JP3481361B2 - Oil-absorbing swelling material - Google Patents
Oil-absorbing swelling materialInfo
- Publication number
- JP3481361B2 JP3481361B2 JP21225595A JP21225595A JP3481361B2 JP 3481361 B2 JP3481361 B2 JP 3481361B2 JP 21225595 A JP21225595 A JP 21225595A JP 21225595 A JP21225595 A JP 21225595A JP 3481361 B2 JP3481361 B2 JP 3481361B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- absorbing
- swelling
- weight
- swelling material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Gas Or Oil Filled Cable Accessories (AREA)
- Removal Of Floating Material (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、OFケーブルの絶
縁油の漏洩が発生したとき、絶縁油を吸収して体積変化
を起こし、ピストンの押し上げまたは光ファイバの屈曲
といったスイッチを入れることによって、漏油点を検知
する漏油点検知センサに好適に用いられる吸油膨潤材に
関する。
【0002】
【従来の技術】一般に、OFケーブルは、複数本の線心
と、これら線心を一括被覆する金属被覆と、この金属被
覆の外周に形成されたシースとから概略構成されてい
る。上記線心は、導体と、この導体の外周に低粘度の絶
縁油を含浸させたクラフト紙等を巻き付けて形成されて
なる絶縁層と、この絶縁層の外周を覆う遮蔽金属テープ
とから構成されている。また、このOFケーブルの金属
被覆内で、この金属被覆と線心との間の介在部には、紙
紐が添設され、さらに外部に設けられた油圧装置により
常に大気圧以上の一定の油圧に調整された絶縁油が充満
され、これにより温度変化によるボイドの発生が抑制さ
れるようになっている。介在部に充満される絶縁油とし
ては、鉱油系絶縁油、アルキルベンゼン系絶縁油等が好
適に用いられている。このようなOFケーブルは、従来
より、電圧に対する安定性に優れた高電圧電力ケーブル
として広く用いられており、地下や海底に敷設される場
合には、長尺化して使用されている。
【0003】ところで、このようなOFケーブルでは、
不測の事故等により金属被覆が破損し絶縁油の漏洩が発
生した場合に、絶縁油不足から絶縁破壊を起こしたり、
さらには破損点付近の環境を汚染してしまう恐れがあっ
た。従って、絶縁油の漏洩をいち早く検知して、破損部
の補修や汚染対策をとる必要があるが、全長の長いOF
ケーブルの漏油点を検知することは困難であった。そこ
で、漏油点を検知するためOFケーブルの全長に亘って
漏油点を検知できる光ファイバを利用した漏油点検知セ
ンサの実用化が要望されている。
【0004】この光ファイバを利用した漏油点検知セン
サ(以下、漏油検知ファイバと略記する。)は、吸油材
が被覆されたガラスFRPの外周に光ファイバが横巻き
され、さらに光ファイバと逆方向にアラミド繊維が横巻
きされた構成になっている。この漏油検知ファイバの検
知原理は、該ファイバが絶縁油に触れると、この絶縁油
を吸油材が吸油して膨潤し、これによって光ファイバお
よびアラミド繊維に側圧が加わり、光ファイバとアラミ
ド繊維との交点で光ファイバに屈曲が生じ、屈曲部で光
ファイバに損失増加が生じることを利用するものであ
る。従って、このような漏油検知ファイバを用いてOF
ケーブルの絶縁油の漏油点を検知するには、漏油検知フ
ァイバをOFケーブルのシース内の金属被覆に添設して
おき、光ファイバの損失増加をOTDR装置を用いるバ
ックスキャタリング法で測定すればよい。
【0005】
【発明が解決しようとする課題】ところで、漏油検知フ
ァイバに用いる吸油材には、上述したように絶縁油を吸
収して膨潤する吸油膨潤性を有することが要求される
が、このような吸油膨潤性を有する現存の吸油材は少な
いうえに、加工が困難、膨潤率が小さい、膨潤時光ファ
イバを屈曲させるのに十分な圧力を発生しないという問
題があった。
【0006】例えば、ポリプロピレン不織布は、非常に
吸油性が高く、油汚れの床拭きや水中の油の除去に使用
されるものであり、その吸油倍率は、自重の10倍以上
であるが、繊維間の隙間が大きく、膨潤時光ファイバを
屈曲させるのに十分な圧力を発生し得ないものであっ
た。また、市販の吸油材は、十分な膨潤率を持ち、圧力
下で、ある程度膨潤〔ゲージ圧0.1kg/cm2の油
圧下で膨潤率106%(測定値)、吸油倍率は自重の4
〜12倍(カタログ値)〕するものの、長尺の成形が困
難であり、漏油検知ファイバの吸油材には適用し得ない
のが現状である。なお、上記膨潤率は以下のようにして
求めたものであり、100%を元の厚さとする。
膨潤率(%)=(膨潤後の厚さ/膨潤前の厚さ)×10
0
【0007】本発明は、上記事情に鑑みてなされたもの
で、長尺加工が可能で、絶縁油を吸油することによって
膨潤し、光ファイバを屈曲させるのに十分な圧力を発生
することが可能な吸油膨潤材を提供することにある。
【0008】
【課題を解決するための手段】かかる課題を解決するた
め、請求項1にかかる発明は、OFケーブルの漏油点検
知センサを構成する吸油膨潤材であって、この吸油膨潤
材が、ゴム100重量部に、吸油材として架橋アクリル
樹脂を12.5〜50重量部添加したものである。
【0009】
【発明の実施の形態】以下、本発明の吸油膨潤材の例を
説明する。この例の吸油膨潤材は、ゴムに吸油材を配合
してなるものである。本発明に用いられるゴムとして
は、エチレン−プロピレンゴム、エチレン−プロピレン
−ジエン共重合体、ブチルゴム、ブタジエンゴム等が挙
げられる。
【0010】本発明に用いられる吸油材としては、高吸
油性樹脂の一種である架橋アクリル樹脂が挙げられる。
この架橋アクリル樹脂の具体例としてはオレオソーブ
(商品名;日本触媒株式会社製)等が挙げられる。
【0011】このような吸油材の配合量は、上記ゴム1
00重量部に対して12.5〜50重量部とされ、1
2.5重量部未満では膨潤率および吸油倍率があまり大
きくならずゴムのみの場合とあまり差がでない。50重
量部を越えると、吸油膨張材が膨張後、その表面に穴や
しわが生じる恐れがある。
【0012】この例の吸油膨潤材にあっては、ゴムを主
成分としたことにより、簡単に圧縮成形できるとともに
長尺加工が可能である。また、ゴムを使用したことよ
り、絶縁油を吸油して膨潤することよって発生する圧力
が吸油材のみからなる場合に比べて大きく、この圧力に
よって光ファイバを十分屈曲させることができる。さら
に、吸油材を配合したことにより、ゴムのみからなる場
合に比べて吸油膨潤性が優れたものとなる。従って、本
発明の吸油膨潤材は、漏油検知ファイバに好適に用いる
ことができ、OFケーブルの漏油点検知センサを実用化
することが可能となる。
【0013】(本発明の作用)本発明者は、長尺加工が
可能で、絶縁油を吸油して膨潤することよって光ファイ
バを屈曲させるのに十分な圧力を発生する吸油膨潤材を
得るため、種々の検討および実験を重ねた結果、長尺加
工に優れたエチレン−プロピレンゴム〔ゲージ圧0.1
kg/cm2油圧下で、膨潤率130%(測定値)、吸
油倍率は自重の2倍〕などのゴムに、吸油膨潤性を有す
る吸油材を配合することで、上記ゴムと吸油材の両方の
特性を具え、膨潤時光ファイバを屈曲させるのに十分な
圧力を発生する吸油膨潤材が得られることを究明し本発
明を完成したのである。
【0014】
【実施例】(実施例1)エチレン−プロピレンゴム10
0重量部に吸油材として架橋アクリル樹脂「オレオソー
ブ」(商品名;日本触媒株式会社製)を12.5重量部
配合して吸油膨潤材を得た。
(実施例2)オレオソーブを25重量部配合した以外は
実施例1と同様にして吸油膨潤材を得た。
(実施例3)オレオソーブを50重量部配合した以外は
実施例1と同様にして吸油膨潤材を得た。
(比較例1)オレオソーブを70重量部配合した以外は
実施例1と同様にして吸油膨潤材を得た。
(比較例2)オレオソーブを配合しない以外は実施例1
と同様にして吸油膨潤材を得た。
【0015】次に、実施例1〜3、比較例1〜2の吸油
膨潤材をそれぞれロールを用いて混合し、圧縮成形機を
用い、1mm厚のシート状に成形後、縦横それぞれ20
mmになるように切断し、シート状試験片1〜5を作製
した。ついで、これら試験片1〜5の室温(20〜25
℃)における厚さおよび重量を測定した。この後、室温
において、これら試験片をアルキルベンゼン油100c
c中に浸漬し、24時間経過後に取り出し、これの厚み
および重量変化を測定し、膨張率、自重に対する吸油倍
率および膨潤後の外観(表面状態)を調べた。その結果
を表1に示す。
【0016】
【表1】
【0017】表1に示した結果から明らかなように、実
施例1ないし3、比較例1の吸油膨潤材からなる試験片
1〜4は、比較例2の吸油膨潤材からなる試験片5に比
べて膨潤率および吸油倍率が優れていることがわかる。
また、試験片1〜4においては吸油膨潤材中の吸油材の
配合量が増すほど膨潤率が大きいことがわかるが、実施
例1の吸油膨潤材からなる試験片1は、膨潤率が比較例
2の試験片5とあまり差がない。比較例1の試験片4
は、膨潤率および吸油倍率が優れているものの、表面に
所々穴が生じており、かつしわが生じていた。試験片に
このような穴が生じたのは、オレオソーブがエチレン−
プロピレンゴム中で凝集し、膨潤時にエチレン−プロピ
レンゴムから飛び出たためと考えられる。また、試験片
にしわが生じたのは、全体に軟らかくなり形状を支えき
れなかったと考えられる。
【0018】次に、実施例2、3および比較例1、2の
吸油膨潤材をそれぞれ混合し、押出成形機を用いて、外
径0.5mmの芯線(ガラスFRP)の外周表面に吸油
膨潤材からなる層を形成し、外径3mm、長さ1mの線
状試験片6〜9を作製した。そして、これら試験片6〜
9の室温における外観(表面状態)、厚さ、重量を測定
した。その後、室温においてこれら試験片をアルキルベ
ンゼン油100cc中に24時間浸漬したのち、取り出
し、その厚さおよび重量変化を測定し、膨潤率と自重に
対する吸油倍率を調べた。その結果を表2に示す。
【0019】
【表2】
【0020】表2に示した結果から明らかなように、実
施例2、3、比較例1の吸油膨潤材からなる試験片6〜
8は、比較例2の吸油膨潤材からなる試験片9に比べ
て、膨潤率および吸油倍率が優れたものであった。試験
片6、7は外観に問題がなく、特に試験片6は吸油材が
若干しみ状に見えたが、横断面形状は十分に円状であっ
た。また、試験片7は、試験片6に比べてしみの部分が
広く、円状に押し出したが所々で滑らかな突起が生じて
いた。また、比較例1の試験片8は、吸油材が抜け落ち
て表面が凹凸になっており、部分的に芯線が露出してい
るところが見られた。
【0021】なお、表1および表2中、ゴムはエチレン
−プロピレンゴム、吸油材はオレオソーブを表す。
【0022】
【発明の効果】以上説明したように、本発明の吸油膨潤
材は、OFケーブルの漏油点検知センサを構成する吸油
膨潤材であって、ゴム100重量部に、吸油材として架
橋アクリル樹脂を12.5〜50重量部添加したもので
あるので、圧縮成形が可能であるとともに長尺加工がで
き、絶縁油などの油を吸油することによって膨潤し、光
ファイバなどを屈曲させるに十分な圧力を発生すること
ができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an OF cable which, when leakage of insulating oil occurs, absorbs the insulating oil to cause a volume change, thereby pushing up a piston or an optical fiber. The present invention relates to an oil-absorbing swelling material suitably used for an oil leak point detection sensor that detects an oil leak point by turning on a switch such as bending of the oil. In general, an OF cable generally comprises a plurality of cores, a metal coating for covering the cores at one time, and a sheath formed on the outer periphery of the metal coating. The wire core is composed of a conductor, an insulating layer formed by winding a kraft paper impregnated with a low-viscosity insulating oil around the outer periphery of the conductor, and a shielding metal tape covering the outer periphery of the insulating layer. ing. In the metal coating of the OF cable, a paper string is attached to an intervening portion between the metal coating and the wire core, and a constant hydraulic pressure higher than the atmospheric pressure is always provided by a hydraulic device provided outside. Is filled with the adjusted insulating oil, thereby suppressing the generation of voids due to a temperature change. Mineral oil-based insulating oil, alkylbenzene-based insulating oil, and the like are suitably used as the insulating oil filled in the intervening portion. Such an OF cable has conventionally been widely used as a high-voltage power cable having excellent voltage stability, and has been used in a long length when laid underground or on the sea floor. By the way, in such an OF cable,
If the metal coating is damaged due to an unexpected accident, etc. and leakage of insulation oil occurs, insulation breakdown may occur due to insufficient insulation oil,
Further, there is a possibility that the environment near the break point may be polluted. Therefore, it is necessary to detect the leakage of insulating oil as soon as possible to repair damaged parts and take countermeasures against contamination.
It was difficult to detect the oil leak point of the cable. Therefore, there is a demand for practical use of an oil leak point detection sensor using an optical fiber capable of detecting an oil leak point over the entire length of an OF cable in order to detect an oil leak point. [0004] An oil leak point detection sensor using the optical fiber (hereinafter abbreviated as an oil leak detection fiber) has an optical fiber wound horizontally around a glass FRP coated with an oil absorbing material. Aramid fibers are wound horizontally in the opposite direction. The principle of detection of this oil leak detection fiber is that when the fiber comes into contact with the insulating oil, the oil absorbing material absorbs the insulating oil and swells, thereby applying a side pressure to the optical fiber and the aramid fiber. The optical fiber is bent at the intersection of the two, and the loss of the optical fiber is increased at the bent portion. Accordingly, OF using such an oil leakage detection fiber
In order to detect the oil leak point of the insulation oil of the cable, the oil leak detection fiber is attached to the metal coating inside the sheath of the OF cable, and the increase in the loss of the optical fiber is measured by the back scattering method using the OTDR device. do it. [0005] By the way, the oil absorbing material used for the oil leak detecting fiber is required to have an oil absorbing swelling property for absorbing the insulating oil and swelling as described above. There are few existing oil-absorbing materials having such oil-absorbing swelling properties, and furthermore, there is a problem that processing is difficult, a swelling ratio is small, and sufficient pressure is not generated to bend the optical fiber at the time of swelling. For example, a polypropylene nonwoven fabric has a very high oil absorbency and is used for wiping floors of oil stains and removing oil in water. Its oil absorption ratio is 10 times or more of its own weight. The gap between them was so large that sufficient pressure could not be generated to bend the optical fiber when swollen. A commercially available oil-absorbing material has a sufficient swelling ratio and swells to some extent under pressure (swelling ratio of 106% (measured value) under a hydraulic pressure of 0.1 kg / cm 2 gauge, and an oil absorption ratio of 4% of its own weight.
1212 times (catalog value)], but it is difficult to form a long piece, and at present it cannot be applied to the oil absorbing material of the oil leakage detection fiber. The swelling ratio is determined as follows, and 100% is defined as the original thickness. Swelling ratio (%) = (thickness after swelling / thickness before swelling) × 10
The present invention has been made in view of the above circumstances, and is capable of long-length processing, swelling by absorbing insulating oil, and generating sufficient pressure to bend an optical fiber. It is to provide a possible oil-absorbing swelling material. Means for Solving the Problems [0008] To solve such problems.
Therefore, the invention according to claim 1 is an inspection for oil leakage of an OF cable.
An oil-absorbing and swelling material constituting an intellectual sensor;
The material is obtained by adding 12.5 to 50 parts by weight of a crosslinked acrylic resin as an oil absorbing material to 100 parts by weight of rubber . Hereinafter, examples of the oil-swelling material of the present invention will be described. The oil-absorbing swelling material of this example is obtained by blending an oil-absorbing material with rubber. Examples of the rubber used in the present invention include ethylene-propylene rubber, ethylene-propylene-diene copolymer, butyl rubber, and butadiene rubber. The oil-absorbing material used in the present invention includes a crosslinked acrylic resin which is a kind of highly oil-absorbing resin .
Oleosorb is a specific example of this crosslinked acrylic resin.
(Trade name; manufactured by Nippon Shokubai Co., Ltd.) . The compounding amount of such an oil absorbing material depends on the rubber 1
12.5 to 50 parts by weight with respect to 00 parts by weight ,
If the amount is less than 2.5 parts by weight, the swelling ratio and the oil absorption ratio are not so large, and there is not much difference from the case of rubber alone. If the amount exceeds 50 parts by weight, holes and wrinkles may be generated on the surface of the oil-absorbing expandable material after expansion. Since the oil-absorbing and swelling material of this embodiment contains rubber as a main component, it can be easily compression-molded and can be processed into a long length. Further, since rubber is used, the pressure generated by absorbing and swelling the insulating oil is greater than that of the case where only the oil absorbing material is used, and the pressure can sufficiently bend the optical fiber. Furthermore, by blending the oil absorbing material, the oil absorbing and swelling property is superior to that of the case of only rubber. Therefore, the oil-absorbing and swelling material of the present invention can be suitably used for an oil leak detection fiber, and it becomes possible to put the oil leak detection sensor of an OF cable to practical use. (Operation of the present invention) The inventor of the present invention intends to obtain an oil-absorbing swelling material which can be processed into a long length and which generates sufficient pressure to bend the optical fiber by absorbing and swelling the insulating oil. After various studies and experiments, ethylene-propylene rubber (gauge pressure 0.1
Under the oil pressure of kg / cm 2 , the swelling ratio is 130% (measured value), and the oil absorption ratio is twice the own weight]. The present inventors have completed the present invention by investigating that an oil-absorbing swelling material having the characteristics described above and generating sufficient pressure to bend the optical fiber when swollen can be obtained. (Example 1) Ethylene-propylene rubber 10
A crosslinked acrylic resin "Oleoso
12.5 parts by weight of "B" (trade name; manufactured by Nippon Shokubai Co., Ltd.) to obtain an oil-absorbing swelling material. (Example 2) An oil-absorbing swelling material was obtained in the same manner as in Example 1 except that 25 parts by weight of oleosorb was added. (Example 3) An oil-absorbing and swelling material was obtained in the same manner as in Example 1 except that 50 parts by weight of oleosorb was added. (Comparative Example 1) An oil-absorbing swelling material was obtained in the same manner as in Example 1, except that 70 parts by weight of Oleosorb was added. (Comparative Example 2) Example 1 except that oleosorb was not added.
An oil-swelling material was obtained in the same manner as described above. Next, the oil-absorbing and swelling materials of Examples 1 to 3 and Comparative Examples 1 and 2 were mixed using a roll, and formed into a 1 mm-thick sheet using a compression molding machine.
mm so that sheet-shaped test pieces 1 to 5 were prepared. Next, the room temperature of these test pieces 1 to 5 (20 to 25)
(° C.) and the weight were measured. After that, at room temperature, these test pieces were
The sample was immersed in Sample No. c and taken out after 24 hours. The thickness and weight change were measured, and the expansion coefficient, the oil absorption ratio to its own weight, and the appearance (surface state) after swelling were examined. Table 1 shows the results. [Table 1] As is clear from the results shown in Table 1, the test pieces 1 to 4 made of the oil-swelling material of Examples 1 to 3 and Comparative Example 1 were replaced with the test piece 5 made of the oil-swelling material of Comparative Example 2. It can be seen that the swelling ratio and the oil absorption ratio are excellent.
In Test pieces 1 to 4, it can be seen that the swelling ratio increases as the blending amount of the oil-absorbing material in the oil-absorbing swelling material increases. There is not much difference from the test piece 5 of No. 2. Test piece 4 of Comparative example 1
Although the swelling ratio and the oil absorption ratio were excellent, holes were formed on the surface in some places and wrinkles were formed. Such holes were formed in the test piece because Oleosorb was ethylene-
It is considered that they were agglomerated in the propylene rubber and jumped out of the ethylene-propylene rubber during swelling. Also, it is considered that the wrinkles occurred on the test piece because it became soft as a whole and could not support the shape. Next, the oil-absorbing swelling materials of Examples 2 and 3 and Comparative Examples 1 and 2 were mixed, and the oil-absorbing and swelling was applied to the outer peripheral surface of a core wire (glass FRP) having an outer diameter of 0.5 mm using an extruder. A layer made of a material was formed, and linear test pieces 6 to 9 having an outer diameter of 3 mm and a length of 1 m were produced. And these test pieces 6 to
The appearance (surface state), thickness, and weight of each of No. 9 at room temperature were measured. Thereafter, these test pieces were immersed in 100 cc of alkylbenzene oil at room temperature for 24 hours, taken out, and their thickness and weight change were measured, and the swelling ratio and the oil absorption ratio with respect to their own weight were examined. Table 2 shows the results. [Table 2] As is clear from the results shown in Table 2, the test pieces 6 to 6 made of the oil-swelling materials of Examples 2 and 3 and Comparative Example 1 were prepared.
No. 8 was superior to the test piece 9 made of the oil-absorbing swelling material of Comparative Example 2 in terms of swelling ratio and oil absorption ratio. The test pieces 6 and 7 had no problem in appearance. In particular, the test piece 6 was slightly stained with the oil absorbing material, but the cross-sectional shape was sufficiently circular. Further, the test piece 7 had a wider stain portion than the test piece 6 and was extruded in a circular shape, but smooth protrusions were formed in some places. In the test piece 8 of Comparative Example 1 , the oil absorbing material came off, the surface became uneven, and the core wire was partially exposed. In Tables 1 and 2, rubber represents ethylene-propylene rubber, and oil absorbing material represents oleosorb. As described above, the oil-absorbing and swelling material of the present invention is an oil-absorbing and swelling material which constitutes an oil leakage point detecting sensor of an OF cable.
Since it is a swelling material and 12.5 to 50 parts by weight of a crosslinked acrylic resin is added as an oil absorbing material to 100 parts by weight of rubber, compression molding is possible and long processing is possible. The oil swells by absorbing the oil, and can generate a pressure sufficient to bend an optical fiber or the like.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 敏明 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 横田 和男 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 寺島 一希 東京都中央区銀座六丁目15番1号 電源 開発株式会社内 (72)発明者 中司 徹 東京都江東区木場1丁目5番1号 株式 会社フジクラ内 (72)発明者 高橋 享 東京都江東区木場1丁目5番1号 株式 会社フジクラ内 (56)参考文献 特開 平2−229035(JP,A) 特開 平4−359083(JP,A) 特開 昭58−95921(JP,A) 特開 平7−133383(JP,A) 特開 平7−90655(JP,A) 特開 平6−214432(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02G 15/28 B01J 20/26 C02F 1/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Hara 3-2-2 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Inside Kansai Electric Power Co., Inc. (72) Inventor Kazuo Yokota 3-chome Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture 22 Kansai Electric Power Co., Inc. (72) Inventor Kazuki Terashima 6-15-1, Ginza, Chuo-ku, Tokyo Power Supply Development Co., Ltd. (72) Inventor Toru Nakashi 1-15-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Satoshi Takahashi 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (56) References JP-A-2-229035 (JP, A) JP-A-4-359083 (JP) JP-A-58-95921 (JP, A) JP-A-7-133383 (JP, A) JP-A-7-90655 (JP, A) JP-A-6-214432 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H02G 15/28 B01J 20/26 C02F 1/40
Claims (1)
る吸油膨潤材であって、 この吸油膨潤材が、 ゴム100重量部に、吸油材として
架橋アクリル樹脂を12.5〜50重量部添加したもの
である吸油膨潤材。(57) [Claim 1] Constituting an oil leak point detection sensor for an OF cable
A that oil swelling material, which the oil swelling material, 100 parts by weight of rubber, and the crosslinked acrylic resin as oil material is added 12.5 to 50 parts by weight
Oil swelling material is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21225595A JP3481361B2 (en) | 1995-08-21 | 1995-08-21 | Oil-absorbing swelling material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21225595A JP3481361B2 (en) | 1995-08-21 | 1995-08-21 | Oil-absorbing swelling material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0956050A JPH0956050A (en) | 1997-02-25 |
JP3481361B2 true JP3481361B2 (en) | 2003-12-22 |
Family
ID=16619550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21225595A Expired - Lifetime JP3481361B2 (en) | 1995-08-21 | 1995-08-21 | Oil-absorbing swelling material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3481361B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104474840B (en) * | 2014-11-18 | 2017-02-22 | 肇庆宏旺金属实业有限公司 | Oil-gas separation device |
-
1995
- 1995-08-21 JP JP21225595A patent/JP3481361B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0956050A (en) | 1997-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6304701B1 (en) | Dry fiber optic cable | |
JPH08506895A (en) | Fiber Optic Water Sensor | |
CN210443321U (en) | Fire-resistant damp-proof cable for subway | |
US5298284A (en) | Method of making a swelling cable wrap | |
JP3481361B2 (en) | Oil-absorbing swelling material | |
AU2003236698B2 (en) | Impact resistant compact cable | |
GB2079520A (en) | Overhead electric cable | |
JP3944256B2 (en) | Optical cable and moisture absorbing composition | |
CA1108255A (en) | Moisture barrier for underground cables | |
JP6844963B2 (en) | Power cable | |
KR20200122530A (en) | Drying System For Jointing Structure Of Power Cable | |
CN104910503A (en) | Water-tree-retardant crosslinked polyethylene cable material and cable prepared from same | |
US20200126687A1 (en) | Electric cable having a protecting layer | |
JP2021027661A (en) | Cable repair method and cable repair structure | |
WO2003046592A1 (en) | Method for testing an electrical cable, modified electrical cable and process for producing it | |
WO1996019744A1 (en) | Low-metsuke water-barrier material for communication cable and communication cable using it | |
JPS59191211A (en) | Electric cable | |
KR20010059913A (en) | Optical cable for waterless | |
CN220171799U (en) | Three-core super-flexible cable | |
JPH0244305A (en) | Running water preventive cable | |
JPS63241507A (en) | Water stopping tape for optical fiber cable | |
JPH0761885B2 (en) | Coated optical fiber and waterproof optical fiber cable | |
JPH05274927A (en) | Power cable having built-in optical fiber | |
JP3104921B2 (en) | Measurement method of space charge in insulating layer | |
JPH10302560A (en) | Water running preventing stranded wire conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081010 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |