JP3484360B2 - Manufacturing method of amorphous alloy hollow molded article - Google Patents

Manufacturing method of amorphous alloy hollow molded article

Info

Publication number
JP3484360B2
JP3484360B2 JP31228998A JP31228998A JP3484360B2 JP 3484360 B2 JP3484360 B2 JP 3484360B2 JP 31228998 A JP31228998 A JP 31228998A JP 31228998 A JP31228998 A JP 31228998A JP 3484360 B2 JP3484360 B2 JP 3484360B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
molded article
cooling
transition region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31228998A
Other languages
Japanese (ja)
Other versions
JPH11323454A (en
Inventor
明久 井上
秀信 長浜
正志 山口
武志 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP31228998A priority Critical patent/JP3484360B2/en
Publication of JPH11323454A publication Critical patent/JPH11323454A/en
Application granted granted Critical
Publication of JP3484360B2 publication Critical patent/JP3484360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非晶質相を有する成
形品の製造方法に関するものであり、より具体的には合
金溶湯を成形型内に注入し非晶質相を有する中空成形品
を製造することに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molded article having an amorphous phase, and more specifically, a hollow molded article having an amorphous phase obtained by pouring a molten alloy into a mold. Regarding manufacturing.

【0002】[0002]

【従来の技術】従来この種の製造方法については、特開
平3−253525号公報に記載の技術が知られてい
る。この公報には金属溶湯を鋳型内に注入し、非晶質相
を有する固化材を製造することが開示され、注入の際の
溶湯の条件および溶湯の冷却条件等を制御することによ
り、非晶質相を有する固化材を製造することができるこ
とが開示されている。しかしながら、上述の公報に記載
の技術は、特に中実からなる中間材(板状、柱状、棒状
など)あるいは、単純形状の鋳造材を製造するには有効
な手法であるが、例えば表面形状の複雑なもの、中空状
のものを製造するには、製造上困難性を有する。
2. Description of the Related Art Conventionally, as a manufacturing method of this type, a technology described in Japanese Patent Laid-Open No. 3-253525 is known. This publication discloses that a molten metal is injected into a mold to produce a solidified material having an amorphous phase. By controlling the conditions of the molten metal at the time of pouring, the cooling conditions of the molten metal, etc. It is disclosed that it is possible to produce a solidified material having a substance phase. However, the technique described in the above publication is an effective method for producing a solid intermediate material (plate-shaped, columnar, rod-shaped, etc.) or a cast material having a simple shape. It is difficult to manufacture a complex or hollow product.

【0003】また、これらの点を改善すべく、例えば特
開平5−309427号公報に開示の技術が既に知られ
ている。この公報の技術は、上記特開平3−25352
5号公報に記載の手法を用い中間材を先ず作製し、この
中間材を最終成形品の形状を付与する為の金型内に配
し、この金型内にて最終形状を付与し成形品とするもの
である。しかしながら、この技術においては、一端中間
材を製造し、最終形状を付与する為、異なる金型に再セ
ットし、再加熱を行い成形を行わなければならず、その
工程が複雑であるとともに、再加熱による熱的影響を受
ける為非晶質相の維持が難しいといった問題を有してい
る。
In order to improve these points, a technique disclosed in, for example, Japanese Patent Laid-Open No. 5-309427 is already known. The technique of this publication is disclosed in the above-mentioned Japanese Patent Laid-Open No. 25352/1993.
First, an intermediate material is produced by using the method described in Japanese Patent Publication No. 5, and the intermediate material is placed in a mold for imparting the shape of the final molded product, and the final shape is imparted in the mold to form the molded product. It is what However, in this technique, in order to give the final shape once the intermediate material is manufactured, it has to be set again in a different mold and reheated to perform molding, and the process is complicated and There is a problem that it is difficult to maintain the amorphous phase because it is thermally affected by heating.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述のよう
な事情に鑑みなされたものであり、比較的簡単な手法に
て成形品を製造するとともに熱的影響を少なくし非晶質
相を有する特に中空成形品を容易に製造することができ
る非晶質合金中空成形品の製造方法を提供することを目
的とし、更には表面形状の複雑な中空状の成形品などに
も容易に適用でき、寸法精度の良好な非晶質中空成形品
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and a molded product is manufactured by a relatively simple method and the thermal effect is reduced to form an amorphous phase. The object of the present invention is to provide a method for producing an amorphous alloy hollow molded product, which can easily manufacture a hollow molded product, and can be easily applied to a hollow molded product having a complicated surface shape. It is an object of the present invention to provide a method for producing an amorphous hollow molded article having good dimensional accuracy.

【0005】[0005]

【課題を解決するための手段】本発明の第1発明は、ガ
ラス遷移領域を有する成分組成の合金溶湯を成形型内に
充填し、ガラス遷移領域内の温度まで冷却するとともに
冷却後、ガラス遷移領域内の温度で保持し、その後保持
された合金に、成形型内に配されたガスノズルによるガ
ス圧により加圧成形を施し冷却することにより非晶質相
を有する中空成形品を製造する非晶質合金中空成形品の
製造方法である。
According to a first aspect of the present invention, a molten alloy having a composition having a glass transition region is filled in a molding die, cooled to a temperature in the glass transition region, and then cooled. Hold the alloy at the temperature in the area, and then hold it in the alloy by using a gas nozzle placed in the mold.
It is a method for producing an amorphous alloy hollow molded article, in which a hollow molded article having an amorphous phase is produced by performing pressure molding with pressure and cooling.

【0006】本発明の第2発明は、ガラス遷移領域を有
する成分組成の合金溶湯を成形型内に充填し、融点以下
結晶化温度以上の温度まで冷却すると共に、冷却後融点
と結晶化温度との間の温度範囲内の温度で保持し、その
後保持された合金に、成形型内に配されたガスノズルに
よるガス圧により加圧成形を施し冷却することにより非
晶質相を有する中空成形品を製造することを特徴とする
非晶質合金中空成形品の製造方法である。
In a second aspect of the present invention, a molten alloy having a composition having a glass transition region is filled in a mold and cooled to a temperature not higher than the melting point but not lower than the crystallization temperature, and after cooling, the melting point and the crystallization temperature are changed. Hold at a temperature within the temperature range between, then to the held alloy, to the gas nozzle placed in the mold
The method for producing an amorphous alloy hollow molded article is characterized in that a hollow molded article having an amorphous phase is produced by performing pressure molding with a gas pressure according to the above and cooling.

【0007】本発明の第3発明は、ガラス遷移領域を有
する成分組成の合金溶湯を成形型内に充填し、融点以下
結晶化温度以上の温度まで冷却すると共に、冷却後融点
と結晶化温度との間の温度範囲内の温度で保持し、その
後保持された合金に、成形型内に配されたガスノズルに
よるガス圧により加圧成形を施し、さらにガラス遷移領
域内の温度まで冷却し、冷却後、ガラス遷移領域内の温
度で保持し、その後保持された合金に加圧成形を施し冷
却することにより非晶質相を有する中空成形品を製造す
ることを特徴とする非晶質合金中空成形品の製造方法で
ある。
According to a third aspect of the present invention, a molten alloy having a composition having a glass transition region is filled in a mold and cooled to a temperature not higher than the melting point and not lower than the crystallization temperature, and after cooling, the melting point and the crystallization temperature are set. Hold at a temperature within the temperature range between, then to the held alloy, to the gas nozzle placed in the mold
By applying pressure forming by gas pressure according to the above, further cooling to the temperature in the glass transition region, after cooling, holding at the temperature in the glass transition region, and then applying pressure forming to the held alloy and cooling it A method for producing an amorphous alloy hollow molded article, which comprises producing a hollow molded article having a crystalline phase.

【0008】本発明に適用できる合金溶湯の成分組成と
しては、ガラス遷移領域を有するものであることが必要
であり、より成形を容易に行う為には、40K以上のガ
ラス遷移領域を有する成分組成であることが好ましい。
具体的には、特公平7−122120号公報および特公
平7−122119号公報に記載の成分組成、すなわ
ち、合金溶湯の成分組成が下記一般式I)あるいはII)
に示されるもの I)XabAlc II)Al100-d-edLne (但し、X:Zr及びHfから選ばれる1種又は2種の
元素、M:Ni,Cu,Fe,Co,Ti及びMnから
選ばれる少なくとも1種の元素、T:Ti,V,Cr,
Mn,Fe,Co,Ni,Cu,Zr,Nb,Mo,H
f,Ta及びWから選ばれる少なくとも1種の元素、L
n:Y,La,Ce,Nd,Sm,Gd,Tb,Dy,
Ho,Yb及びMm(希土類元素の集合体であるミッシ
ュメタル)から選ばれる少なくとも1種の元素、a,
b,c,d,eは原子パーセントで25≦a≦85、5
≦b≦70、0<c≦35、0<d≦55、30≦e≦
90である。)が有効であり、特に上記一般式I)が有
効である。上記一般式に記載の合金は、ガラス遷移領域
を有し、殆どの成分組成で40K以上のガラス遷移領域
を有し、特定の成分組成においては、60K、さらには
80Kを超えるガラス遷移領域を有するものが存在す
る。なお、上記一般式の成分組成は、好ましい例示であ
り、ガラス遷移領域を有する成分組成のものであれば、
本発明が適用できることは言うまでもない。
The component composition of the molten alloy which can be applied to the present invention is required to have a glass transition region, and for easier molding, a component composition having a glass transition region of 40K or more. Is preferred.
Specifically, the component composition described in JP-B-7-122120 and JP-B-7-122119, that is, the component composition of the molten alloy is the following general formula I) or II).
Shown are those I) X a M b Al c II) Al100-de T d Ln e ( where a, X: 1 one or two elements selected from Zr and Hf, M: Ni, Cu, Fe, Co, At least one element selected from Ti and Mn, T: Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, H
at least one element selected from f, Ta and W, L
n: Y, La, Ce, Nd, Sm, Gd, Tb, Dy,
At least one element selected from Ho, Yb and Mm (Misch metal which is an aggregate of rare earth elements), a,
b, c, d, and e are atomic percentages of 25 ≦ a ≦ 85, 5
≦ b ≦ 70, 0 <c ≦ 35, 0 <d ≦ 55, 30 ≦ e ≦
90. ) Is effective, and especially the above general formula I) is effective. The alloy described in the above general formula has a glass transition region, has a glass transition region of 40K or more in most component compositions, and has a glass transition region of 60K or even more than 80K in a specific component composition. Things exist. Incidentally, the component composition of the above general formula is a preferred example, if the component composition having a glass transition region,
It goes without saying that the present invention can be applied.

【0009】ガラス遷移領域(過冷却液体領域:△T=
Tx−Tg)とは、非晶質相を有する合金が有する結晶
化温度(Tx)とガラス遷移温度(Tg)との間の温度
領域である。ガラス遷移温度(Tg)は非晶質相を有す
る合金を示差走査熱量分析あるいは示差熱分析を行った
際、得られた示差走査熱量分析曲線上あるいは示差熱分
析曲線上で吸熱反応が起こる部分で、その曲線の立上が
り部と基線の外挿が交わる点での温度で、逆に結晶化温
度(Tx)は発熱反応が起こる部分で上記と同様にして
得られた温度である。
Glass transition region (supercooled liquid region: ΔT =
Tx-Tg) is a temperature range between the crystallization temperature (Tx) and the glass transition temperature (Tg) of the alloy having an amorphous phase. The glass transition temperature (Tg) is a value at a portion where an endothermic reaction occurs on the obtained differential scanning calorimetric curve or differential thermal analysis curve when the alloy having an amorphous phase is subjected to differential scanning calorimetric analysis or differential thermal analysis. The temperature at the point where the rising portion of the curve intersects with the extrapolation of the base line, on the contrary, the crystallization temperature (Tx) is the temperature obtained in the same manner as above at the portion where the exothermic reaction occurs.

【0010】ガラス遷移領域が存在する、更にはその領
域が広いことにより、低圧力化で容易にそして無制限に
塑性変形するとともに、成形(加工)時の温度制御、成
形(加工)時間の制御が緩和できる。また、いわゆるガ
ラス(非晶質)としての特性から成形(変形)表面は極
めて平滑性が高く、結晶合金を変形させた時のように滑
り帯が表面に現れるステップなど実質的に発生しないな
どの特徴がある。また、ガラス遷移領域が存在する、更
にはその領域が広い合金は、非晶質形成能が高く、形成
される非晶質相も安定である。
Due to the existence of the glass transition region and the wideness of the region, it is possible to easily and indefinitely plastically deform at a low pressure, and to control the temperature during molding (processing) and the control of molding (processing) time. Can be relaxed. In addition, because of its characteristics as so-called glass (amorphous), the molding (deformation) surface has extremely high smoothness, and steps such as slip bands appearing on the surface, such as when deforming a crystalline alloy, do not substantially occur. There are features. Further, an alloy having a glass transition region and having a wider region has a high amorphous forming ability, and the formed amorphous phase is also stable.

【0011】本発明の製造方法において、合金溶湯を成
形型内に充填し、ガラス遷移領域内の温度あるいは融点
と結晶化温度との間の温度まで冷却する際の冷却は、最
終成形品を非晶質相を有するものとする為には、連続冷
却変態曲線(CCT曲線)の結晶化領域に入らないある
いは多少入るぐらいの冷却速度とする必要がある。特
に、最終成形品を非晶質単相とする為には、上記結晶化
領域に入らないような冷却速度としなければならない。
なお、成分組成により、上記領域が異なるため、事前に
このような知見を得ておく必要があるが、具体的な目安
としては10K/s以上とすることが好ましく、更には
102K/s以上とすることがより好ましい。
In the manufacturing method of the present invention, when the molten alloy is filled in the mold and cooled to a temperature in the glass transition region or to a temperature between the melting point and the crystallization temperature, the final molded product is not cooled. In order to have a crystalline phase, it is necessary to set the cooling rate such that it does not enter the crystallization region of the continuous cooling transformation curve (CCT curve) or enters it to some extent. In particular, in order to make the final molded product an amorphous single phase, the cooling rate must be such that it does not enter the crystallization region.
It should be noted that since the above-mentioned region differs depending on the component composition, it is necessary to obtain such knowledge in advance, but as a concrete guideline, it is preferable to set it to 10 K / s or more, and further 10 2 K / s It is more preferable to set it as above.

【0012】また、本発明の製造方法は、合金溶湯を成
形型内に充填し、冷却を行う過程において、成形(加
工)を行うことが特徴であり、この成形(加工)は、ガ
ラス遷移領域内の温度あるいは融点と結晶化温度との間
の温度に保持された合金(溶湯)に施され、成形型内に
充填された合金に圧力を加える(加圧成形)ことにより
なされる。具体的な加圧成形としては、成形型内にガス
を注入しガス圧により行う。この手法は、中空状の成形
品および/さらには表面に複雑な模様等を施す成形品を
製造するのに有効である。
Further, the manufacturing method of the present invention is characterized in that molding (processing) is performed in the process of filling the molten alloy in a molding die and cooling it, and this molding (processing) is performed in the glass transition region. It is applied to an alloy (molten metal) held at a temperature inside or a temperature between the melting point and the crystallization temperature, and pressure is applied to the alloy filled in the forming die (pressure forming). Specific pressure molding is performed by injecting gas into the molding die and using gas pressure . This approach, hollow molded article and / addition is effective in producing a molded article subjected to complicated pattern or the like on the surface.

【0013】成形(加工)後の冷却速度は、上述した成
形前に行う成形型注入時の冷却速度と同様に具体的な目
安としては10K/s以上とすることが好ましく、更に
は102K/s以上とすることが好ましい。以下、本発
明の製造方法の具体的な一例を図面に基づき説明する。
The cooling rate after molding (processing) is preferably 10 K / s or more, more preferably 10 2 K, as a concrete guide, similar to the cooling rate at the time of pouring the mold before the above-mentioned molding. / S or more is preferable. Hereinafter, a specific example of the manufacturing method of the present invention will be described with reference to the drawings.

【0014】図1は、成形型内にガスを注入しガス圧に
より行う手法であり、図1a)に図示されるように成形
型は上型1と下型2の2つの型よりなり、型内には成形
品の成形部3が形成されてなり、また、成形型には型内
の温度保持あるいは制御する為、加熱手段(加熱ヒー
タ)4及び温度検知手段(熱電対)5が設けられてい
る。成形型Aの湯口6直上には、上記とは異なる加熱手
段(高周波加熱コイル)7を備えた溶湯供給手段(石英
るつぼ)8が配されている。なお、溶湯供給手段8は成
形型Aの湯口6に対して摺動自在である。図1b)c)
d)は、加圧成形の作用を示す図面であり、装置の構成
は、図示されるように成形型の湯口直上にガス圧手段
(エアーノズル)9が湯口6に対して摺動自在に配され
ている。これ以外の構成は、図1a)と同様である。次
に、図1をもとにその作用を説明する。図1a)に示さ
れるように成分調整を行った母合金を溶湯供給手段8に
供給し、これを加熱手段7により加熱し、母合金を溶融
する。次に、前記溶湯Sを成形型Aの湯口6より成形型
内の成形部3に供給し、型内にて溶湯Sを冷却し、ガラ
ス遷移領域内の温度あるいは融点と結晶化温度との間の
温度で保持する。
FIG. 1 shows a method of injecting gas into a molding die and performing it by gas pressure. As shown in FIG. 1a), the molding die comprises two molds, an upper mold 1 and a lower mold 2. A molding part 3 of a molded product is formed therein, and a heating means (heating heater) 4 and a temperature detecting means (thermocouple) 5 are provided in the molding die in order to maintain or control the temperature inside the die. ing. Immediately above the sprue 6 of the mold A, a molten metal supply means (quartz crucible) 8 having a heating means (high frequency heating coil) 7 different from the above is arranged. The molten metal supply means 8 is slidable with respect to the sprue 6 of the mold A. Figure 1b) c)
d) is a drawing showing the action of pressure molding. As shown in the figure, the apparatus is constructed such that a gas pressure means (air nozzle) 9 is slidably arranged on the sprue 6 directly above the sprue of the molding die. Has been done. The configuration other than this is the same as that of FIG. Next, the operation will be described with reference to FIG. As shown in FIG. 1a), the master alloy having its components adjusted is supplied to the molten metal supply means 8 and heated by the heating means 7 to melt the master alloy. Next, the molten metal S is supplied from the gate 6 of the molding die A to the molding part 3 in the molding die, and the molten metal S is cooled in the mold to obtain a temperature in the glass transition region or between the melting point and the crystallization temperature. Hold at temperature.

【0015】この際の温度制御は、温度検知手段5と加
熱手段7により行う。このように温度が保持された溶湯
(合金)Sに、図1b)から図1c)に示されるよう
に、ガス圧手段9が供給され、ガス圧手段9から例えば
He、Arなど不活性ガスを所定の圧力にて供給するこ
とにより図1d)に示されるように成形部3の形状に合
った中空状の成形品Pを製造する。各種の条件は上述に
基づき行う。
The temperature control at this time is performed by the temperature detecting means 5 and the heating means 7. As shown in FIGS. 1b) to 1c), the gas pressure means 9 is supplied to the molten metal (alloy) S whose temperature is maintained as described above, and the inert gas such as He or Ar is supplied from the gas pressure means 9. By supplying at a predetermined pressure, a hollow molded product P matching the shape of the molding portion 3 is manufactured as shown in FIG. 1d). Various conditions are based on the above.

【0016】さらに、具体的な製造方法を図面に基づき
説明する。
Further, a specific manufacturing method will be described with reference to the drawings.

【0017】図は、釣りあるいは魚網用の中空状の浮
き(成形品)の製造方法を示す図面であり、その工程は
a)b)c)に示す通りである。
[0017] Figure 2 is a view showing a method of manufacturing a hollow float for fishing or fish net (molded article), the process is as shown in FIG. 2 a) b) c).

【0018】図a)に示されるように、成形型Aの型
内には成形部3が形成されてなり、また、成形型Aには
型内の温度保持あるいは制御するため、加熱手段(加熱
ヒータ)4、冷却手段(冷却水又は冷却ガス通路)11
及び図示されない温度検知手段(熱電対)が設けられて
いる。成形型Aの湯口6直上には、上記と異なる加熱手
段(高周波加熱コイル)7を備えた溶湯供給手段(石英
るつぼ)8が配されている。なお、溶湯供給手段8は成
形型Aの湯口6に対して摺動自在である。また、成形型
Aの成形部3の直下に成形部3の開口に向かって摺動自
在にガス圧手段(エアーノズル)9が配されている。さ
らに、上記記述の装置は容器内に収納されており、容器
には冷却ガスを供給するための冷却ガス導入口12が設
けられている。次に図をもとにその作用を説明する。
a)に示されるように成分調整を行った母合金を溶
湯供給手段8に供給し、これを加熱手段7により加熱
し、母合金を溶融する。次に図b)に示すように溶湯
Sを成形型Aの湯口6より成形型内の成形部3に供給
し、型内にて溶湯Sを冷却し、ガラス遷移領域内の温度
あるいは融点と結晶化温度との間の温度で保持する。こ
の際の温度制御は、温度検知手段5と加熱手段7、冷却
手段11により行う。このように温度が保持された溶湯
(合金)Sに図b)から図c)に示されるように、
ガス圧手段9が供給され、ガス圧手段から例えばHe、
Arなど不活性ガスを所定圧力にて供給することによ
り、図c)に示されるように中空状の成形品Pを製造
する。このように製造された成形品Pは、冷却手段11
及び冷却ガス導入口12からの冷却ガスにより、最終的
に冷却される。
[0018] As shown in FIG. 2 a), is in the mold of the mold A will be formed molding part 3, also for temperature maintenance or control in the mold is a mold A, the heating means ( (Heater heater) 4, cooling means (cooling water or cooling gas passage) 11
Further, a temperature detecting means (thermocouple) not shown is provided. Immediately above the sprue 6 of the mold A, a molten metal supply means (quartz crucible) 8 having a heating means (high frequency heating coil) 7 different from the above is arranged. The molten metal supply means 8 is slidable with respect to the sprue 6 of the mold A. Further, a gas pressure means (air nozzle) 9 is arranged immediately below the molding portion 3 of the molding die A so as to be slidable toward the opening of the molding portion 3. Furthermore, the apparatus described above is housed in a container, and the container is provided with a cooling gas inlet 12 for supplying a cooling gas. Next will be described the effect on the basis of FIG.
As shown in FIG. 2 a), the master alloy, the components of which have been adjusted, is supplied to the molten metal supply means 8 and heated by the heating means 7 to melt the master alloy. Then fed to the molding portion 3 of the sprue in the mold than 6 of the mold A molten metal S as shown in FIG. 2 b), the melt S was cooled in the mold, the temperature or the melting point of the glass transition region Hold at a temperature between the crystallization temperature. The temperature control at this time is performed by the temperature detecting means 5, the heating means 7, and the cooling means 11. Thus the molten metal temperature is held (alloy) figure S 2 b), as shown in Figure 2 c),
Gas pressure means 9 is supplied, and for example He,
By supplying Ar inert gas such as at a predetermined pressure, to produce a hollow molded article P as shown in FIG. 2 c). The molded product P manufactured in this way is cooled by the cooling means 11
Finally, the cooling gas from the cooling gas inlet 12 is used for cooling.

【0019】図は、図の成形型Aを下型2として用
い、この下型2と上型1とにより成形型Aを構成したも
のであり、上型1の下面には凸状の成形部3が形成され
ている。図は図と基本的な装置構造は同様であり、
異なる点は、上型1の下面に凹状の成形部3を形成した
点である。図、図に示される装置を用いることによ
り中空状からなる凸面鏡あるいは凹面鏡(成形品)Pが
それぞれ製造できる。
In FIG. 3 , the molding die A of FIG. 2 is used as the lower die 2, and the lower die 2 and the upper die 1 constitute the molding die A. The lower surface of the upper die 1 has a convex shape. The molding part 3 is formed. 4 has the same basic device structure as FIG. 3 ,
The difference is that a concave shaped portion 3 is formed on the lower surface of the upper mold 1. 3, convex mirror or a concave mirror comprising a hollow by using the apparatus shown in Figure 4 (molded article) P can be produced, respectively.

【0020】図、図に示される製造方法の作用は、
まず図a)b)に示されるように溶湯Sを下型2に供
給し、その後、図、図に示されるように上型1を配
するとともに、ガス圧手段9を供給し製造を行うもので
ある。その他の点については図と同様である。
The operation of the manufacturing method shown in FIGS. 3 and 4 is as follows.
First, FIG. 2 a) b) the melt S is supplied to the lower mold 2 as shown in, then 3, together with arranging the upper mold 1 as shown in FIG. 4, to supply gas pressure means 9 production Is to do. Other points are the same as in FIG.

【0021】[0021]

【発明の実施の形態】以下、実施例に基づき本発明を具
体的に説明する。まず、実験に先立ち、Zr55Al10
5Cu30非晶質単相合金について、DTAによる熱分
析(示差熱分析)を行った。なお、測定は10℃/分の
昇温速度にて加熱して行った。この結果を図に示す。
によれば、ガラス遷移温度(Tg)が391℃(6
64K)、結晶化温度(Tx)が479℃(752K)
となり、ガラス遷移領域(の温度範囲:△T)が88℃
(88K)となった。また、上記合金について、合金の
連続冷却変態曲線(CCT曲線)及び等温変態曲線(T
TT曲線)を調べた。調べた結果は、それぞれ図およ
び図に示すとおりである。図から製造の際の冷却速
度制御の仕方が分かるとともに図からは成形型内にお
いて、一定の温度で保持できる時間が分かる。具体的に
は、図より成形品の結晶化を防ぐ為には(特に、非晶
質単相の組織を維持する為には)、のような結晶化
領域に入らないような冷却速度にて、ガラス遷移領域の
温度まで冷却しなければならず、のように結晶化領域
に入った場合、少なくとも一部が結晶化され、非晶質単
相の成形品が得られない。の場合非晶質相と結晶質相
との混相あるいは非晶質が全く存在しない結晶質相のみ
からなる成形品となる。いずれの組織になるかは、上記
結晶化領域に入っている時間等により決まる。図によ
れば、750K(477℃)の場合100秒間成形型内
にて保持可能(成形時間も含む)であり、700K(4
27℃)の場合104秒間保持可能であることが分か
る。一方、融点と結晶化温度との間の温度で成形を行う
場合、図のように結晶化領域に入らないような領域
(例えば折線部分)で行わなければならない。また、図
に示すように、融点と結晶化温度との間の温度で第
1段階の成形を行いガラス遷移領域内の温度で第2段階
の成形を行ってもよく、前述の機械部品、フェルールの
製造にあたっては、この種2段階での手法が有用であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below based on Examples. First, prior to the experiment, Zr 55 Al 10 N
The i 5 Cu 30 amorphous single phase alloy was subjected to thermal analysis by DTA (differential thermal analysis). The measurement was performed by heating at a temperature rising rate of 10 ° C./min. The results are shown in FIG.
According to FIG. 5 , the glass transition temperature (Tg) was 391 ° C. (6
64K), crystallization temperature (Tx) is 479 ° C (752K)
And the glass transition region (temperature range: ΔT) is 88 ° C.
(88K). Further, regarding the above alloy, a continuous cooling transformation curve (CCT curve) and an isothermal transformation curve (T
TT curve) was examined. The examined results are shown in FIGS. 6 and 7 , respectively. FIG. 6 shows how to control the cooling rate during manufacturing, and FIG. 7 shows the time during which the mold can be maintained at a constant temperature. Specifically, as shown in FIG. 6 , in order to prevent the crystallization of the molded product (in particular, to maintain the structure of the amorphous single phase), the cooling rate is set so as not to enter the crystallization region. Then, the glass must be cooled to the temperature of the glass transition region, and in the case of entering the crystallization region as described above, at least a part is crystallized and an amorphous single-phase molded product cannot be obtained. In the case of 1, the molded product is a mixed phase of an amorphous phase and a crystalline phase or a crystalline phase having no amorphous material at all. Which structure is formed is determined by the time of entering the crystallization region. According to FIG. 7 , in the case of 750 K (477 ° C.), it can be held in the molding die for 100 seconds (including the molding time), and 700 K (4
It can be seen that it can be held for 10 4 seconds in the case of 27 ° C. On the other hand, when forming is carried out at a temperature between the melting point and crystallization temperature must be carried out in a region that does not enter the crystallized region as shown in FIG. 8 (eg fold line portion). Also, the figure
As shown in FIG. 8 , the first stage molding may be performed at a temperature between the melting point and the crystallization temperature, and the second stage molding may be performed at a temperature in the glass transition region. In this regard, this kind of two-stage method is useful.

【0022】これらの知見をもとに、上記合金組成の溶
湯を約10K/sの冷却速度にて金型内に鋳込み400
℃(673K)、460℃(733K)のそれぞれの温
度で一端保持し(図のTTT曲線に示される非晶質を
保持できる時間内で保持し)、直径2.5mm長さ40
mmの丸棒材を作製した。得られた丸棒材について、そ
の組織を調べる為、X線回折を行った。この結果を図
に示す。図によれば、それぞれの温度条件にて作製さ
れた丸棒材とも、非晶質単相であることが分かる。図1
に示される装置を用い以下の実験を行った。
Based on these findings, a molten metal having the above alloy composition was cast into a mold at a cooling rate of about 10 K / s.
C. (673K), 460.degree. C. (733K) at each temperature, once held (holding the amorphous time shown in the TTT curve of FIG. 7 within a time that can be held), diameter 2.5 mm length 40
A round bar material of mm was prepared. The round bar material thus obtained was subjected to X-ray diffraction in order to examine its structure. Figure this result 9
Shown in. According to FIG. 9 , it can be seen that the round rods produced under the respective temperature conditions are in the amorphous single phase. Figure 1
The following experiment was conducted using the apparatus shown in FIG.

【0023】Zr55Al10Ni5Cu30の母合金を図1
a)の石英るつぼ8にセットし、高周波加熱コイル7に
より加熱し、母合金を溶融した。次に、前記溶融した溶
湯を成形型Aの成形部に供給し、成形部内において溶湯
を冷却した。この際の冷却速度は、上記に基づいて行っ
た。成形部3において、前記溶湯(合金)は400℃〜
460℃(673K〜733K)の間で加熱ヒータによ
り保持され、その後、図1b)〜d)に示されるように
エアーノズル9によって成形を行った。なお、成形には
Heガスを用い、ガス圧は3kgf/cm2にて行っ
た。以上のようにして、図1d)にその断面図が示され
るような中空状の、そしてバルーン状の成形品Pを作製
した。
A master alloy of Zr 55 Al 10 Ni 5 Cu 30 is shown in FIG.
It was set in the quartz crucible 8 of a) and heated by the high frequency heating coil 7 to melt the mother alloy. Next, the molten metal thus melted was supplied to the forming part of the mold A, and the molten metal was cooled in the forming part. The cooling rate at this time was based on the above. In the forming part 3, the molten metal (alloy) is 400 ° C.
It was held by a heater between 460 ° C. (673K to 733K), and then molded by an air nozzle 9 as shown in FIGS. 1b) to d). He gas was used for molding, and the gas pressure was 3 kgf / cm 2 . As described above, a hollow and balloon-shaped molded product P whose cross-sectional view is shown in FIG. 1d) was produced.

【0024】図10は、上記成形品について、X線回折
を行った結果であり、この成形品は、非晶質単相からな
ることが分かる。また、上記成形品について、厚み及び
表面粗さを調べた。厚みは40〜50μmと非常に薄
く、成形部分にあたるところは、その肉厚も均一であっ
た。また、表面粗さもRmax値で約0.1μmと表面凹
凸の非常に小さなものであった。なお、表面は肉眼で
は、鏡面となっている。
FIG. 10 shows the result of X-ray diffraction of the above molded product, and it can be seen that this molded product is composed of an amorphous single phase. In addition, the thickness and surface roughness of the molded product were examined. The thickness was 40 to 50 μm, which was extremely thin, and the thickness corresponding to the molding portion was uniform. Further, the surface roughness was about 0.1 μm in Rmax value, and the surface roughness was very small. The surface is a mirror surface with the naked eye.

【0025】また、上述の成形部3において、融点と結
晶化温度との間の温度、具体的には600℃〜800℃
(873K〜1073K)の間で保持した場合も上述と
同様の結果が得られた。さらに、図に記載の各種
成形品も上述と同様に得られた。
In the molding part 3 described above, a temperature between the melting point and the crystallization temperature, specifically 600 ° C. to 800 ° C.
The same results as above were obtained when the temperature was held between (873K to 1073K). Furthermore, various molded products shown in FIGS. 2 to 4 were obtained in the same manner as above.

【0026】[0026]

【発明の効果】本発明の非晶質成形品の製造方法によれ
ば、比較的簡単な手法にて成形品を製造することができ
るとともに熱的影響を少なくし非晶質相を有する成形品
を寸法精度良く容易に製造することができる。さらに、
表面形状の複雑な成形品あるいは中空状の成形品なども
容易に製造することができる。
EFFECTS OF THE INVENTION According to the method for producing an amorphous molded article of the present invention, a molded article can be produced by a relatively simple method and the thermal effect is reduced, and the molded article has an amorphous phase. Can be easily manufactured with high dimensional accuracy. further,
A molded product having a complicated surface shape or a hollow molded product can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】a)〜d)は本発明の製造工程の説明図であ
る。
1A to 1D are explanatory views of a manufacturing process of the present invention.

【図2】a)、b)、c)は中空状の浮き(成形品)の
製造方法の説明図である。
2A, 2B, and 2C are explanatory views of a method for manufacturing a hollow float (molded product).

【図3】中空凹面鏡型(成形品)の製造方法の説明図で
ある。
FIG. 3 is an explanatory diagram of a method for manufacturing a hollow concave mirror mold (molded product).

【図4】中空凸面鏡型(成形品)の製造方法の説明図で
ある。
FIG. 4 is an explanatory diagram of a method for manufacturing a hollow convex mirror mold (molded product).

【図5】Zr55Al10Ni5Cu30合金のDTA曲線を
示すグラフである。
FIG. 5 is a graph showing a DTA curve of a Zr 55 Al 10 Ni 5 Cu 30 alloy.

【図6】同じくCCT曲線図を示す。FIG. 6 also shows a CCT curve diagram.

【図7】同じくTTT線図を示す。FIG. 7 also shows a TTT diagram.

【図8】融点と結晶化温度との間の領域での成形領域を
示すグラフである。
FIG. 8 is a graph showing a molding region in a region between a melting point and a crystallization temperature.

【図9】400℃,460℃に保持された鋳型に鋳造後
冷却して得られた同じ合金のX線回折図である。
FIG. 9 is an X-ray diffraction diagram of the same alloy obtained by casting in a mold held at 400 ° C. and 460 ° C. and then cooling.

【図10】成形品のX線回折図である。FIG. 10 is an X-ray diffraction diagram of a molded product.

【符号の説明】[Explanation of symbols]

A 成形型 S 溶湯 1 上型 2 下型 3 成形部 4 加熱ヒータ 5 熱電対 6 湯口 7 高周波加熱コイル 8 石英るつぼ 9 エアーノズル 11 冷却手段 12 冷却ガス導入口 A mold S molten metal 1 Upper mold 2 Lower mold 3 molding section 4 heating heater 5 thermocouple 6 gate 7 High frequency heating coil 8 quartz crucible 9 Air nozzle 11 Cooling means 12 Cooling gas inlet

フロントページの続き (72)発明者 山口 正志 宮城県仙台市太白区泉崎1丁目16−23 (72)発明者 谷口 武志 宮城県仙台市泉区山の寺2−30−26 (56)参考文献 特開 平10−186176(JP,A) 特開 平3−204160(JP,A) 特開 平10−296424(JP,A) 特開 平10−311923(JP,A) 特開 平5−309427(JP,A) 張ら,アモルファス合金風船をつく る,バウンダリー,1991年 9月15日, Vol.7 No.9,P.39−43 (58)調査した分野(Int.Cl.7,DB名) B22D 27/00 - 27/13 C22C 1/00,45/00 - 45/10 Front Page Continuation (72) Inventor Masashi Yamaguchi 1-16-23 Izumizaki, Taichiro-ku, Sendai City, Miyagi Prefecture (72) Inventor Takeshi Taniguchi 2-30-26 Yamanoji Temple, Izumi-ku, Sendai City, Miyagi Prefecture (56) References Special Kaihei 10-186176 (JP, A) JP 3-204160 (JP, A) JP 10-296424 (JP, A) JP 10-311923 (JP, A) JP 5-309427 ( JP, A) Zhang et al., Making Amorphous Alloy Balloons, Boundary, September 15, 1991, Vol. 7 No. 9, P.I. 39-43 (58) Fields surveyed (Int.Cl. 7 , DB name) B22D 27/00-27/13 C22C 1 / 00,45 / 00-45/10

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガラス遷移領域を有する成分組成の合金
溶湯を成形型内に充填し、ガラス遷移領域内の温度まで
冷却すると共に、冷却後ガラス遷移領域内の温度で保持
し、その後保持された合金に、成形型内に配されたガス
ノズルによるガス圧により加圧成形を施し冷却すること
により非晶質相を有する中空成形品を製造することを特
徴とする非晶質合金中空成形品の製造方法。
1. A molten alloy having a component composition having a glass transition region is filled in a mold, cooled to a temperature in the glass transition region, kept at a temperature in the glass transition region after cooling, and then retained. Gas in the mold, placed in the alloy
A method for producing an amorphous alloy hollow molded article, comprising producing a hollow molded article having an amorphous phase by performing pressure molding with a gas pressure from a nozzle and cooling.
【請求項2】 ガラス遷移領域を有する成分組成の合金
溶湯を成形型内に充填し、融点以下結晶化温度以上の温
度まで冷却すると共に、冷却後融点と結晶化温度との間
の温度範囲内の温度で保持し、その後保持された合金
、成形型内に配されたガスノズルによるガス圧により
加圧成形を施し冷却することにより非晶質相を有する
成形品を製造することを特徴とする非晶質合金中空
形品の製造方法。
2. A molten alloy having a component composition having a glass transition region is filled in a molding die, cooled to a temperature not higher than the melting point and not lower than the crystallization temperature, and after cooling, within a temperature range between the melting point and the crystallization temperature. and held at the temperature, then the retained alloys, in having an amorphous phase by cooling applying <br/> pressure molding by a gas pressure due disposed in a mold nozzle
A method for producing an amorphous alloy hollow molded article, which comprises manufacturing an empty molded article.
【請求項3】 ガラス遷移領域を有する成分組成の合金
溶湯を成形型内に充填し、融点以下結晶化温度以上の温
度まで冷却すると共に、冷却後融点と結晶化温度との間
の温度範囲内の温度で保持し、その後保持された合金
、成形型内に配されたガスノズルによるガス圧により
加圧成形を施し、さらにガラス遷移領域内の温度まで冷
却し、冷却後、ガラス遷移領域内の温度で保持し、その
後保持された合金に加圧成形を施し冷却することにより
非晶質相を有する中空成形品を製造することを特徴とす
る非晶質合金中空成形品の製造方法。
3. A molten alloy having a component composition having a glass transition region is filled in a mold and cooled to a temperature not higher than the melting point and not lower than the crystallization temperature, and after cooling, within a temperature range between the melting point and the crystallization temperature. The temperature of the alloy is maintained, and then the retained alloy is subjected to pressure molding by a gas pressure by a gas nozzle arranged in a molding die , further cooled to a temperature in a glass transition region, and after cooling, the glass is cooled. and held at a temperature in the transition region, the production of amorphous alloy hollow shaped article, characterized by producing a hollow molded article having an amorphous phase by subjecting the subsequently retained alloy pressure molding cooling Method.
【請求項4】 合金溶湯が40K以上のガラス遷移領域
を有する成分組成である請求項1〜3のいずれかに記載
の非晶質合金中空成形品の製造方法。
4. The method for producing an amorphous alloy hollow molded article according to claim 1, wherein the molten alloy has a component composition having a glass transition region of 40K or more.
【請求項5】 成形型内での冷却を上記成分組成の合金
の連続冷却変態曲線の結晶化領域に入らない冷却速度に
て行う請求項1〜3のいずれかに記載の非晶質合金中空
成形品の製造方法。
5. The amorphous alloy hollow according to claim 1, wherein the cooling in the forming die is performed at a cooling rate which does not enter the crystallization region of the continuous cooling transformation curve of the alloy having the above-mentioned composition. <br/> A method for manufacturing a molded article.
【請求項6】 冷却速度が10K/s以上である請求項
5記載の非晶質合金中空成形品の製造方法。
6. The method for producing an amorphous alloy hollow molded article according to claim 5, wherein the cooling rate is 10 K / s or more.
【請求項7】 加圧成形を成形型に設けられた押圧手段
により行う請求項1〜3のいずれかに記載の非晶質合金
中空成形品の製造方法。
7. The amorphous alloy according to claim 1, wherein the pressure molding is carried out by a pressing means provided on the molding die.
A method for manufacturing a hollow molded article.
【請求項8】 加圧成形後の冷却を冷却速度10K/s
以上にて行う請求項1〜3のいずれかに記載の非晶質合
中空成形品の製造方法。
8. The cooling rate after the pressure molding is 10 K / s.
The method for producing an amorphous alloy hollow molded article according to claim 1, which is performed as described above.
【請求項9】 合金溶湯の成分組成が下記一般式I)あ
るいはII)に示されるものである請求項1〜4のいずれ
かに記載の非晶質合金中空成形品の製造方法。 I)XabAlc II)Al100-d-edLne 但し、X:Zr及びHfから選ばれる1種又は2種の元
素、M:Ni,Cu,Fe,Co,Ti及びMnから選
ばれる少なくとも1種の元素、T:Ti,V,Cr,M
n,Fe,Co,Ni,Cu,Zr,Nb,Mo,H
f,Ta及びWから選ばれる少なくとも1種の元素、L
n:Y,La,Ce,Nd,Sm,Gd,Tb,Dy,
Ho,Yb及びMm(希土類元素の集合体であるミッシ
ュメタル)から選ばれる少なくとも1種の元素、a,
b,c,d,eは原子パーセントで25≦a≦85、5
≦b≦70、0<c≦35、0<d≦55、30≦e≦
90である。
9. The method for producing an amorphous alloy hollow molded article according to any one of claims 1 to 4, wherein the composition of the molten alloy is represented by the following general formula I) or II). I) X a M b Al c II) Al 100-de T d Ln e However, from X: Zr and one or two elements selected from Hf, M: Ni, Cu, Fe, Co, Ti and Mn At least one selected element, T: Ti, V, Cr, M
n, Fe, Co, Ni, Cu, Zr, Nb, Mo, H
at least one element selected from f, Ta and W, L
n: Y, La, Ce, Nd, Sm, Gd, Tb, Dy,
At least one element selected from Ho, Yb and Mm (Misch metal which is an aggregate of rare earth elements), a,
b, c, d, and e are atomic percentages of 25 ≦ a ≦ 85, 5
≦ b ≦ 70, 0 <c ≦ 35, 0 <d ≦ 55, 30 ≦ e ≦
90.
JP31228998A 1998-03-10 1998-11-02 Manufacturing method of amorphous alloy hollow molded article Expired - Fee Related JP3484360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31228998A JP3484360B2 (en) 1998-03-10 1998-11-02 Manufacturing method of amorphous alloy hollow molded article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5786198 1998-03-10
JP10-57861 1998-03-10
JP31228998A JP3484360B2 (en) 1998-03-10 1998-11-02 Manufacturing method of amorphous alloy hollow molded article

Publications (2)

Publication Number Publication Date
JPH11323454A JPH11323454A (en) 1999-11-26
JP3484360B2 true JP3484360B2 (en) 2004-01-06

Family

ID=26398952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31228998A Expired - Fee Related JP3484360B2 (en) 1998-03-10 1998-11-02 Manufacturing method of amorphous alloy hollow molded article

Country Status (1)

Country Link
JP (1) JP3484360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144400A (en) * 2010-01-12 2011-07-28 Olympus Corp Transition metal particle-dispersed alloy and method for producing the same, and transition metal particle-dispersed amorphous alloy and method for producing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068101A (en) * 2007-09-18 2009-04-02 Tohoku Univ Large-sized bulk metallic glass and method for manufacturing large-sized bulk metallic glass
US7869307B2 (en) * 2008-01-25 2011-01-11 Olympus Medical Systems Corp. Ultrasonic transmission member
JP5389462B2 (en) * 2009-02-10 2014-01-15 オリンパス株式会社 Continuous casting method and continuous casting apparatus for amorphous alloy
EP2395125A1 (en) 2010-06-08 2011-12-14 The Swatch Group Research and Development Ltd. Method of manufacturing a coated amorphous metal part
CN102029381A (en) * 2010-11-10 2011-04-27 华中科技大学 Processing and forming method for workpieces made of blocky metal glass or composite material of blocky metal glass
JP6417079B2 (en) * 2012-02-29 2018-10-31 ヘイシンテクノベルク株式会社 Metal glass forming apparatus and metal glass rod-shaped member forming apparatus
JP6226711B2 (en) * 2013-11-19 2017-11-08 株式会社石原産業 Metal glass molding equipment
KR20170000561A (en) * 2015-06-24 2017-01-03 주식회사 소프트다이아 Method of forming amorphous material and improvement of surface defects of diecasted amorphous material
CN111112572B (en) * 2018-10-31 2022-06-14 惠州比亚迪实业有限公司 Die, device and method for amorphous alloy die-casting molding and amorphous alloy die-casting part
KR102193282B1 (en) * 2019-08-21 2020-12-22 박상준 Excellent hardness and precision injection is possible eco-friendly alloys and manufacturing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
張ら,アモルファス合金風船をつくる,バウンダリー,1991年 9月15日,Vol.7 No.9,P.39−43

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011144400A (en) * 2010-01-12 2011-07-28 Olympus Corp Transition metal particle-dispersed alloy and method for producing the same, and transition metal particle-dispersed amorphous alloy and method for producing the same

Also Published As

Publication number Publication date
JPH11323454A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP5227979B2 (en) Thermoplastic casting of amorphous alloys
JP3808167B2 (en) Method and apparatus for manufacturing amorphous alloy molded article formed by pressure casting with mold
JP3484360B2 (en) Manufacturing method of amorphous alloy hollow molded article
US5213148A (en) Production process of solidified amorphous alloy material
EP0503880B1 (en) Amorphous magnesium alloy and method for producing the same
JPH08199318A (en) Bar-shaped or cylindrical zirconium-base amorphous alloy cast and molded by metal mold and its production
CN108650883A (en) By the method for glassy metal increasing material manufacturing three-dimension object
US20150068648A1 (en) Multi step processing method for the fabrication of complex articles made of metallic glasses
JP2004204296A (en) BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JP4011256B2 (en) Vacuum melting injection molding machine for active alloy molding
JP3479444B2 (en) Zirconium-based amorphous alloy
US5067551A (en) Method for manufacturing alloy rod having giant magnetostriction
US4377622A (en) Method for producing compacts and cladding from glassy metallic alloy filaments by warm extrusion
JP3359750B2 (en) Method for producing zirconium amorphous alloy rod and zirconium amorphous alloy cast by die
JP3560591B2 (en) Soft magnetic Co-based metallic glass alloy
WO2003074749A1 (en) Soft magnetic metallic glass alloy
JPH07268597A (en) Production of amorphous alloy coated member
JPH05253656A (en) Production of amorphous metallic tubular product
JP3396632B2 (en) Manufacturing method of amorphous alloy molded product
JP2963225B2 (en) Manufacturing method of amorphous magnesium alloy
Kolomytsev et al. Shape memory behavior in some (Ti, Zr, Hf) 50 (Ni, Cu) 50 alloys elaborated by glass devitrification
JP3127310B2 (en) Manufacturing method of amorphous alloy
JP4694325B2 (en) Co-Fe soft magnetic metallic glass alloy
JPH1092619A (en) Fe-based soft magnetic metallic glass sintered body and its manufacture
JP2001316782A (en) Amorphous soft magnetic alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees