JP3481538B2 - Absorption liquid regeneration system and absorption heat pump using the same - Google Patents

Absorption liquid regeneration system and absorption heat pump using the same

Info

Publication number
JP3481538B2
JP3481538B2 JP2000013873A JP2000013873A JP3481538B2 JP 3481538 B2 JP3481538 B2 JP 3481538B2 JP 2000013873 A JP2000013873 A JP 2000013873A JP 2000013873 A JP2000013873 A JP 2000013873A JP 3481538 B2 JP3481538 B2 JP 3481538B2
Authority
JP
Japan
Prior art keywords
distiller
refrigerant
liquid
absorption
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000013873A
Other languages
Japanese (ja)
Other versions
JP2001201210A (en
Inventor
大資 久島
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP2000013873A priority Critical patent/JP3481538B2/en
Publication of JP2001201210A publication Critical patent/JP2001201210A/en
Application granted granted Critical
Publication of JP3481538B2 publication Critical patent/JP3481538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収液の再生時に
吸収液も蒸発する作動媒体を用いた吸収式ヒートポンプ
の吸収液の再生システム及びそれを用いた吸収式ヒート
ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption liquid regeneration system for an absorption heat pump using a working medium that also evaporates the absorption liquid when the absorption liquid is regenerated, and an absorption heat pump using the same.

【0002】[0002]

【従来の技術】近年、エアコンの普及による夏場の電力
使用量の増加に加え、オフィスビルのOA化による冷房
需要が増大し、夏場の電力需給の逼迫は深刻な問題とな
っている。特に、8月の電力使用量のピーク時は、電力
使用量の約40%が冷房によるものであり、この割合
は、今後全電気使用量が増大しても変わらないと予想さ
れる。このような問題を解決するためには、家庭用エア
コンや事務所用エアコンとして、電力消費量の少ない吸
収式ヒートポンプ(冷凍機)を使用するのが有効である
とされている。また、工業廃熱の有効利用、エネルギ機
器のハイブリッド化によるコジェネレーション化に、熱
源駆動可能な吸収式ヒートポンプが有効である。
2. Description of the Related Art In recent years, in addition to an increase in the amount of electric power used in the summer due to the spread of air conditioners, the demand for air-conditioning due to the office automation of office buildings has increased, and the tight supply and demand of electric power in the summer has become a serious problem. In particular, during the peak power usage in August, about 40% of the power usage is due to cooling, and this ratio is expected to remain unchanged even if the total power usage increases in the future. In order to solve such a problem, it is said that it is effective to use an absorption heat pump (refrigerator) that consumes less power as a home air conditioner or an office air conditioner. Further, an absorption heat pump capable of driving a heat source is effective for effective utilization of industrial waste heat and cogeneration by hybridizing energy equipment.

【0003】これらの観点から、現在、吸収溶液として
臭化リチウム水溶液、冷媒として水を用いる吸収式ヒー
トポンプが開発され、市場に多く投入されている。ま
た、アンモニア−水を作動冷媒とする吸収式ヒートポン
プも提唱されている。さらに、特開平9−296966
号公報に開示されるように、冷媒に炭化水素、あるいは
HFCを用い、吸収液にビニルエーテル化合物を使用し
て吸収式ヒートポンプを作動させるもの、また、特開平
9−104862号公報に開示されるように、冷媒にフ
ッ化アルコールであるトリフロロエタノール(TFE:
圧縮式ヒートポンプの冷媒であるHFCの水素を水酸基
OHと置換したもの)、吸収液に高沸点の極性溶媒であ
るジメチルイミダゾリドン(DMI)を使用して吸収式
ヒートポンプを作動させるもの、などが提唱されてい
る。
From these viewpoints, an absorption heat pump using lithium bromide aqueous solution as an absorption solution and water as a refrigerant has been developed and put on the market in many cases. An absorption heat pump using ammonia-water as a working refrigerant has also been proposed. Furthermore, JP-A-9-296966
As disclosed in Japanese Patent Laid-Open No. 9-104862, a hydrocarbon or HFC is used as a refrigerant and an absorption heat pump is operated by using a vinyl ether compound as an absorbing liquid. In addition, trifluoroethanol (TFE:
(HFC, which is a refrigerant of a compression heat pump, in which hydrogen in the HFC is replaced with hydroxyl group OH), and one that uses a high boiling point polar solvent, dimethyl imidazolidone (DMI), to operate the absorption heat pump are proposed. Has been done.

【0004】しかし、従来の吸収溶液として臭化リチウ
ム水溶液、冷媒として水を用いる吸収式ヒートポンプに
おいて、水はヒートポンプの作動温度で蒸気圧力が数m
mHgと低く不凝縮ガスの排除が困難であること、臭化
リチウムに腐食性があるため定期的なメンテナンスが必
要であること、小型化が困難であること、空冷化が困難
であること、など検討すべき点がいくつかある。また、
冷媒である水(純水)が凍結するため冬場にヒートポン
プの運転ができず、暖房運転効率もよくない。
However, in a conventional absorption heat pump using an aqueous lithium bromide solution as an absorption solution and water as a refrigerant, water has a vapor pressure of several meters at the operating temperature of the heat pump.
Low mHg, difficult to remove non-condensable gas, lithium bromide is corrosive and requires regular maintenance, difficult to miniaturize, difficult to air cool, etc. There are some things to consider. Also,
Since the coolant water (pure water) freezes, the heat pump cannot be operated in winter and the heating operation efficiency is not good.

【0005】さらに、運転可能な冷媒としてアンモニ
ア、吸収液として水を用いる吸収式ヒートポンプも提唱
されているが、アンモニアの毒性が強いこと、腐食回避
のための適切なインヒビタがないこと、作動圧力が高い
ため2重効用化が難しいこと、などの検討を要する課題
がある。
Further, an absorption heat pump using ammonia as a drivable refrigerant and water as an absorption liquid has also been proposed, but the toxicity of ammonia is strong, there is no suitable inhibitor for avoiding corrosion, and the working pressure is high. There is a problem that needs to be considered, such as the fact that it is difficult to double-use because it is high.

【0006】水は地球温暖化、毒性などの点で非常によ
い冷媒であるが、高温部で腐食性があること、また、冷
媒である水が凍結するため冬場に運転ができず、暖房運
転効率がよくない。吸収式ヒートポンプの普及のために
はメンテナンスの必要がないこと、地球温暖化係数が小
さいこと、などが望まれる。
Water is a very good refrigerant in terms of global warming and toxicity, but it is not corrosive at high temperatures and the refrigerant water freezes so that it cannot be operated in the winter and heating operation is performed. Not efficient. In order to popularize absorption heat pumps, it is desirable that they do not require maintenance and that they have a low global warming potential.

【0007】上記条件を満足する吸収式ヒートポンプ用
の冷媒の一候補として、ジメチルエーテル等の炭化水素
が単位体積あたりのエネルギー密度が大きく、粘性が低
く、地球温暖化係数が小さいなどの理由で、Natural Wo
rking Fluids '98(B. Adamson、 M. AIRAH、 Australi
a、 'Dimethyl Ether as an R-12 Replacement'、 Natu
ral Working、Fluids '98、 IIR-Gustav Lorentzen Con
ference、 pp. 569-575(1998))において、次期候補とし
て提案されている。このジメチルエーテルの毒性は報告
されておらず、現在日本においても、殺虫剤等のスプレ
管内の加圧媒体としても使用されている。
Hydrocarbons such as dimethyl ether have a large energy density per unit volume, a low viscosity, and a low global warming potential as a candidate for a refrigerant for an absorption heat pump that satisfies the above conditions. Wo
rking Fluids '98 (B. Adamson, M. AIRAH, Australi
a, 'Dimethyl Ether as an R-12 Replacement', Natu
ral Working, Fluids '98, IIR-Gustav Lorentzen Con
ference, pp. 569-575 (1998)). The toxicity of this dimethyl ether has not been reported, and it is currently used in Japan as a pressurized medium in spray pipes such as insecticides.

【0008】これらの冷媒を吸収式ヒートポンプの作動
冷媒として用いた場合、抽気が必要でなく、単位体積あ
たりのエネルギー密度を増やせるため小型化が容易とな
り、地球温暖化係数が小さいので、地球環境への負荷が
小さくなる。さらに、高温部での腐食、毒性の問題など
も解決される。
When these refrigerants are used as working refrigerants for absorption heat pumps, bleeding is not required and the energy density per unit volume can be increased, which facilitates miniaturization and has a low global warming potential. Load is reduced. Furthermore, problems such as corrosion and toxicity at high temperatures can be solved.

【0009】その他、吸収液流量、蒸気流量が変化して
も、安定した気液の接触面積を確保して精留効果を維持
する吸収式ヒートポンプ(たとえば、特開平10−30
859号公報)、小型化を図る吸収式ヒートポンプ用の
精留器(たとえば、特開平9−26230号公報)など
も知られている。
In addition, even if the flow rate of the absorbing liquid and the flow rate of the vapor are changed, an absorption heat pump that secures a stable gas-liquid contact area and maintains the rectification effect (for example, Japanese Patent Laid-Open No. 10-30).
No. 859), a rectifier for an absorption heat pump (for example, Japanese Patent Laid-Open No. 9-26230), which is intended to be miniaturized.

【0010】[0010]

【本発明が解決しようとする課題】吸収式ヒートポンプ
では、吸収液に冷媒を吸収させることにより器内の圧力
を低く維持して冷媒を蒸発させ、冷却を可能にしてい
る。この吸収、蒸発を連続的に行うためには、他方で吸
収液と冷媒を分離(吸収液を再生)する必要がある。従
来の水−臭化リチウム水溶液を用いた吸収式ヒートポン
プでは、冷媒と吸収液との沸点差が大きいため、吸収液
の再生(濃縮)時に吸収液に溶け込んでいる臭化リチウ
ムは蒸発せず、比較的簡単な方法で再生することができ
た。
In the absorption heat pump, the absorption liquid absorbs the refrigerant to keep the pressure inside the vessel low to evaporate the refrigerant, thereby enabling cooling. In order to continuously perform this absorption and evaporation, it is necessary to separate the absorbing liquid and the refrigerant (regenerate the absorbing liquid) on the other hand. In the conventional absorption heat pump using water-lithium bromide aqueous solution, since the difference in boiling point between the refrigerant and the absorption liquid is large, the lithium bromide dissolved in the absorption liquid during regeneration (concentration) of the absorption liquid does not evaporate, It could be played in a relatively easy way.

【0011】しかし、機器の小型化を図るため、濃縮濃
度幅を大きくでき、結晶などのトラブル防止が可能で、
冷媒との沸点差があまり大きくない吸収液、たとえば、
冷媒として比較的沸点の低いエーテル系の自然冷媒、吸
収液としてエステル、芳香族などの炭化水素を使用した
場合、吸収液の再生時に冷媒のみでなく吸収液が蒸発す
る。このような組み合わせでは、従来の再生器では対応
できず、新たに冷媒と吸収液の分離性能のよいコンパク
トな再生器すなわち蒸留器を開発する必要があった。
However, in order to miniaturize the equipment, the concentration concentration range can be widened and troubles such as crystallization can be prevented,
Absorption liquid whose boiling point difference with the refrigerant is not so large, for example,
When an ether type natural refrigerant having a relatively low boiling point is used as the refrigerant and a hydrocarbon such as ester or aromatic is used as the absorbing liquid, not only the refrigerant but also the absorbing liquid is vaporized when the absorbing liquid is regenerated. With such a combination, the conventional regenerator cannot cope with it, and it has been necessary to newly develop a compact regenerator, that is, a distiller having a good performance of separating the refrigerant and the absorbing liquid.

【0012】このような蒸留器では、吸収液も冷媒と同
様に蒸発するので、冷媒を高い濃度で再生しようとする
と、一度凝縮して液化した冷媒を再度蒸留器内を流下さ
せる還流が必要となる。このように、還流と蒸留器内で
発生している蒸気とを有効に熱物質交換させるために、
蒸留器内の上部に充填物を詰める。また、同様に蒸留器
の中間部から流入する吸収液は、上記上部充填物の下方
に位置する下部充填物を流下し、流下する際に、吸収液
は蒸留器の最下部の加熱部で蒸発した蒸気と熱物質交換
する。
In such a distiller, the absorbing liquid evaporates in the same manner as the refrigerant. Therefore, when the refrigerant is regenerated at a high concentration, it is necessary to recirculate the condensed and liquefied refrigerant once again in the distiller. Become. Thus, in order to effectively exchange heat and mass between the reflux and the vapor generated in the still,
Fill the top in the still in the still. Similarly, the absorption liquid flowing in from the middle part of the distiller flows down the lower filling material located below the upper filling material, and when flowing down, the absorption liquid evaporates in the heating part at the bottom of the distilling equipment. Exchanging the heat substance with the vapor.

【0013】このように、蒸留器内で蒸気と液体とが熱
物質交換することは、化学プラントでは日常的に行われ
ているが、吸収式ヒートポンプでは、還流する冷媒量と
蒸留器に流入する吸収液量とで数十倍の違いがあるこ
と、ビルや家屋の内部もしくは側方に設置するため蒸留
器の高さに制限があること、などの理由により、化学プ
ラントの技術をそのまま適用することはできない。
As described above, heat and mass exchange of vapor and liquid in the distiller is routinely performed in a chemical plant, but in an absorption heat pump, the amount of refrigerant flowing back and the amount of refrigerant flowing into the distiller flow. Due to the fact that there is a difference of several tens of times with the amount of absorbed liquid, and the height of the distiller is limited because it is installed inside or on the side of a building or house, the technology of the chemical plant is applied as it is. It is not possible.

【0014】たとえば、流入量の多い吸収液を基準に、
詰める充填物として目の粗いものを選定すると、流下量
の少ない冷媒の還流が流下する部分で充填物の詰める部
分の高さが高くなってしまう。また、流下量の小さい冷
媒の還流が流下する部分に合わせて目の細かい充填物を
選定すると、流下量の多い吸収液部分で蒸気の流動が阻
害されてしまい、蒸留器の性能が低下してしまう。
For example, based on the absorption liquid having a large inflow amount,
If coarse packing is selected as the packing material to be packed, the height of the packing area of the packing material becomes high at the portion where the reflux of the refrigerant having a small amount flows down. Also, if a fine packing is selected according to the portion where the reflux of the refrigerant with a small amount of flow down flows, the flow of the vapor is obstructed in the part of the absorbing liquid with a large amount of flow down, and the performance of the distiller deteriorates. I will end up.

【0015】本発明の目的は、吸収液が蒸発する作動媒
体を高効率で再生できる吸収式ヒートポンプの吸収液の
再生システムを提供することにある。また、本発明の目
的は、作動媒体を高効率で再生する再生システムを用い
ることによりシステムの高さを低くし、ビルや家屋の内
部等に容易に設置可能な吸収式ヒートポンプを提供する
ことにある。
An object of the present invention is to provide an absorption liquid regeneration system for an absorption heat pump which can regenerate a working medium in which the absorption liquid evaporates with high efficiency. Another object of the present invention is to provide an absorption heat pump that can be easily installed in a building, a house, etc. by reducing the height of the system by using a regeneration system that regenerates a working medium with high efficiency. is there.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る吸収液の再生システムの発明の構成
は、冷媒との沸点差が大きくない吸収液を再生する蒸留
と、前記蒸留器の上方に設けられて冷媒を凝縮させる
冷媒凝縮部と、前記蒸留器の下方に設けられて前記吸収
液を加熱して蒸気を発生する吸収液加熱器とを備え、
記冷媒凝縮部で凝縮して液化した冷媒を前記蒸留器内を
流下させて還流させると共に、前記吸収液加熱器で発生
した蒸気を前記蒸留器内を上昇させるようにして、吸収
液の再生時に吸収液も蒸発する作動媒体を用いる吸収液
の再生システムにおいて、前記蒸留器を上部と、この上
部の下方に位置する下部とに区分し、前記蒸留器の上部
と下部との間に吸収液流入口を設け、この吸収液流入口
より上部には目の細かい充填物を詰め、前記吸収液流入
口より下部には、前記上部の充填物の空隙率より概ね3
倍の空隙率を有する目の粗い充填物を詰めるものであ
In order to achieve the above-mentioned object, the constitution of the invention of the absorption liquid regenerating system according to the present invention comprises a distiller for regenerating the absorption liquid having a large boiling point difference with the refrigerant, and Installed above the distiller to condense the refrigerant
Refrigerant condensing section and provided below the distiller to absorb the absorption
And a reboiler that heats the liquid to generate steam, before
The refrigerant condensed and liquefied in the refrigerant condensing section is stored in the distiller.
Generated by the absorption liquid heater while flowing down and refluxing
And the steam to raise the in the distiller, in the reproduction system of the absorbent using a working medium also evaporates absorbing liquid during regeneration of the absorbent, and a top of the distiller, on this
The upper part of the distiller is divided into a lower part and a lower part.
And the absorption liquid inlet between the lower formed, filled the absorbing solution inlet port from a fine filling on top, wherein the lower the absorption liquid inlet port, generally from the porosity of the top of the packing Three
It is to fill a coarse packing with double porosity .

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】上記目的を達成するために、本発明に係る
吸収式ヒートポンプの発明の構成は、冷媒との沸点差が
大きくない吸収液を再生する蒸留器、冷媒を凝縮させる
凝縮器、前記吸収液を加熱して蒸気を発生する吸収液加
熱器及び吸収器を備え、前記冷媒凝縮部で凝縮して液化
した冷媒を前記蒸留器内を流下させて還流させると共
に、前記吸収液加熱器で発生した蒸気を前記蒸留器内を
上昇させるようにして、吸収液の再生時に吸収液も蒸発
する作動媒体を用いる吸収式ヒートポンプにおいて、
記蒸留器を上部と、この上部の下方に位置する下部とに
区分し、前記蒸留器の上部と下部との間に吸収液流入口
を設け、この吸収液流入口より上部には目の細かい充填
物を詰め、前記吸収液流入口より下部には、前記上部
充填物の空隙率より概ね3倍の空隙率を有する目の粗い
充填物を詰めるものである。
In order to achieve the above object, the constitution of the invention of the absorption heat pump according to the present invention has a difference in boiling point from that of the refrigerant.
Distiller to play no greater absorption liquid, <br/> condenser for condensing the refrigerant, absorbing liquid pressure that by heating the absorption liquid to generate steam
Equipped with a heater and absorber , condensed in the refrigerant condensing part and liquefied
When the generated refrigerant is flowed down in the distiller and refluxed,
The vapor generated in the absorption liquid heater in the distiller
As it rises, the absorbent also evaporates during regeneration of the absorbent
In the absorption heat pump Ru using the working medium, before
Install the distiller into the upper part and the lower part below this upper part.
An absorbent inlet is provided between the upper and lower parts of the distiller, a fine packing is filled above the absorbent inlet , and an upper portion is installed below the absorbent inlet. of
It is intended to pack the coarse filler having a generally three times the void ratio than the porosity of the filler.

【0022】[0022]

【0023】[0023]

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明に係る吸収式ヒー
トポンプのサイクルフロー図であり、吸収液の再生時に
吸収液が蒸発する作動媒体から吸収液を再生する再生シ
ステムを用いている。吸収式ヒートポンプは、蒸留器1
01、凝縮器102、蒸発器104、冷媒膨張弁10
3、冷媒熱交換器105、吸収器106、吸収液ポンプ
107、吸収液熱交換器108、吸収液調圧弁109、
及びそれらをつなぐ配管110、111、112、11
3、114、115、吸収液加熱器116、凝縮器冷却
水配管117、冷水配管118によって構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cycle flow diagram of an absorption heat pump according to the present invention, which uses a regeneration system for regenerating an absorption liquid from a working medium in which the absorption liquid evaporates when the absorption liquid is regenerated. Absorption heat pump is a distiller 1
01, condenser 102, evaporator 104, refrigerant expansion valve 10
3, refrigerant heat exchanger 105, absorber 106, absorption liquid pump 107, absorption liquid heat exchanger 108, absorption liquid pressure regulating valve 109,
And piping 110, 111, 112, 11 connecting them
3, 114, 115, absorption liquid heater 116, condenser cooling water pipe 117, and cold water pipe 118.

【0025】蒸留器101より発生した冷媒蒸気110
は、凝縮器102で、凝縮器冷却水117と熱交換し凝
縮する。凝縮して液化した冷媒は、冷媒熱交換器105
を介して冷媒膨張弁103を経て蒸発器104に流入す
るものと、還流111して再度蒸留器101内に戻るも
のとに分かれる。蒸発器104に流入した冷媒は、冷水
と冷水配管118の伝熱面を介し熱交換し、冷水から熱
を奪いながら蒸発し、蒸気の状態で吸収器106へ流入
する。
Refrigerant vapor 110 generated from the still 101
Is condensed in the condenser 102 by exchanging heat with the condenser cooling water 117. The condensed and liquefied refrigerant is the refrigerant heat exchanger 105.
Through the refrigerant expansion valve 103 to flow into the evaporator 104, and into the reflux 111 and return to the distiller 101 again. The refrigerant flowing into the evaporator 104 exchanges heat with cold water via the heat transfer surface of the cold water pipe 118, evaporates while removing heat from the cold water, and then flows into the absorber 106 in a vapor state.

【0026】一方、蒸留器101より配管115を経由
して流出する吸収溶液115は、溶液熱交換器108を
介して、吸収器106から戻ってくる吸収液を加熱しな
がら、自らは冷却されて吸収器106に流入し、吸収器
冷却水119により冷却され、冷媒蒸気を吸収する。こ
の吸収溶液は吸収溶液ポンプ107を経て吸収液熱交換
器108で加熱され、再び蒸留器101に流入し蒸留器
加熱媒体116により加熱されて濃縮される。以上が吸
収式ヒートポンプのサイクルフローである。
On the other hand, the absorbing solution 115 flowing out from the distiller 101 via the pipe 115 is cooled by itself while heating the absorbing liquid returning from the absorber 106 via the solution heat exchanger 108. It flows into the absorber 106, is cooled by the absorber cooling water 119, and absorbs the refrigerant vapor. The absorbing solution is heated by the absorbing solution heat exchanger 108 via the absorbing solution pump 107, flows into the distiller 101 again, and is heated by the distiller heating medium 116 to be concentrated. The above is the cycle flow of the absorption heat pump.

【0027】図2は、混合液の沸点濃度(露点温度)と
吸収液質量濃度との関係を示す図である。本図は、気液
平衡推算法を利用して計算した混合液の低沸点成分の質
量濃度と沸点温度(K)との関係であって、同図を利用
してサイクルの吸収液の蒸留器入口、出口濃度を求める
方法を説明する。
FIG. 2 is a diagram showing the relationship between the boiling point concentration (dew point temperature) of the mixed liquid and the absorption liquid mass concentration. This figure shows the relationship between the boiling point temperature (K) and the mass concentration of the low boiling point component of the mixed solution calculated using the gas-liquid equilibrium estimation method. A method for obtaining the inlet and outlet concentrations will be described.

【0028】冷媒と吸収液との混合時の物性測定データ
はすべての組み合わせに対して存在するわけではないの
で、評価には臨界点に近い状態での気液平衡を論ずる必
要がある。このたため、J. Gmehling らの提唱する (J.
Gmehling、 'From UNIFAC toModified UNIFAC to PARK
with the help of DDB'、 Fluid Phase Equilibria、107、
pp1-29 (1995))状態方程式を使用するものを利用し
た。
Since the physical property measurement data at the time of mixing the refrigerant and the absorbing liquid do not exist for all combinations, it is necessary to discuss the gas-liquid equilibrium in the state close to the critical point for evaluation. For this reason, it is proposed by J. Gmehling et al. (J.
Gmehling, 'From UNIFAC to Modified UNIFAC to PARK
with the help of DDB ', Fluid Phase Equilibria, 107,
pp1-29 (1995)) The one using the equation of state was used.

【0029】同図に、低沸点成分5℃の蒸気圧での蒸発
器条件、及び低沸点成分40℃の蒸気圧での凝縮器条件
の場合についてのそれぞれの吸収液質量濃度と沸点温度
との関係を示す。同図から、蒸発器条件(実線)では、
吸収液の温度が冷却可能な40℃の時、吸収液質量濃度
A まで希釈可能であることが理解できる。また、同様
に凝縮条件(破線)では、吸収液の温度が蒸留器101
で加熱可能な100℃の時、吸収液質量濃度XG まで濃
縮可能であることが理解できる。この時、吸収液の濃縮
幅は作動冷媒の組み合わせによって異なるが、3%から
10%程度となる。なお、図中のXA は吸収器での吸収
液質量濃度(wt%)、XG は蒸留器での吸収液質量濃
度(wt%)を示す。
In the figure, the mass concentration of the absorbing liquid and the boiling point temperature are shown for the conditions of the evaporator with the vapor pressure of the low boiling point component of 5 ° C. and the condition of the condenser with the vapor pressure of the low boiling point component of 40 ° C. Show the relationship. From the figure, under the evaporator conditions (solid line),
It can be understood that when the temperature of the absorbing liquid is 40 ° C. at which cooling is possible, it can be diluted to the absorbing liquid mass concentration X A. Similarly, under the condensing condition (broken line), the temperature of the absorbing liquid is distiller 101.
It can be understood that when the temperature is 100 ° C., at which the heating can be performed at 100 ° C., it is possible to concentrate to the absorption liquid mass concentration X G. At this time, the concentration range of the absorption liquid is about 3% to 10%, though it varies depending on the combination of working refrigerants. In the figure, X A represents the absorption liquid mass concentration (wt%) in the absorber, and X G represents the absorption liquid mass concentration (wt%) in the distiller.

【0030】次に、蒸留器101の再生時のエネルギー
ロスについて説明する。図3は、一定純度の冷媒を得る
ための必要還流量と必要理論段数との関係を示す図であ
る。冷媒、吸収液の沸点差が大きくない場合、冷媒を高
い濃度で再生しようとすると、一度凝縮して液化した冷
媒を再度蒸留器101内を流下させる還流が必要とな
る。還流が大きくなると再生に必要な熱量も大きくな
り、還流比を小さくすると必要理論段数が大きくなり蒸
留器101の高さが高くなる。また、還流が不充分であ
ると冷媒が蒸発器104において充分に蒸発せず、吸収
ヒートポンプの成績係数(COP)が低下する。
Next, the energy loss when the distiller 101 is regenerated will be described. FIG. 3 is a diagram showing the relationship between the required reflux amount and the required theoretical plate number for obtaining a refrigerant of constant purity. When the boiling point difference between the refrigerant and the absorbing liquid is not large, in order to regenerate the refrigerant at a high concentration, it is necessary to recirculate the condensed and liquefied refrigerant once again in the distiller 101. The larger the reflux, the larger the amount of heat required for regeneration, and the smaller the reflux ratio, the larger the number of theoretical plates required and the higher the height of distiller 101. Further, if the reflux is insufficient, the refrigerant does not evaporate sufficiently in the evaporator 104, and the coefficient of performance (COP) of the absorption heat pump decreases.

【0031】図4は、蒸留器内での液相モル濃度と気相
モル濃度との線図で、蒸留器を充分大きくした場合の必
要最小還流比が同図から作図により求まる。
FIG. 4 is a diagram of the liquid-phase molar concentration and the vapor-phase molar concentration in the distiller, and the necessary minimum reflux ratio when the distiller is made sufficiently large can be obtained by drawing from the diagram.

【0032】すなわち、蒸留器101に流入する吸収液
の冷媒モル濃度XA からX=Y線上に垂線を引き、この
点から、−q/(1−q)〔q(Molar liquid fraction
offeed)は数1より求める。〕の傾きの直線(q線:原
料供給線または2成分の精留図解補助線ともいう。)と
気液平衡線の交点が、濃縮操作線と回収操作線の交点と
なる。この点のY座標をYA とすると最小還流比は数2
により求めることができる。ここで、QR は流入冷媒1
モルを飽和蒸気とするための熱量(kJ/mol)、Δ
R は冷媒のモル蒸発潜熱(kJ/mol)を示す。
That is, a perpendicular line is drawn on the X = Y line from the refrigerant molar concentration X A of the absorbing liquid flowing into the distiller 101, and from this point, −q / (1−q) [q (Molar liquid fraction
of feed) is calculated from equation 1. ] The intersection of the straight line (q line: a raw material supply line or a rectification diagram auxiliary line for two components) and the vapor-liquid equilibrium line is the intersection of the concentration operation line and the recovery operation line. If the Y coordinate of this point is Y A , the minimum reflux ratio is
Can be obtained by Here, Q R inflow refrigerant 1
Amount of heat (kJ / mol) to make mol a saturated vapor, Δ
H R represents the latent heat of vaporization of the refrigerant (kJ / mol).

【0033】[0033]

【数1】q=QR/ΔHR ## EQU1 ## q = Q R / ΔH R

【0034】[0034]

【数2】(R/D)min=XD−YA/YA−Xa このようにして求めた還流比は、作動冷媒の組み合わせ
によっても異なるが、約0.1から0.9程度となり、
還流の量は、蒸発器104に流出する量の10分の1か
ら10分の9程度となる。
[Number 2] (R / D) min = X D -Y A / Y A -X a reflux ratio determined in this manner, varies depending on the combination of working refrigerant, the order of about 0.1 0.9 Next to
The amount of reflux is about 1/10 to 9/10 of the amount flowing out to the evaporator 104.

【0035】したがって、吸収液の蒸留器101への流
入量と還流量の比は、次のようになる。
Therefore, the ratio of the amount of the absorption liquid flowing into the distiller 101 and the amount of reflux is as follows.

【0036】たとえば、蒸留器101に流入する吸収液
量を1kg/sとし、流入する吸収液の流入質量濃度を
80wt%、流出質量濃度を85wt%とすると、その
時の冷媒発生量は0.059kg/sとなり、この時の
還流比を0.5とすると、還流量は0.0295kg/
sとなる。これは流入吸収液量の約34分の1に相当す
る。
For example, assuming that the amount of absorbing liquid flowing into the distiller 101 is 1 kg / s, the inflowing mass concentration of the inflowing absorbing liquid is 80 wt%, and the outflowing mass concentration is 85 wt%, the refrigerant generation amount at that time is 0.059 kg. / S, and assuming that the reflux ratio at this time is 0.5, the reflux rate is 0.0295 kg /
s. This corresponds to about 1/34 of the amount of absorbed liquid inflow.

【0037】一般に、自由表面を持った液膜の厚さは流
量の3分の1乗以上に比例するので、この時の液膜厚さ
を比較すると、34の3分の1乗である3.2倍程度と
なる。したがって、液膜が自由表面を持ったまま、流下
できるためにはこの場合で、吸収液流入部の下部の液膜
流下部は吸収液流入部の上部の液膜流下部と比較して3
倍程度の流下する隙間が必要となる。
In general, the thickness of a liquid film having a free surface is proportional to one third or more of the flow rate. Therefore, comparing the liquid film thicknesses at this time, it is one-third of 34. Approximately twice as much. Therefore, in order to allow the liquid film to flow down while having a free surface, the liquid film lower part of the lower part of the absorbing liquid inflow part is 3 times lower than the lower part of the liquid film lower part of the absorbing liquid inflow part.
About twice as much clearance is required.

【0038】図5は、蒸留器の実施例の詳細縦断面図
で、本実施例の蒸留器は上記知見に基づいて構成されて
いる。
FIG. 5 is a detailed vertical sectional view of an embodiment of the distiller. The distiller of this embodiment is constructed based on the above knowledge.

【0039】1は蒸留器で、蒸留器下部2と、その上方
に位置する蒸留器上部3とに区分される。4は吸収液加
熱器で、蒸留器下部2の下方に取り付けられている。5
は冷媒凝縮部で、冷媒を凝縮させる部分であり、蒸留器
上部3のさらに上方に位置している。6は吸収液流入口
で、蒸留器下部2と蒸留器上部3との間に位置してい
る。7は吸収液流出口で、吸収液加熱器4の吸収液8の
液溜部に取り付けられている。9は冷媒流出口で、蒸留
器1内に位置する端部は拡張されて受け口9aを形成し
ている。10は充填物で、蒸留器上部3に詰められてお
り、本実施例では規則的に編まれたワイヤメッシュが使
用されている。同様に、11は充填物で、蒸留器下部2
に詰められており、本実施例では粒状のラシヒリングが
使用されている。この充填物11は、詰められた状態で
充填物10より目が粗くなるように粒径、長さが選定さ
れる。すなわち、充填物10の目の細かさは、上記知見
に基づき、充填物11の概ね3分の1になるように選定
する。これに伴い、充填物11の空隙率も、充填物10
の空隙率より大きく(概ね3倍)なっている。12は冷
却媒体で、冷媒凝縮部5内の管内を流れる。
A distiller 1 is divided into a distiller lower part 2 and a distiller upper part 3 located thereabove. Reference numeral 4 denotes an absorption liquid heater, which is attached below the lower part 2 of the still. 5
Is a refrigerant condensing part, which is a part for condensing the refrigerant, and is located above the distiller upper part 3. Reference numeral 6 denotes an absorbent inlet, which is located between the lower part 2 of the still and the upper part 3 of the still. Reference numeral 7 denotes an absorbent outlet, which is attached to the liquid reservoir of the absorbent 8 of the absorbent heater 4. Reference numeral 9 denotes a refrigerant outlet, and an end portion located inside the still 1 is expanded to form a receiving port 9a. 10 is a packing, which is packed in the upper part 3 of the still, and in this embodiment, a regularly knitted wire mesh is used. Similarly, 11 is the packing, which is the bottom 2 of the still.
In this embodiment, granular Raschig rings are used. The particle size and length of this packing 11 are selected so that the packing 11 has a coarser mesh than the packing 10. That is, the fineness of the packing 10 is selected to be approximately one-third of that of the packing 11 based on the above knowledge. Along with this, the porosity of the filling material 11 is
Is larger than the porosity of (approximately 3 times). Reference numeral 12 denotes a cooling medium, which flows in the pipe inside the refrigerant condensing section 5.

【0040】上記構成において、蒸留器1に吸収液流入
口6より吸収液9が流入すと、吸収液9は蒸留器下部2
の充填物11間を流下しながら吸収液加熱器4に流下す
る。ここでは熱媒体によって吸収液8が加熱され、比較
的に冷媒を多く含んだ蒸気12を発生する。これによっ
て吸収液8は濃縮され、吸収液流出口7から濃縮された
吸収液が流出する。
In the above structure, when the absorbing liquid 9 flows into the still 1 through the absorbing liquid inlet 6, the absorbing liquid 9 is absorbed in the lower portion 2 of the still.
While flowing down between the filling materials 11 of FIG. Here, the absorbing liquid 8 is heated by the heat medium, and the vapor 12 containing a relatively large amount of the refrigerant is generated. Thereby, the absorbing liquid 8 is concentrated, and the concentrated absorbing liquid flows out from the absorbing liquid outlet 7.

【0041】一方、冷媒を比較的多く含んだ蒸気13に
は、まだ多くの吸収液が含まれている。この蒸気13は
充填物11間を流下する吸収液と熱物質交換し、徐々に
吸収液の濃度を小さくしながら充填物10間を上昇す
る。この時、蒸気13は凝縮冷媒の還流14と充填物1
0間で熱物質交換し、さらに、冷媒の純度を高めながら
上昇し、冷媒凝縮部5に流れる冷却媒体12と熱交換
し、液体の冷媒15となる。冷媒15の一部は、蒸留器
1内に再度還流14し、残りは冷媒流出口8から流出す
る。
On the other hand, the vapor 13 containing a relatively large amount of refrigerant still contains a large amount of absorbing liquid. The vapor 13 exchanges heat and mass with the absorbing liquid flowing down between the fillings 11 and gradually rises between the fillings 10 while gradually reducing the concentration of the absorbing liquid. At this time, the vapor 13 is the reflux 14 of the condensed refrigerant and the filler 1.
The heat and mass are exchanged between 0, and further, the temperature rises while increasing the purity of the refrigerant, and the heat is exchanged with the cooling medium 12 flowing into the refrigerant condensing section 5, and becomes the liquid refrigerant 15. A part of the refrigerant 15 recirculates into the distiller 1 again 14 and the rest flows out from the refrigerant outlet port 8.

【0042】本実施例は、蒸留器1の性能を向上させる
ために、蒸留器1内の吸収液流入口6の上部3及び下部
2で二つの充填物10、11を個別に選定し、吸収液流
入部6より上部3には、目の細かい充填物16を使用
し、吸収液流入口6より下部2には、目の粗い充填物1
1を詰めている。蒸留器1への吸収液流入口6より上部
3に、目の細かい充填物10を使用することで、吸収液
流入口6からの吸収液流入量に比べて極端に少ない量の
還流14であっても効率よく蒸留器1内の蒸気と熱物質
交換できる。
In this embodiment, in order to improve the performance of the distiller 1, two packings 10 and 11 are individually selected at the upper part 3 and the lower part 2 of the absorbing liquid inlet 6 in the distiller 1 to absorb and A fine packing 16 is used above the liquid inflow portion 6, and a coarse packing 1 is used below the absorbing liquid inlet 6.
1 is packed. By using the fine packing 10 in the upper part 3 of the absorption liquid inlet 6 to the distiller 1, the amount of the reflux 14 is extremely smaller than the amount of the absorption liquid flowing in from the absorption liquid inlet 6. Even so, it is possible to efficiently exchange the heat substance with the vapor in the still 1.

【0043】このため、蒸留器1の高さを低くすること
ができ、これを使用する吸収式ヒートポンプの高さも低
くなり、したがって、ビルや家屋の内部もしくは側方の
設置が容易となり、設置高さに制限がある場合でも設置
制限に対応し易くなる。
Therefore, the height of the distiller 1 can be reduced, and the height of the absorption heat pump using the distiller 1 is also reduced. Therefore, the interior of the building or the house or the side thereof can be easily installed, and the installation height can be increased. Even if there are restrictions on the size, it becomes easier to comply with the installation restrictions.

【0044】また、吸収液流入口6より下部2に目の粗
い充填物11を使用することで、流下量の多い吸収液が
吸収液加熱器4で発生する蒸気13の上方への流動を阻
害せず、蒸留器1の性能低下を防止することができる。
Further, by using the coarse packing 11 in the lower portion 2 below the absorption liquid inlet 6, the absorption liquid having a large amount of flow-down obstructs the upward flow of the vapor 13 generated in the absorption liquid heater 4. Without doing so, the performance of the distiller 1 can be prevented from deteriorating.

【0045】図6は、蒸留器の他の実施例の詳細縦断面
図で、図5と同等部分には同一符合を付して説明を省略
する。蒸留器1への吸収液流入口6より上部3には、粒
状の目の細かい充填物(たとえば、ラシヒリング)16
を詰め、吸収液流入口6より下部2には、充填物16よ
り目の粗い充填物11(同様に、ラシヒリング)を詰め
る。蒸留器1への吸収液流入口6より上部3の充填物1
6の目の細かさを吸収液流入口6より下部2の充填物1
1の概ね3分の1にする。なお、18は充填物サポート
で、充填物16をサポートしている。
FIG. 6 is a detailed vertical sectional view of another embodiment of the distiller. The same parts as those in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted. Above the absorption liquid inlet 6 to the distiller 1, there is a granular fine packing (for example, Raschig ring) 16
The lower portion 2 below the absorbent inlet 6 is filled with a filler 11 having coarser mesh than the filler 16 (also Raschig ring). Packing material 1 in the upper part 3 from the absorption liquid inlet 6 to the still 1
The fineness of the mesh 6 is 6
Approximately one third of one. A filling support 18 supports the filling 16.

【0046】上記構成にすることで、吸収液流入量9に
比べて極端に少ない量の還流14であっても効率よく蒸
留器1内の蒸気と熱物質交換でき、蒸留器1の高さを低
くすることができ、上記実施例と同様の効果を得ること
ができる。
With the above-mentioned structure, even if the amount of the reflux 14 is extremely smaller than the amount 9 of inflow of the absorbing liquid, the heat substance can be efficiently exchanged with the vapor in the still 1, and the height of the still 1 can be increased. It can be lowered, and the same effect as in the above embodiment can be obtained.

【0047】図7は、蒸留器のさらに他の実施例の詳細
縦断面図で、図5と同等部分には同一符合を付して説明
を省略する。吸収液流入口6の下部2において、充填物
11を詰める部分の蒸留器1の横断面積を、上部3にお
いて充填物11を詰める部分の横断面積より大きくし、
充填物11には共に同一物を使用する。すなわち、下部
2、上部3に同一物の充填物11を使用しても、下部側
の横断面積を大きくするすることにより単位高さ当たり
の熱物質交換能力が高まり、下部2の蒸留器1の高さを
高くしたと同様の熱物質交換が行われ、上記実施例と同
様の効果を得ることができる。
FIG. 7 is a detailed vertical sectional view of still another embodiment of the distiller. The same parts as those in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted. In the lower part 2 of the absorbing liquid inlet 6, the cross-sectional area of the distiller 1 in the part where the packing 11 is packed is made larger than the cross-sectional area of the part where the packing 11 is packed in the upper part 3,
The same material is used as the filling material 11. That is, even if the same filling material 11 is used for the lower part 2 and the upper part 3, the heat mass exchange capacity per unit height is increased by increasing the cross-sectional area on the lower part side, and the distiller 1 of the lower part 2 is The same heat and mass exchange is performed as when the height is increased, and the same effect as that of the above-described embodiment can be obtained.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
冷媒に地球環境負荷の少ない自然冷媒を用いる場合のよ
うに、吸収液が蒸発する作動媒体を高効率で再生するこ
とのできる吸収式ヒートポンプの吸収液の再生システム
を提供することができる。
As described above, according to the present invention,
It is possible to provide an absorption liquid regeneration system of an absorption heat pump capable of highly efficiently regenerating a working medium in which an absorption liquid evaporates, as in the case of using a natural refrigerant having a low global environmental load as the refrigerant.

【0049】また、本発明によれば、作動媒体を高効率
で再生する再生システムを用いることによりシステムの
高さを低くでき、ビルや家屋の内部等に容易に設置可能
な吸収式ヒートポンプを提供することができる。
Further, according to the present invention, by using the regeneration system for regenerating the working medium with high efficiency, the height of the system can be reduced, and the absorption heat pump which can be easily installed inside a building or a house is provided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る吸収式ヒートポンプのサイクルフ
ロー図である。
FIG. 1 is a cycle flow diagram of an absorption heat pump according to the present invention.

【図2】混合液の沸点濃度(露点温度)と吸収液質量濃
度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a boiling point concentration (dew point temperature) of a mixed liquid and an absorption liquid mass concentration.

【図3】一定純度の冷媒を得るための必要還流量と必要
理論段数との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a required reflux amount and a required theoretical plate number for obtaining a constant-purity refrigerant.

【図4】蒸留器内での液相モル濃度と気相モル濃度との
線図である。
FIG. 4 is a diagram of a liquid phase molar concentration and a vapor phase molar concentration in a still.

【図5】蒸留器の実施例の詳細縦断面図である。FIG. 5 is a detailed vertical sectional view of an embodiment of the still.

【図6】蒸留器の他の実施例の詳細縦断面図である。FIG. 6 is a detailed vertical sectional view of another embodiment of the still.

【図7】蒸留器のさらに他の実施例の詳細縦断面図であ
る。
FIG. 7 is a detailed vertical sectional view of still another embodiment of the still.

【符号の説明】[Explanation of symbols]

1:蒸留器 2、17:蒸留器下部 3:蒸留器上部 4:吸収液加熱器 5:冷媒凝縮部 6:吸収液流入口 7:吸収液流出口 8:吸収液 9:冷媒流出口、9a:受け口 10、11、16:充填物 12:冷却媒体 13:蒸気 14:還流 15:液体の媒体 16、18、20:充填物 17:不規則充填物 19:充填物サポート 101:蒸留器 102:凝縮器 103:冷媒膨張弁 104:蒸発器 105:冷媒熱交換器 106:吸収器 107:吸収液ポンプ 108:吸収液熱交換器 109:吸収液調圧弁 110、111、112、113、114、115:配
管 116:吸収液加熱器 117:凝縮器冷却水配管 118:冷水配管
1: Distiller 2, 17: Distiller lower part 3: Distiller upper part 4: Absorption liquid heater 5: Refrigerant condensing part 6: Absorbing liquid inlet 7: Absorbing liquid outlet 8: Absorbing liquid 9: Refrigerant outlet, 9a : Receptacles 10, 11, 16: Packing 12: Cooling medium 13: Steam 14: Reflux 15: Liquid medium 16, 18, 20: Packing 17: Irregular packing 19: Packing support 101: Distiller 102: Condenser 103: Refrigerant expansion valve 104: Evaporator 105: Refrigerant heat exchanger 106: Absorber 107: Absorbing liquid pump 108: Absorbing liquid heat exchanger 109: Absorbing liquid pressure regulating valve 110, 111, 112, 113, 114, 115 : Pipe 116: Absorption liquid heater 117: Condenser cooling water pipe 118: Cold water pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 33/00 F25B 15/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 33/00 F25B 15/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒との沸点差が大きくない吸収液を再
生する蒸留器と、前記蒸留器の上方に設けられて冷媒を
凝縮させる冷媒凝縮部と、前記蒸留器の下方に設けられ
て前記吸収液を加熱して蒸気を発生する吸収液加熱器と
を備え、前記冷媒凝縮部で凝縮して液化した冷媒を前記
蒸留器内を流下させて還流させると共に、前記吸収液加
熱器で発生した蒸気を前記蒸留器内を上昇させるように
して、吸収液の再生時に吸収液も蒸発する作動媒体を用
いる吸収液の再生システムにおいて、前記蒸留器を上部と、この上部の下方に位置する下部と
に区分し、 前記蒸留器の上部と下部との間に吸収液流入口を設け、 この吸収液流入口より上部には目の細かい充填物を詰
め、前記吸収液流入口より下部には、前記上部の充填物
の空隙率より概ね3倍の空隙率を有する目の粗い充填物
を詰めることを特徴とする吸収液の再生システム。
1. A distiller that regenerates an absorbing liquid having a large boiling point difference with the refrigerant, and a distiller installed above the distiller to cool the refrigerant.
A refrigerant condensing unit for condensing and provided below the distiller
An absorption liquid heater that heats the absorption liquid to generate vapor, and the refrigerant condensed and liquefied in the refrigerant condensing unit is
The distiller is allowed to flow down to reflux and the absorption liquid is added.
As the steam generated in the heater rises in the distiller
Then, in the absorption liquid regeneration system using a working medium that also evaporates the absorption liquid at the time of regeneration of the absorption liquid, the distiller is provided in an upper part and a lower part located below the upper part.
Is divided into, the liquid absorbent inlet between the top and bottom of the distiller provided, packed fine filling of eyes on top than this absorbing solution inlet port, at the bottom than the absorbing solution inlet port, said Top filling
The absorbent regeneration system is characterized in that it is filled with a coarse filler having a porosity about three times as large as that of No.
【請求項2】 冷媒との沸点差が大きくない吸収液を再
生する蒸留器、冷媒を凝縮させる凝縮器、前記吸収液を
加熱して蒸気を発生する吸収液加熱器及び吸収器を備
、前記冷媒凝縮部で凝縮して液化した冷媒を前記蒸留
器内を流下させて還流させると共に、前記吸収液加熱器
で発生した蒸気を前記蒸留器内を上昇させるようにし
て、吸収液の再生時に吸収液も蒸発する作動媒体を用い
る吸収式ヒートポンプにおいて、前記蒸留器を上部と、この上部の下方に位置する下部と
に区分し、 前記蒸留器の上部と下部との間に吸収液流入口を設け、 この吸収液流入口より上部には目の細かい充填物を詰
め、前記吸収液流入口より下部には、前記上部の充填物
の空隙率より概ね3倍の空隙率を有する目の粗い充填物
を詰めることを特徴とする吸収液の吸収式ヒートポン
プ。
2. A distiller for regenerating an absorbing liquid having a large boiling point difference with the refrigerant, a condenser for condensing the refrigerant, and the absorbing liquid.
It is equipped with an absorption liquid heater and an absorber that generate steam by heating, and the refrigerant that is condensed and liquefied in the refrigerant condensing part is distilled.
The absorption liquid heater is caused to flow down and reflux in the container.
So that the steam generated in
In the absorption heat pump using a working medium that also evaporates the absorption liquid when the absorption liquid is regenerated , the distiller is provided at an upper part and a lower part located below the upper part.
Is divided into, the liquid absorbent inlet between the top and bottom of the distiller provided, packed fine filling of eyes on top than this absorbing solution inlet port, at the bottom than the absorbing solution inlet port, said Top filling
Absorbing heat pump for absorbing liquid, characterized in that it is filled with a coarse filler having a porosity about 3 times higher than that of the above.
JP2000013873A 2000-01-18 2000-01-18 Absorption liquid regeneration system and absorption heat pump using the same Expired - Lifetime JP3481538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013873A JP3481538B2 (en) 2000-01-18 2000-01-18 Absorption liquid regeneration system and absorption heat pump using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013873A JP3481538B2 (en) 2000-01-18 2000-01-18 Absorption liquid regeneration system and absorption heat pump using the same

Publications (2)

Publication Number Publication Date
JP2001201210A JP2001201210A (en) 2001-07-27
JP3481538B2 true JP3481538B2 (en) 2003-12-22

Family

ID=18541406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013873A Expired - Lifetime JP3481538B2 (en) 2000-01-18 2000-01-18 Absorption liquid regeneration system and absorption heat pump using the same

Country Status (1)

Country Link
JP (1) JP3481538B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108704451A (en) * 2018-08-06 2018-10-26 常州回天新材料有限公司 The recovery and processing system of heat pump drying tunnel solvent
CN110567189B (en) * 2019-09-10 2024-01-19 华北电力大学 Vapor compression type absorption heat pump
CN112944726B (en) * 2021-03-03 2022-04-15 浙江理工大学 Open type heat absorption heating system with high heat storage density

Also Published As

Publication number Publication date
JP2001201210A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
US11725880B2 (en) Hygroscopic cooling tower for waste water disposal
US6560971B2 (en) Air conditioning and thermal storage systems using clathrate hydrate slurry
Merkel et al. Operation of an absorption heat transformer using water/ionic liquid as working fluid
CN102906515A (en) Absorption refrigeration cycles using LGWP refrigerant
WO2022018832A1 (en) Carbon dioxide gas recovery system
US20150369542A1 (en) Method of producing a device for storing thermal energy by solid/solid phase change material
US20110042036A1 (en) Chemical heat-storage apparatus
Wang et al. Split heat pipe type compound adsorption ice making test unit for fishing boats
CN108844253A (en) A kind of superhigh temperature non-azeotropic working medium heat pump unit
CA3036262A1 (en) Hygroscopic cooling tower for waste water disposal
Lowenstein et al. Advanced commercial liquid-desiccant technology development study
CN206626397U (en) A kind of LNG cryogenic energy utilization systems for workshop cooling
CN209371561U (en) A kind of superhigh temperature non-azeotropic working medium heat pump unit
JP3481538B2 (en) Absorption liquid regeneration system and absorption heat pump using the same
CN112378116B (en) Open heat pump device driven by high-temperature flue gas and application thereof
Mehari et al. Thermodynamic evaluation of three-phase absorption thermal storage in humid air with energy storage density over 600 kWh/m3
JP4830572B2 (en) Latent heat storage material
JPH07504741A (en) Air conditioning systems and related cooling storage systems that instantly improve heat quality
Haji Abedin Thermochemical energy storage systems: modelling, analysis and design
CN2773566Y (en) Spraying multi-effect absorbing heat-energy refrigerator with gas-liquid-solid circulation
JP2881593B2 (en) Absorption heat pump
JP2994639B1 (en) Working medium of absorption heat pump and absorption heat pump using the same
CN106895255A (en) A kind of LNG cryogenic energy utilization systems for workshop cooling
JPH07198222A (en) Heat pump including reverse rectifying part
CN2748857Y (en) Heat pipe insulation low pressure evaporator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3481538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term