portion 61 in which the electrons drift. Here, in the heat dissipation portion 62, a cross section orthogonal to the thickness direction of the n-type silicon substrate 1 is formed in a lattice shape (mesh shape). In short, the drift portion 61 is filled in the mesh of the heat dissipation portion 62 and is formed in a prism shape parallel to the thickness direction of the n-type silicon substrate 1. The heat dissipation part 62 has better thermal conductivity than the drift part 61.

【0042】ところで、ドリフト部61は、実施形態1
と同様に、粒径がナノメータサイズの導電性微粒子と、
導電性微粒子の表面を覆う絶縁膜とからなる。すなわ
ち、ドリフト部61は、表面を上記導電性微粒子の粒径
よりも小さな膜厚の絶縁膜により覆われた上記導電性微
粒子の集合からなる。
By the way, the drift portion 61 is the same as that of the first embodiment.
In the same manner as the conductive fine particles having a particle size of nanometer,
And an insulating film covering the surface of the conductive fine particles. That is, the drift portion 61 is composed of a collection of the conductive fine particles whose surface is covered with an insulating film having a film thickness smaller than the particle diameter of the conductive fine particles.

【0043】しかして、ドリフト部61では、n形シリ
コン基板1から注入された電子が導電性微粒子に衝突せ
ずに絶縁膜に印加されている電界で加速されてドリフト
し、ドリフト部61で発生した熱が放熱部62を通して
放熱されるので、電子放出時にポッピング現象が発生せ
ず安定して高効率で電子を放出することができる。
In the drift portion 61, however, the electrons injected from the n-type silicon substrate 1 do not collide with the conductive fine particles but are accelerated by the electric field applied to the insulating film and drift, so that they are generated in the drift portion 61. Since the generated heat is radiated through the heat radiating portion 62, the popping phenomenon does not occur at the time of electron emission, and the electrons can be emitted stably and highly efficiently.

【0044】以下、製造方法について図6および図7を
参照しながら説明する。
The manufacturing method will be described below with reference to FIGS. 6 and 7.

【0045】まず、ガラスからなる絶縁性基板11の一
表面上に所定形状にパターニングされた導電性材料より
なる下部電極12を形成することによって、図6(a)
に示す構造が得られる。その後、絶縁性基板11の上記
一表面側の全面にポリシリコン薄膜よりなる高熱伝導層
4を形成することによって図6(b)に示す構造が得ら
れる。なお、ポリシリコン薄膜の代わりにアモルファス
シリコン薄膜を形成してもよい。
First, by forming the lower electrode 12 made of a conductive material patterned in a predetermined shape on one surface of the insulating substrate 11 made of glass, FIG.
The structure shown in is obtained. After that, a high thermal conductive layer 4 made of a polysilicon thin film is formed on the entire surface on the one surface side of the insulating substrate 11, so that the structure shown in FIG. 6B is obtained. An amorphous silicon thin film may be formed instead of the polysilicon thin film.

【0046】次に、高熱伝導層4上にシリコン酸化膜3
を形成した後、シリコン酸化膜3上にフォトレジスト層
(図示せず)を塗布形成し、図4に示すようなフォトマ
スクMを利用し上記フォトレジスト層を格子状のパター
ンにパターニングした後、該フォトレジスト層をマスク
として反応性イオンエッチング(RIE)装置などによ
ってシリコン酸化膜3をエッチングし、さらにその後、
上記フォトレジスト層を除去することによって図6
(c)に示す構造が得られる。なお、本実施形態では、
上記フォトマスクMは、上記フォトレジスト層の開口が
下部電極12上に位置するように構成されている。な
お、シリコン酸化膜3の代わりにシリコン窒化膜を形成
してもよい。
Next, the silicon oxide film 3 is formed on the high thermal conductive layer 4.
Then, a photoresist layer (not shown) is formed on the silicon oxide film 3 by coating, and the photoresist layer is patterned into a grid pattern using a photomask M as shown in FIG. Using the photoresist layer as a mask, the silicon oxide film 3 is etched by a reactive ion etching (RIE) device or the like, and then,
By removing the photoresist layer, FIG.
The structure shown in (c) is obtained. In this embodiment,
The photomask M is configured such that the opening of the photoresist layer is located on the lower electrode 12. A silicon nitride film may be formed instead of the silicon oxide film 3.

【0047】次に、マスク材料層たるシリコン酸化膜3
をマスクとして反応性イオンエッチング装置などによっ
て高熱伝導層4を下部電極12の表面に達する深さまで
異方性エッチングしてn形シリコン基板1の厚み方向に
沿った縦穴よりなる上記埋込穴63を形成することによ
って、高熱伝導層4からなる放熱部62が形成され、図
6(d)に示す構造が得られる。ここに、この放熱部6
2は、n形シリコン基板1の厚み方向に直交する断面が
格子状に形成される。
Next, the silicon oxide film 3 as a mask material layer
The high thermal conductive layer 4 is anisotropically etched to a depth reaching the surface of the lower electrode 12 by using a reactive ion etching device or the like with the mask as a mask to form the embedded hole 63 formed of a vertical hole along the thickness direction of the n-type silicon substrate 1. By forming, the heat dissipation part 62 made of the high thermal conductive layer 4 is formed, and the structure shown in FIG. 6D is obtained. Here, this heat dissipation part 6
2 has a lattice-shaped cross section orthogonal to the thickness direction of the n-type silicon substrate 1.

【0048】その後、上記導電性微粒子を高分子樹脂か
らなる絶縁膜にてカプセル化した微粒子が分散されたア
セトンなどの有機溶剤(あるいは水)よりなる溶液を回
転塗布(スピンコート)することによって、該溶液を上
記埋込穴63に充填することにより、図7(a)に示す
構造が得られる。ここに、図7(a)中の60は上記埋
込穴63に充填された上記溶液を示す。なお、本実施形
態では、上記絶縁膜を、マイクロカプセルの形成方法を
利用して上記導電性微粒子の表面を覆うように形成して
いるので、上記埋込穴63への表面が絶縁膜により覆わ
れた上記導電性微粒子の充填率を高めることが可能にな
る。
Then, a solution of an organic solvent (or water) in which fine particles obtained by encapsulating the conductive fine particles with an insulating film made of a polymer resin is dispersed is spin-coated. By filling the embedding hole 63 with the solution, the structure shown in FIG. 7A is obtained. Here, 60 in FIG. 7A indicates the solution filled in the embedding hole 63. In this embodiment, since the insulating film is formed so as to cover the surface of the conductive fine particles by using the method of forming the microcapsules, the surface of the embedding hole 63 is covered with the insulating film. It is possible to increase the filling rate of the conductive fine particles that have been removed.

【0049】次に、100℃程度でベーキング(乾燥)
して不要な上記有機溶剤(あるいは水分)を取り除く
(飛ばす)ことによってドリフト部61が形成され(つ
まり、強電界ドリフト部6が形成され)、続いて、ドリ
フト部61と放熱部62とからなる強電界ドリフト部6
上へ導電性薄膜(例えば、金薄膜)からなる表面電極7
を例えば蒸着法によって形成することによって図7
(b)に示す構造が得られる。
Next, baking (drying) at about 100 ° C.
Then, the drift portion 61 is formed (that is, the strong electric field drift portion 6 is formed) by removing (skipping) the unnecessary organic solvent (or water), and then the drift portion 61 and the heat dissipation portion 62 are formed. Strong electric field drift section 6
Surface electrode 7 made of a conductive thin film (eg, gold thin film)
Is formed by, for example, a vapor deposition method.
The structure shown in (b) is obtained.

【0050】上述の製造方法により製造された電界放射
型電子源10は、放出電子電流の経時変化が少なくてポ
ッピングノイズがなく、電子が安定して高効率で放出さ
れる。また、この電界放射型電子源10は、電子放出特
性(例えば、電子放出電流)の真空度依存性が小さく、
低真空度でも良好な電子放出特性が得られたので、従来
のような高真空で使用する必要がないから、電界放射型
電子源10を利用する装置の低コスト化が図れるととも
に取り扱いが容易になる。
In the field emission type electron source 10 manufactured by the above manufacturing method, the emitted electron current changes little with time, there is no popping noise, and electrons are stably and efficiently emitted. Further, the field emission electron source 10 has a small degree of vacuum dependence of electron emission characteristics (for example, electron emission current),
Since good electron emission characteristics were obtained even at a low degree of vacuum, there is no need to use it in a high vacuum as in the prior art, so that the cost of the device using the field emission electron source 10 can be reduced and the handling is easy. Become.

【0051】[0051]

【発明の効果】請求項1の発明は、導電性基板と、導電
性基板の一表面側に形成された強電界ドリフト部と、該
強電界ドリフト部上に形成された導電性薄膜よりなる表
面電極とを備え、表面電極を導電性基板に対して正極と
して直流電圧を印加することにより導電性基板から注入
された電子が強電界ドリフト部をドリフトし表面電極を
通して放出される電界放射型電子源であって、強電界ド
リフト部が、導電性基板の厚み方向に沿った埋込穴が形
成され高熱伝導性を有する放熱部と、埋込穴に充填され
上記電子がドリフトするドリフト部とからなり、ドリフ
ト部が、粒径がナノメータサイズの導電性微粒子と、導
電性微粒子の表面を覆う絶縁膜とからなるものであり、
強電界ドリフト部では導電性基板から注入された電子が
導電性微粒子に衝突せずに絶縁膜に印加されている電界
で加速されてドリフトし、ドリフト部で発生した熱が放
熱部を通して放熱されるので、電子放出時にポッピング
現象が発生せず安定して高効率で電子を放出することが
できるという効果がある。
According to the first aspect of the present invention, a surface comprising a conductive substrate, a strong electric field drift portion formed on one surface side of the conductive substrate, and a conductive thin film formed on the strong electric field drift portion. A field emission electron source including an electrode and electrons injected from the conductive substrate drifting in a strong electric field drift portion and emitted through the surface electrode by applying a DC voltage with the surface electrode as a positive electrode with respect to the conductive substrate. The strong electric field drift part is composed of a heat dissipation part having a high thermal conductivity in which a buried hole is formed along the thickness direction of the conductive substrate, and a drift part filled in the buried hole in which the electrons drift. , The drift portion is composed of conductive fine particles having a particle size of nanometer size, and an insulating film covering the surface of the conductive fine particles,
In the strong electric field drift part, the electrons injected from the conductive substrate do not collide with the conductive fine particles but are accelerated and drifted by the electric field applied to the insulating film, and the heat generated in the drift part is radiated through the heat dissipation part. Therefore, there is an effect that a popping phenomenon does not occur at the time of electron emission and electrons can be emitted stably and highly efficiently.

【0052】請求項2の発明は、請求項1の発明におい
て、上記導電性基板および上記放熱部が、それぞれシリ
コンよりなるので、上記導電性基板および上記放熱部を
1枚のシリコン基板から構成することができるという効
果がある。
According to a second aspect of the present invention, in the first aspect of the present invention, since the conductive substrate and the heat radiating portion are each made of silicon, the conductive substrate and the heat radiating portion are composed of one silicon substrate. The effect is that you can.

【0053】請求項3の発明は、請求項1の発明におい
て、上記放熱部が、ポリシリコン若しくはアモルファス
シリコンよりなるので、導電性基板としてシリコン基板
の他にガラス基板などに導電性膜を形成した基板などを
使用することができるから、従来のように半導体基板を
多孔質化した多孔質半導体層を利用する場合やスピント
型電極に比べて、電子源の大面積化および低コスト化が
可能になるという効果がある。
According to a third aspect of the invention, in the first aspect of the invention, since the heat dissipation portion is made of polysilicon or amorphous silicon, a conductive film is formed on a glass substrate or the like as a conductive substrate in addition to the silicon substrate. Since it is possible to use a substrate, etc., it is possible to increase the area and cost of the electron source compared to the case of using a porous semiconductor layer in which a semiconductor substrate is made porous as in the past and a Spindt-type electrode. There is an effect that.

【0054】請求項4の発明は、請求項3の発明におい
て、上記導電性基板が、絶縁性基板と絶縁性基板の一表
面上に形成された導電性膜とからなり、ドリフト部が、
導電性膜上に形成されているので、導電性基板として単
結晶シリコン基板などの半導体基板を用いる場合に比べ
て大面積化および低コスト化が可能となるという効果が
ある。
According to a fourth aspect of the invention, in the third aspect of the invention, the conductive substrate is composed of an insulating substrate and a conductive film formed on one surface of the insulating substrate, and the drift portion comprises:
Since it is formed on the conductive film, there is an effect that the area can be increased and the cost can be reduced as compared with the case where a semiconductor substrate such as a single crystal silicon substrate is used as the conductive substrate.

【0055】請求項8の発明は、請求項4記載の電界放
射型電子源の製造方法であって、導電性基板の一表面上
に高熱伝導性を有する高熱伝導層を形成した後、高熱伝
導層上に所定形状のマスク材料層を形成し、該マスク材
料層をマスクとして異方性エッチングによって高熱伝導
層のうち上記導電性膜に重複する部位へ上記埋込穴を開
孔することにより高熱伝導層からなる上記放熱部を形成
し、その後、表面が絶縁膜により覆われた上記導電性微
粒子を上記埋込穴へ充填して上記ドリフト部を形成し、
次いで、上記ドリフト部と上記放熱部とからなる強電界
ドリフト部上に導電性薄膜よりなる表面電極を形成する
ので、上記マスク材料層のパターンによってドリフト部
と放熱部とのパターン形状を制御することができ、電子
放出時にポッピング現象が発生せず安定して高効率で電
子を放出することが可能な電界放射型電子源を低コスト
で実現することができるという効果がある。
The invention of claim 8 is the method for manufacturing a field emission electron source according to claim 4, wherein a high thermal conductive layer having high thermal conductivity is formed on one surface of the conductive substrate, and then the high thermal conductivity is obtained. A mask material layer having a predetermined shape is formed on the layer, and by using the mask material layer as a mask, the embedded hole is formed in a portion of the high thermal conductive layer that overlaps with the conductive film by anisotropic etching to achieve high thermal conductivity. Forming the heat dissipation part made of a conductive layer, then forming the drift part by filling the embedded hole with the conductive fine particles whose surface is covered with an insulating film,
Then, since a surface electrode made of a conductive thin film is formed on the strong electric field drift portion composed of the drift portion and the heat radiation portion, the pattern shape of the drift portion and the heat radiation portion should be controlled by the pattern of the mask material layer. Therefore, there is an effect that a field emission electron source capable of stably emitting electrons with high efficiency without causing a popping phenomenon at the time of electron emission can be realized at low cost.

【0056】請求項9の発明は、請求項8の発明におい
て、上記絶縁膜を、マイクロカプセルの形成方法を利用
して上記導電性微粒子の表面を覆うように形成するの
で、上記埋込穴への表面が絶縁膜により覆われた上記導
電性微粒子の充填率を高めることが可能になるという効
果がある。
According to a ninth aspect of the invention, in the eighth aspect, the insulating film is formed so as to cover the surface of the conductive fine particles by using a method of forming microcapsules. It is possible to increase the filling rate of the conductive fine particles whose surface is covered with an insulating film.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態1を示す概略縦断面図である。FIG. 1 is a schematic vertical cross-sectional view showing a first embodiment.

【図2】同上の製造方法を説明するための主要工程断面
図である。
FIG. 2 is a cross-sectional view of main steps for explaining the above manufacturing method.

【図3】同上の製造方法を説明するための主要工程断面
図である。
FIG. 3 is a cross-sectional view of main steps for explaining the above manufacturing method.

【図4】同上の製造方法を説明するためのフォトマスク
の平面図である。
FIG. 4 is a plan view of a photomask for explaining the above manufacturing method.

【図5】実施形態2を示す概略縦断面図である。FIG. 5 is a schematic vertical sectional view showing a second embodiment.

【図6】同上の製造方法を説明するための主要工程断面
図である。
FIG. 6 is a cross-sectional view of main steps for explaining the above manufacturing method.

【図7】同上の製造方法を説明するための主要工程断面
図である。
FIG. 7 is a cross-sectional view of main steps for explaining the above manufacturing method.

【符号の説明】[Explanation of symbols]

1 n形シリコン基板 2 オーミック電極 6 強電界ドリフト部 7 表面電極 10 電界放射型電子源 61 ドリフト部 62 放熱部 63 埋込穴 1 n-type silicon substrate 2 Ohmic electrodes 6 Strong electric field drift section 7 Surface electrode 10 Field emission electron source 61 Drift section 62 Heat sink 63 Embedded hole

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 1/312 H01J 9/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01J 1/312 H01J 9/02

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性基板と、導電性基板の一表面側に
形成された強電界ドリフト部と、該強電界ドリフト部上
に形成された導電性薄膜よりなる表面電極とを備え、表
面電極を導電性基板に対して正極として直流電圧を印加
することにより導電性基板から注入された電子が強電界
ドリフト部をドリフトし表面電極を通して放出される電
界放射型電子源であって、強電界ドリフト部は、導電性
基板の厚み方向に沿った埋込穴が形成され高熱伝導性を
有する放熱部と、埋込穴に充填され上記電子がドリフト
するドリフト部とからなり、ドリフト部は、粒径がナノ
メータサイズの導電性微粒子と、導電性微粒子の表面を
覆う絶縁膜とからなることを特徴とする電界放射型電子
源。
1. A surface electrode comprising: a conductive substrate; a strong electric field drift portion formed on one surface side of the conductive substrate; and a surface electrode made of a conductive thin film formed on the strong electric field drift portion. Is a field emission electron source in which electrons injected from a conductive substrate are discharged through a surface electrode by applying a DC voltage to the conductive substrate as a positive electrode and a strong electric field drift. The part includes a heat dissipation part having a high thermal conductivity in which a buried hole is formed along the thickness direction of the conductive substrate, and a drift part filled in the buried hole in which the electrons drift, and the drift part has a grain size. Is a nanometer-sized conductive fine particle, and an insulating film covering the surface of the conductive fine particle.
【請求項2】 上記導電性基板および上記放熱部は、そ
れぞれシリコンよりなることを特徴とする請求項1記載
の電界放射型電子源。
2. The field emission electron source according to claim 1, wherein the conductive substrate and the heat dissipation portion are each made of silicon.
【請求項3】 上記放熱部は、ポリシリコン若しくはア
モルファスシリコンよりなることを特徴とする請求項1
記載の電界放射型電子源。
3. The heat dissipation part is made of polysilicon or amorphous silicon.
The field emission electron source described.
【請求項4】 上記導電性基板は、絶縁性基板と絶縁性
基板の一表面上に形成された導電性膜とからなり、ドリ
フト部は、導電性膜上に形成されてなることを特徴とす
る請求項3記載の電界放射型電子源。
4. The conductive substrate is composed of an insulating substrate and a conductive film formed on one surface of the insulating substrate, and the drift portion is formed on the conductive film. The field emission electron source according to claim 3.
【請求項5】 上記導電性微粒子は、シリコンよりなる
ことを特徴とする請求項1ないし請求項4のいずれかに
記載の電界放射型電子源。
5. The field emission electron source according to claim 1, wherein the conductive fine particles are made of silicon.
【請求項6】 上記導電性微粒子は、カーボンよりなる
ことを特徴とする請求項1ないし請求項4のいずれかに
記載の電界放射型電子源。
6. The field emission electron source according to claim 1, wherein the conductive fine particles are made of carbon.
【請求項7】 上記導電性微粒子は、金属よりなること
を特徴とする請求項1ないし請求項4のいずれかに記載
の電界放射型電子源。
7. The field emission electron source according to claim 1, wherein the conductive fine particles are made of metal.
【請求項8】 請求項4記載の電界放射型電子源の製造
方法であって、導電性基板の一表面上に高熱伝導性を有
する高熱伝導層を形成した後、高熱伝導層上に所定形状
のマスク材料層を形成し、該マスク材料層をマスクとし
て異方性エッチングによって高熱伝導層のうち上記導電
性膜に重複する部位へ上記埋込穴を開孔することにより
高熱伝導層からなる上記放熱部を形成し、その後、表面
が絶縁膜により覆われた上記導電性微粒子を上記埋込穴
へ充填して上記ドリフト部を形成し、次いで、上記ドリ
フト部と上記放熱部とからなる強電界ドリフト部上に導
電性薄膜よりなる表面電極を形成することを特徴とする
電界放射型電子源の製造方法。
8. The method for manufacturing a field emission electron source according to claim 4, wherein after forming a high thermal conductive layer having high thermal conductivity on one surface of the conductive substrate, a predetermined shape is formed on the high thermal conductive layer. A mask material layer is formed, and the buried hole is formed in a portion of the high thermal conductive layer that overlaps the conductive film by anisotropic etching using the mask material layer as a mask. A heat dissipation part is formed, and then the conductive fine particles whose surface is covered with an insulating film are filled in the embedding hole to form the drift part, and then a strong electric field composed of the drift part and the heat dissipation part. A method of manufacturing a field emission electron source, characterized in that a surface electrode made of a conductive thin film is formed on a drift portion.
【請求項9】 上記絶縁膜は、マイクロカプセルの形成
方法を利用して上記導電性微粒子の表面を覆うように形
成することを特徴とする請求項8記載の電界放射型電子
源の製造方法。
9. The method of manufacturing a field emission electron source according to claim 8, wherein the insulating film is formed so as to cover the surface of the conductive fine particles by using a method of forming microcapsules.
JP23906399A 1999-08-26 1999-08-26 Field emission type electron source and method of manufacturing the same Expired - Fee Related JP3487236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23906399A JP3487236B2 (en) 1999-08-26 1999-08-26 Field emission type electron source and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23906399A JP3487236B2 (en) 1999-08-26 1999-08-26 Field emission type electron source and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001068012A JP2001068012A (en) 2001-03-16
JP3487236B2 true JP3487236B2 (en) 2004-01-13

Family

ID=17039321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23906399A Expired - Fee Related JP3487236B2 (en) 1999-08-26 1999-08-26 Field emission type electron source and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3487236B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867130B2 (en) 2003-02-17 2012-02-01 三菱瓦斯化学株式会社 Insulated ultrafine powder, method for producing the same, and high dielectric constant resin composite material using the same
WO2009066723A1 (en) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display, blower, cooling device, electrifying device, image forming device, electron beam curing device, and electron emitting element manufacturing method
JP4303308B2 (en) 2007-11-20 2009-07-29 シャープ株式会社 Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP2009158108A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Field emission electron source, and manufacturing method thereof
JP5289834B2 (en) * 2008-06-23 2013-09-11 シャープ株式会社 Charging control device, charging device and image forming apparatus
US8299700B2 (en) 2009-02-05 2012-10-30 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
CN101814405B (en) 2009-02-24 2012-04-25 夏普株式会社 Electron emitting element, method for producing electron emitting element and each device using the same
JP4732533B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP4777448B2 (en) 2009-05-19 2011-09-21 シャープ株式会社 Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP4732534B2 (en) 2009-05-19 2011-07-27 シャープ株式会社 Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP4932873B2 (en) 2009-05-19 2012-05-16 シャープ株式会社 Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
CN101930884B (en) 2009-06-25 2012-04-18 夏普株式会社 Electron emitting element and method for producing electron emitting element, electron emitting device, self luminescence device and image display device
JP4880740B2 (en) 2009-12-01 2012-02-22 シャープ株式会社 Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Also Published As

Publication number Publication date
JP2001068012A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP3569135B2 (en) Method for manufacturing field emission cathode
JP3487236B2 (en) Field emission type electron source and method of manufacturing the same
US6057636A (en) Micro power switch using a cold cathode and a driving method thereof
JP4451522B2 (en) Structure for improving the reliability of organic and polymer light emitting devices and method of manufacturing the same
US4325084A (en) Semiconductor device and method of manufacturing same, as well as a pick-up device and a display device having such a semiconductor device
JPS62226530A (en) Semiconductor device for electron beam generation
JP2005502159A (en) Tunnel emitter
US5629580A (en) Lateral field emission devices for display elements and methods of fabrication
JP2809078B2 (en) Field emission cold cathode and method of manufacturing the same
JP2607251B2 (en) Field emission cathode
JP2005515584A (en) Silicon-based dielectric tunnel emitter
JP3772703B2 (en) Manufacturing method of field emission electron source
JP7145200B2 (en) Device for controlling electron flow and method of manufacturing same
JP2004253382A (en) Dielectric emitter having pn junction
JP3603682B2 (en) Field emission electron source
JP2003123627A (en) Stable electron emitter having semiconductor, dielectric, and metal
JP3079097B1 (en) Field emission type electron source and method of manufacturing the same
JP3320603B2 (en) Field emission cold cathode device and method of manufacturing the same
US11355301B2 (en) On-chip micro electron source and manufacturing method thereof
JP3405773B2 (en) Micro field emission cathode device and method of manufacturing the same
JP3539305B2 (en) Field emission type electron source and method of manufacturing the same
JP3487230B2 (en) Field emission electron source, method of manufacturing the same, and display device
JP2000067737A (en) Field emission type cold cathode element
JPH0620592A (en) Field emission cathode device and manufacture thereof
KR100266224B1 (en) Field emission device and the manufacturing method thereof and field emission display using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees