JP3480474B2 - Oxygen scavenger - Google Patents

Oxygen scavenger

Info

Publication number
JP3480474B2
JP3480474B2 JP17668094A JP17668094A JP3480474B2 JP 3480474 B2 JP3480474 B2 JP 3480474B2 JP 17668094 A JP17668094 A JP 17668094A JP 17668094 A JP17668094 A JP 17668094A JP 3480474 B2 JP3480474 B2 JP 3480474B2
Authority
JP
Japan
Prior art keywords
oxygen scavenger
oxygen
humidity
water
exactly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17668094A
Other languages
Japanese (ja)
Other versions
JPH0838883A (en
Inventor
英親 若林
康夫 杉原
彰良 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17668094A priority Critical patent/JP3480474B2/en
Publication of JPH0838883A publication Critical patent/JPH0838883A/en
Application granted granted Critical
Publication of JP3480474B2 publication Critical patent/JP3480474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、30%RH以下の乾燥
条件でも脱酸素能を有する脱酸素剤に関する。詳しく
は、乾燥食品や医薬品の保存及び金属製品の防錆保存に
適用できる脱酸素剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deoxidizer having a deoxidizing ability even under a drying condition of 30% RH or less. More specifically, the present invention relates to an oxygen scavenger that can be applied to the preservation of dry foods and pharmaceuticals and the preservation of metal products for rust prevention.

【0002】[0002]

【従来の技術】最近、密閉包装体で食品を保存する方法
として様々な脱酸素剤による方法が開発され安価で手軽
な食品保存方法のひとつとして注目されている。そし
て、これまでに各種無機系及び有機系の主剤を用いた多
数の脱酸素剤が提案されている。例えば、無機系主剤と
して鉄などの金属粉、亜硫酸塩、亜硫酸水素塩、亜二チ
オン酸塩などを用いたもの、有機系主剤としてL−アス
コルビン酸、エルソルビン酸及びそれらの塩、グルコ−
スなどの糖類、カテコ−ル、ピロガロ−ルなどの還元性
多価フェノ−ル類、エチレングリコ−ル、グリセリンな
どの多価アルコ−ル類を用いたものなどがあげられる。
しかし、これら従来の脱酸素剤は、使用時に水もしくは
水分を供給するものが共存しないと実用的な脱酸素能を
得ることができないという問題点があった。すなわち、
従来の脱酸素剤は、使用する際に水もしくは水分を保持
させた物質、例えば、結晶水を持った化合物を混合する
か、あるいは保存しようとする食品などから出てくる水
蒸気を利用することによってはじめて実用的な脱酸素能
を得ることができるものであった。従って、従来の脱酸
素剤を乾燥条件で保存する必要のある乾燥食品、医薬品
及び水もしくは水分の存在を嫌う金属製品の防錆保存に
適用することはできなかった。
2. Description of the Related Art Recently, as a method of storing food in a hermetically sealed package, various methods using oxygen scavengers have been developed and attracted attention as one of the cheap and easy food storage methods. A large number of oxygen scavengers using various inorganic and organic base materials have been proposed so far. For example, metal powders such as iron, sulfites, bisulfites, and dithionite salts are used as inorganic base agents, L-ascorbic acid, ersorbic acid and salts thereof as organic base agents, and gluco-
Examples thereof include sugars such as glucose, reducing polyvalent phenols such as catechol and pyrogallol, and polyvalent alcohols such as ethylene glycol and glycerin.
However, these conventional oxygen scavengers have a problem that a practical oxygen scavenging ability cannot be obtained unless water or a substance that supplies water during use coexists. That is,
The conventional oxygen scavenger is prepared by mixing water or a substance that retains water when used, for example, a compound having water of crystallization, or by utilizing steam generated from the food to be preserved. For the first time, it was possible to obtain a practical deoxidizing ability. Therefore, it has not been possible to apply the conventional oxygen absorber to the rust-preserving preservation of dry foods, pharmaceuticals and metal products that need to be preserved under dry conditions and the presence of water or water.

【0003】そこで、従来の脱酸素剤が持つ上記の問題
点を解決するために、水もしくは水蒸気を供給するもの
を全く用いない乾燥系用の脱酸素剤として、次の提案が
なされている。 (1) 従来の脱酸素剤を改良したもの (2) 不飽和脂肪酸またはそれを含む油脂を主剤に用いた
もの (3) 担持した活性化金属を主剤に用いたもの
Therefore, in order to solve the above problems of the conventional oxygen scavengers, the following proposals have been made as oxygen scavengers for a dry system which does not use any water or steam supply. (1) Improved conventional oxygen scavenger (2) Unsaturated fatty acid or fat or oil containing it is used as the main component (3) Activated metal supported is used as the main component

【0004】(1) に関しては、例えば、特開昭63−6
2547では、従来のカテコ−ルなどの多価フェノ−
ル、L−アスコルビン酸を主剤に用い、これに塩基性物
質であるアルカリ類とエチレングリコ−ルなどの多価ア
ルコル−ルおよび活性炭などの充填物の混合物を加えた
組成物を機械部品、精密部品の防錆保存用の脱酸素剤と
している。しかし、安全上好ましくない塩基性物質であ
るアルカリ類の使用が必須であること、適用湿度が30
%RH以上であることから、安全性に厳しく、しかも3
0%RH以下の低い湿度で保存するすることが必要な乾
燥食品、医薬品などの保存には使用できないなどの問題
点があった。
Regarding (1), for example, JP-A-63-6 is used.
2547, a polyvalent phenol such as conventional catechol
, L-ascorbic acid as the main agent, and a composition obtained by adding a mixture of a basic substance such as alkalis and polyvalent alcohol such as ethylene glycol, and a filler such as activated carbon to a mechanical part, a precision component. It is used as an oxygen scavenger for rust-preserving parts. However, it is essential to use alkalines, which are basic substances that are not preferable for safety, and the applicable humidity is 30
Since it is more than% RH, it is strict in safety, and 3
There is a problem that it cannot be used for storing dried foods, pharmaceuticals, etc., which need to be stored at a low humidity of 0% RH or less.

【0005】(2) に関しては、例えば、特公昭62−6
0936には、不飽和脂肪酸または不飽和脂肪酸を含む
油脂と担体と遷移金属触媒とからなる乾燥食品用脱酸素
剤が記載され、これに塩基性物質を添加して改良した特
開昭63−198962、特開昭64−67252など
があげられる。しかし、これらの不飽和脂肪酸またはそ
れを含む油脂を主剤に用いた脱酸素剤には、主剤自体の
臭気および主剤の酸化に起因する変敗異臭の発生などの
問題点を有し、臭気に敏感な食品、医薬品などには適用
できなかった。
Regarding (2), for example, Japanese Patent Publication No. 62-6
0936 describes an oxygen scavenger for dry foods, which comprises an unsaturated fatty acid or an oil or fat containing an unsaturated fatty acid, a carrier and a transition metal catalyst. JP-A-63-198962 improved by adding a basic substance thereto. , JP-A-64-67252 and the like. However, the oxygen scavengers that use these unsaturated fatty acids or fats and oils containing them as the main agent have problems such as the odor of the main agent itself and the generation of septic offensive odor due to the oxidation of the main agent, and are sensitive to odors. It could not be applied to various foods and pharmaceuticals.

【0006】(3) に関しては、例えば、Chemist
ry and Industry,4,363(197
0).には、シリカに担持したクロム金属を一酸化炭素
で活性化したものが脱酸素能を有する乾燥剤として記載
されている。しかし、この乾燥剤の脱酸素能は、脱酸素
剤として用いるには不充分で、しかも用いられているク
ロム金属は、安全面で問題が多く、安全性に厳しい食
品、医薬品などの保存には適用できなかった。
Regarding (3), for example, Chemist
ry and Industry, 4,363 (197)
0). Describes a chrome metal supported on silica activated with carbon monoxide as a desiccant having a deoxidizing ability. However, the oxygen scavenging ability of this desiccant is insufficient for use as a oxygen scavenger, and the chromium metal used has many problems in terms of safety, and it is not safe to store foods, pharmaceuticals, etc. It was not applicable.

【0007】また、特公平3−71171には、担持し
たニッケル金属とゼオライトを主成分としたものを水素
で活性化して除湿機能を有した脱酸素剤が記載されてい
る。この提案は、臭気や異臭などの発生の問題点がない
ため一つの有力な乾燥系用脱酸素剤として期待されるが
他の成分として塩基性物質を用いており、安全性に厳し
い食品、医薬品などの保存には適用できなかった。更
に、ニッケル金属以外の金属については、上記の特公平
3−71171にゼオライトに担持した鉄金属と塩基性
物質からなる組成物を同様に水素で活性化したものの記
載があるが、このものは乾燥条件では充分な脱酸素能が
無いことが記されている。したがって、その他の金属に
ついては全く知られていなかった。
Further, Japanese Patent Publication No. 3-71171 describes an oxygen scavenger having a dehumidifying function by activating a supported nickel metal and zeolite as a main component with hydrogen. This proposal is expected to be one of the leading oxygen absorbers for dry systems because it does not have the problem of generating odors and offensive odors, but it uses a basic substance as another component, and foods and pharmaceuticals with severe safety Could not be applied to save such. Furthermore, regarding metals other than nickel metal, there is a description in Japanese Patent Publication No. 3-71171 described above in which a composition consisting of iron metal supported on zeolite and a basic substance was similarly activated with hydrogen, but this was dried. It is noted that under the conditions, it does not have sufficient deoxidizing ability. Therefore, nothing was known about other metals.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
の乾燥系で用いられる脱酸剤の問題点を解消し、適用湿
度が30%RH以下の乾燥条件でも使用でき、臭気や異
臭などの発生が全く無く、水や塩基性物質の使用も全く
必要なく、安全性が高いしかも再使用可能な乾燥系用脱
酸素剤を提供することにある。更に、乾燥保存が必要な
食品、医薬品及び水分の存在を嫌う例えば金属製品の防
錆保存などに適用できる脱酸素剤の提供にある。
The object of the present invention is to solve the problems of the deoxidizing agent used in the conventional drying system, and it can be used even under the drying condition where the applied humidity is 30% RH or less. It is an object of the present invention to provide a highly safe and reusable oxygen scavenger for a dry system, which is free from the generation of oxygen and does not require the use of water or a basic substance. Another object of the present invention is to provide an oxygen scavenger that can be applied to foods, pharmaceuticals, and the like that need to be dried and stored, and that can be applied to, for example, rust-preserving preservation of metal products.

【0009】[0009]

【課題を解決するための手段】本発明者らは、機能発現
に塩基性物質などの触媒が全く必要なく主剤と水のみか
らなる安全性の高い脱酸素剤として、担体に担持した活
性化金属を主剤とした脱酸素剤を開発し、V、Mn、F
e、Co、Ni、MoあるいはWを主剤とする脱酸素剤
を特願平6−175347に、またCu主剤の脱酸素剤
を特願平6−175348に先に提案した。更に、上記
提案の担体に担持した各種の活性化金属主剤の脱酸素剤
について水を用いないで30%RH以下の乾燥条件下に
おける脱酸素能を再検討したとろ、ニッケル金属以外
に、マンガン、鉄、コバルト、銅の活性化金属に乾燥条
件下で脱酸素能のあることを見いだした。以下、本発明
での乾燥条件とは、全て30%RH以下の湿度条件を指
す。
Means for Solving the Problems The present inventors have found that an activated metal supported on a carrier is used as a highly safe oxygen scavenger consisting only of a main component and water without the need for a catalyst such as a basic substance to exhibit its function. Developed an oxygen scavenger based on V, Mn, F
An oxygen scavenger containing e, Co, Ni, Mo or W as a main agent was proposed in Japanese Patent Application No. 6-175347, and an oxygen scavenger containing a Cu main agent was previously proposed in Japanese Patent Application No. 6-175348. Furthermore, regarding the oxygen scavenger of various activated metal base agents supported on the above-mentioned carrier, the oxygen scavenging ability under a dry condition of 30% RH or less was reexamined without using water. We have found that activated metals such as iron, cobalt and copper have deoxidizing ability under dry conditions. Hereinafter, the drying conditions in the present invention all refer to humidity conditions of 30% RH or less.

【0010】本発明の脱酸素剤は、担体に担持された活
性化金属のみからなることを特徴とする。詳しくは、上
記担体に担持された活性化金属が、遷移金属のマンガ
ン、鉄、コバルト、銅から選ばれる少なくとも一種類以
上の金属である脱酸素剤である。また、本発明の脱酸素
剤は再活性化処理によって再使用可能な脱酸素剤でもあ
る。
The oxygen scavenger of the present invention is characterized in that it comprises only activated metal supported on a carrier. Specifically, the activating metal supported on the carrier is an oxygen scavenger that is at least one metal selected from the transition metals manganese, iron, cobalt, and copper. The oxygen scavenger of the present invention is also an oxygen scavenger that can be reused by a reactivation treatment.

【0011】本発明においては、活性化される上記の金
属は必ず担体に担持されていることが必要である。すな
わち、上記の金属と担体を単に添加、混合して活性化し
たものでは殆ど乾燥条件での脱酸素能を得ることはでき
ない。なお、本発明で活性化とは、金属またはその金属
化合物を加熱還元または加熱分解して主剤の金属に脱酸
素能を付与することを言う。
In the present invention, the above metal to be activated must be supported on a carrier. In other words, it is almost impossible to obtain the deoxidizing ability under the drying condition with the above-mentioned metal and carrier which are simply added, mixed and activated. In addition, in the present invention, activation means that a metal or its metal compound is reduced by heating or decomposed by heat to impart deoxidizing ability to the metal of the main component.

【0012】本発明に用いられる金属は、遷移金属のマ
ンガン、鉄、コバルト、銅から選ばれる少なくとも1種
類以上の金属であり、2種類以上の金属を併用すること
ができる。本発明においては、上記金属はその無機塩、
または有機塩を担体に担持して活性化して用いられる。
無機塩として、上記金属の硫酸塩、硝酸塩、塩酸塩、炭
酸塩などが用いられ、また、有機塩として上記金属の蟻
酸塩、酢酸塩、蓚酸塩などが用いられる。
The metal used in the present invention is at least one metal selected from the transition metals manganese, iron, cobalt and copper, and two or more metals can be used in combination. In the present invention, the metal is an inorganic salt thereof,
Alternatively, the organic salt is supported on a carrier and activated to be used.
As the inorganic salt, sulfates, nitrates, hydrochlorides, carbonates and the like of the above metals are used, and as the organic salts, formates, acetates and oxalates of the above metals are used.

【0013】本発明において用いる担体としては、特に
限定はされないが、例えば、活性炭、シリカ、珪藻土、
粘土、ゼオライト、セライト、酸性白土などの無機担体
をあげることができる。これらの担体に上記金属の無機
塩または有機塩を含浸法、共沈法などの公知の方法で担
持させる。
The carrier used in the present invention is not particularly limited, but for example, activated carbon, silica, diatomaceous earth,
Inorganic carriers such as clay, zeolite, celite and acid clay can be mentioned. The inorganic salt or organic salt of the metal is supported on these carriers by a known method such as an impregnation method or a coprecipitation method.

【0014】また、担持量としては、還元金属として5
〜90wt%が用いられ、特に30〜80wt%が好適
に用いられる。
The amount of supported metal is 5 as reduced metal.
˜90 wt% is used, and especially 30 to 80 wt% is preferably used.

【0015】上記のように担持された上記金属の無機塩
または有機塩は、活性化する前に粒状または粉体の形体
のまま活性化しても良いし、または、加圧成形、押し出
し成形などの通常の成型法により適当な形に成形してか
ら活性化しても良い。
The inorganic salt or organic salt of the metal supported as described above may be activated in a granular or powder form before being activated, or may be activated by pressure molding, extrusion molding or the like. It may be activated after being formed into an appropriate shape by a usual forming method.

【0016】担持された上記金属の無機塩の活性化方法
としては、ホルマリン、蟻酸などによる加熱化学還元や
一酸化炭素、水素などの還元性ガスによる加熱接触還元
があげられるが、還元性ガスによる特に加熱接触還元が
好ましい。また、担持された上記金属の有機塩の活性化
方法としては、不活性ガス中で加熱分解するだけで活性
化できるが一酸化炭素、水素などの還元性ガス中で加熱
活性化しても良い。
Examples of the method for activating the supported inorganic salt of the above metal include thermal chemical reduction with formalin and formic acid, and thermal catalytic reduction with a reducing gas such as carbon monoxide and hydrogen. Particularly, catalytic reduction by heating is preferable. As a method of activating the supported organic salt of the metal, it can be activated simply by decomposing it by heating in an inert gas, but it may be activated by heating in a reducing gas such as carbon monoxide or hydrogen.

【0017】本発明で用いられる活性化条件は、担持さ
れる無機塩または有機塩によって異なるが、通常100
〜700℃で10分〜10時間が用いられ、特に200
〜600℃で30分〜6時間が好適に用いられる。
The activation conditions used in the present invention are different depending on the supported inorganic salt or organic salt, but usually 100
~ 700 ° C for 10 minutes to 10 hours, especially 200
It is preferably used at ~ 600 ° C for 30 minutes to 6 hours.

【0018】本発明で得られる活性化された脱酸素剤
は、空気中では酸化され易いので、通常、窒素などの嫌
気雰囲気中で通気性が制御された小袋に収納して用いら
れる。そして、この小袋に収納された脱酸素剤は、乾燥
食品、医薬品、金属製品などと共に非通気性、非透湿性
の密閉包装体に入れられ、これらの物品の保存に供せら
れる。
Since the activated oxygen scavenger obtained in the present invention is easily oxidized in the air, it is usually stored in a small bag whose air permeability is controlled in an anaerobic atmosphere such as nitrogen. Then, the oxygen scavenger contained in this small bag is put in a non-breathable, non-moisture permeable closed package together with dried foods, pharmaceuticals, metal products, etc., and used for storage of these articles.

【0019】ここで用いられる非通気性、非透湿性の密
閉包装体の包装材料は、できるだけ湿度バリヤ−性に優
れた素材の包装材料が好ましい。このため、例えば、有
機性素材だけの包装材料よりも無機性素材を含んだ包装
材料であるアルミ蒸着ポリエチレン(PE)、アルミ箔
とPEのラミネ−トフィルムなどが好適に用いられる。
The non-breathable, non-moisture-permeable, hermetically-sealed packaging material used herein is preferably a packaging material having a material excellent in humidity barrier property as much as possible. Therefore, for example, aluminum vapor-deposited polyethylene (PE), which is a packaging material containing an inorganic material rather than a packaging material made of only an organic material, a laminated film of aluminum foil and PE, and the like are preferably used.

【0020】本発明の脱酸素剤は、一旦使用した脱酸素
剤を容易に再活性化して再使用が可能な脱酸素剤であ
る。使用済み脱酸素剤の再活性化の方法としては、収納
してある小袋から脱酸素剤を取り出した後、そのまま最
初に用いた活性化方法によって活性化できるが、特に一
酸化炭素、水素などの還元性ガス中で加熱接触還元する
方法が好適に用いられる。
The oxygen scavenger of the present invention is an oxygen scavenger that can be easily reactivated and reused. As a method for reactivating the used oxygen scavenger, after removing the oxygen scavenger from the stored sachet, it can be activated by the activation method used first as it is, especially carbon monoxide, hydrogen etc. A method of heating catalytic reduction in a reducing gas is preferably used.

【0021】[0021]

【実施例】以下、実施例をあげて説明する。 実施例1 硝酸マンガン・6水和物57.4gを70℃の水200
mlに溶解し、これに珪藻土20gを入れ撹拌した。次
に、無水炭酸ナトリウム25.44gを水120mlに
溶解した水溶液を滴下し、その後、2時間撹拌した。撹
拌終了後、不溶物を濾取し、水で濾液が中性になるまで
洗浄し、110℃で乾燥した。 この乾燥品約0.5g
を300kg/m2 、3分間の条件で加圧成型し、直径
12mmの円板状成型体を作成した。この成型体2個を
アルミ網の蓋が付いた石英製の小シャ−レに入れ、窒素
気流中200℃、30分間予備加熱後、水素気流中45
0℃、3時間還元した。還元終了後、窒素を流通させて
室温まで冷却し、窒素を満たしたグロ−ブボックス中で
還元品0.75gが入っている石英製小シャ−レを有孔
ポリエチレンでラミネ−トした紙小袋に詰め、更にこの
小袋をアルミ箔/PEの包装体に入れて脱気した。 こ
の脱気したアルミ箔/PEの包装体をグロ−ブボックス
の外に出し、これに湿度40%RHの空気を250ml
注入し、これを25℃で保存して経時的に袋内の酸素吸
収量、湿度分析を行った。この結果を表1に示した。
EXAMPLES Examples will be described below. Example 1 57.4 g of manganese nitrate hexahydrate was added to 200 ° C. water at 200 ° C.
20 ml of diatomaceous earth was added to this, and the mixture was stirred. Next, an aqueous solution prepared by dissolving 25.44 g of anhydrous sodium carbonate in 120 ml of water was added dropwise, and then stirred for 2 hours. After the completion of stirring, the insoluble matter was collected by filtration, washed with water until the filtrate became neutral, and dried at 110 ° C. About 0.5g of this dried product
Was pressure-molded under the condition of 300 kg / m 2 for 3 minutes to prepare a disk-shaped molded body having a diameter of 12 mm. Two of these molded bodies were placed in a small quartz dish with an aluminum net lid, preheated in a nitrogen stream at 200 ° C for 30 minutes, and then in a hydrogen stream 45
It was reduced at 0 ° C. for 3 hours. After the reduction is completed, nitrogen is circulated to cool it to room temperature, and a quartz small dish containing 0.75 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is taken out of the glove box, and 250 ml of air with a humidity of 40% RH is added to it.
It was injected and stored at 25 ° C., and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 1.

【0022】実施例2 硫酸第1鉄・7水和物55.6gを60℃の水550m
lの水に溶解し、これにゼオライト20gを入れ撹拌し
た。次に、無水炭酸ナトリウム25.44gを水100
mlに溶解した水溶液を滴下し、その後、1時間30分
間撹拌した。 撹拌後、不溶物を濾取し、水で濾液が中
性になるまで洗浄し、110℃で乾燥した。この乾燥品
約0.5gを実施例1と全く同じく成型し、その成型体
2個をアルミ網の蓋が付いた石英製の小シャ−レに入
れ、窒素気流中200℃、30分間予備加熱後、水素気
流中500℃、3時間還元した。 還元終了後、窒素を
流通させて室温まで冷却し、窒素を満たしたグロ−ブボ
ックス中で還元品0.80gが入っている石英製小シャ
−レを有孔ポリエチレンでラミネ−トした紙小袋に詰
め、更にこの小袋をアルミ箔/PEの包装体に入れて脱
気した。この脱気したアルミ箔/PEの包装体をグロ−
ブボックスの外に出し、これに湿度40%RHの空気を
250ml注入し、これを25℃で保存して経時的に袋
内の酸素吸収量、湿度分析を行った。この結果を表1に
示した。
Example 2 55.6 g of ferrous sulfate heptahydrate was added to 550 m of water at 60 ° C.
20 g of zeolite was dissolved in 1 of water and stirred. Next, 25.44 g of anhydrous sodium carbonate was added to 100 parts of water.
An aqueous solution dissolved in ml was added dropwise, and then the mixture was stirred for 1 hour and 30 minutes. After stirring, the insoluble matter was collected by filtration, washed with water until the filtrate became neutral, and dried at 110 ° C. About 0.5 g of this dried product was molded in exactly the same manner as in Example 1, two molded products were placed in a small quartz dish with a lid of an aluminum net, and preheated at 200 ° C. for 30 minutes in a nitrogen stream. Then, reduction was carried out in a hydrogen stream at 500 ° C. for 3 hours. After the reduction is completed, nitrogen is circulated to cool it to room temperature, and a quartz small dish containing 0.80 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is
The bag was taken out of the box and 250 ml of air having a humidity of 40% RH was injected into the box, which was stored at 25 ° C. and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 1.

【0023】実施例3 硝酸コバルト・6水和物58.2gを80℃の水150
mlに溶解し、これに酸性白土20gを入れ撹拌した。
次に、無水炭酸ナトリウム31.8gを水200ml
に溶解した水溶液を滴下し、その後、2時間撹拌した。
撹拌終了後、不溶物を濾取し、水で濾液が中性になるま
で洗浄し、110℃で乾燥した。 還元終了後、窒素
を流通させて室温まで冷却し、窒素を満たしたグロ−ブ
ボックス中で還元品0.77gが入っている石英製小シ
ャ−レを有孔ポリエチレンでラミネ−トした紙小袋に詰
め、更にこの小袋をアルミ箔/PEの包装体に入れて脱
気した。この脱気したアルミ箔/PEの包装体をグロ−
ブボックスの外に出し、これに湿度40%RHの空気を
250ml注入し、これを25℃で保存して経時的に袋
内の酸素吸収量、湿度分析を行った。この結果を表1に
示した。
Example 3 58.2 g of cobalt nitrate hexahydrate was added to 150 ° C. of water 150
20 g of acid clay was added thereto and stirred.
Next, 31.8 g of anhydrous sodium carbonate was added to 200 ml of water.
The aqueous solution dissolved in was added dropwise and then stirred for 2 hours.
After the completion of stirring, the insoluble matter was collected by filtration, washed with water until the filtrate became neutral, and dried at 110 ° C. After the reduction is completed, nitrogen is circulated to cool it to room temperature, and a small pouch made of quartz containing 0.77 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is
The bag was taken out of the box and 250 ml of air having a humidity of 40% RH was injected into the box, which was stored at 25 ° C. and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 1.

【0024】実施例4 硝酸第2銅・3水和物48.32gを40℃の水200
mlに溶解し、これにゼオライト20gを入れ撹拌し
た。 次に、水酸化ナトリウム16.0gを水200m
lに溶解した水溶液を滴下し、その後、1時間30分間
撹拌した。撹拌終了後、不溶物を濾取し、水で濾液が中
性になるまで洗浄し、110℃で乾燥した。 この乾燥
品約0.5gを実施例1と全く同じく成型し、その成型
体2個をアルミ網の蓋が付いた石英製の小シャ−レに入
れ、窒素気流中200℃、30分間予備加熱後、水素気
流300℃、3時間還元した。 還元終了後、窒素を流
通させて室温まで冷却し、窒素を満たしたグロ−ブボッ
クス中で還元品0.87gが入っている石英製小シャ−
レを有孔ポリエチレンでラミネ−トした紙小袋に詰め、
更にこの小袋をアルミ箔/PEの包装体に入れて脱気し
た。この脱気したアルミ箔/PEの包装体をグロ−ブボ
ックスの外に出し、これに湿度40%RHの空気を25
0ml注入し、これを25℃で保存して経時的に袋内の
酸素吸収量、湿度分析を行った。この結果を表1に示し
た。
Example 4 48.32 g of cupric nitrate trihydrate was added to 200 ° C. water at 40 ° C.
It was dissolved in ml, and 20 g of zeolite was added thereto and stirred. Next, 16.0 g of sodium hydroxide was added to 200 m of water.
The aqueous solution dissolved in 1 was added dropwise, and then stirred for 1 hour and 30 minutes. After the completion of stirring, the insoluble matter was collected by filtration, washed with water until the filtrate became neutral, and dried at 110 ° C. About 0.5 g of this dried product was molded in exactly the same manner as in Example 1, two molded products were placed in a small quartz dish with a lid of an aluminum net, and preheated at 200 ° C. for 30 minutes in a nitrogen stream. Then, hydrogen stream was reduced at 300 ° C. for 3 hours. After the reduction is completed, nitrogen is circulated to cool it to room temperature, and a quartz quartz small box containing 0.87 g of the reduced product is placed in a nitrogen-filled glove box.
Pack the paper in a paper pouch laminated with perforated polyethylene,
Furthermore, this small bag was put in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is taken out of the glove box, and 25% of air with a humidity of 40% RH is added to it.
0 ml was injected, this was stored at 25 ° C., and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 1.

【0025】実施例5 メタバナジン酸アンモニウム19.65gを約50℃の
水200mlに入れ、これにシュウ酸21.18gを5
0mlの水に溶解させた水溶液を加えた後、これにゼオ
ライト20gを入れ3時間撹拌した。 撹拌終了後、水
を減圧留去し、110℃で乾燥した。この乾燥品約0.
5gを実施例1と全く同じく成型し、その成型体2個を
アルミ網の蓋が付いた石英製の小シャ−レに入れ、窒素
気流中200℃、30分間予備加熱後、水素気流700
℃、4時間還元した。 還元終了後、窒素を流通させて
室温まで冷却し、窒素を満たしたグロ−ブボックス中で
還元品0.81gが入っている石英製小シャ−レを有孔
ポリエチレンでラミネ−トした紙小袋に詰め、更にこの
小袋をアルミ箔/PEの包装体に入れて脱気した。この
脱気したアルミ箔/PEの包装体をグロ−ブボックスの
外に出し、これに湿度40%RHの空気を250ml注
入し、これを25℃で保存して経時的に袋内の酸素吸収
量、湿度分析を行った。この結果を表1に示した。
Example 5 19.65 g of ammonium metavanadate was added to 200 ml of water at about 50 ° C., and 21.18 g of oxalic acid was added thereto.
After adding an aqueous solution dissolved in 0 ml of water, 20 g of zeolite was added thereto and stirred for 3 hours. After the completion of stirring, water was distilled off under reduced pressure and dried at 110 ° C. This dried product is about 0.
5 g was molded in exactly the same manner as in Example 1, and two molded products were placed in a small quartz dish with an aluminum net lid, preheated in a nitrogen stream at 200 ° C. for 30 minutes, and then a hydrogen stream 700
Reduced at 4 ° C for 4 hours. After the reduction is completed, nitrogen is circulated to cool it to room temperature, and a quartz small dish containing 0.81 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is taken out of the glove box, 250 ml of air with a humidity of 40% RH is injected into it, and this is stored at 25 ° C. to absorb oxygen in the bag over time. The amount and humidity were analyzed. The results are shown in Table 1.

【0026】実施例6 モリブデン酸アンモニウム・4水和物19.48gを6
0℃の水200mlに溶解し、これにゼオライト20g
を入れ、このまま3時間撹拌した。撹拌終了後、水を減
圧留去し、110℃で乾燥した。この乾燥品約0.5g
を実施例1と全く同じく成型し、その成型体2個をアル
ミ網の蓋が付いた石英製の小シャ−レに入れ、窒素気流
中200℃、30分間予備加熱後、水素気流650℃、
4時間還元した。 還元終了後、窒素を流通させて室温
まで冷却し、窒素を満たしたグロ−ブボックス中で還元
品0.76gが入っている石英製小シャ−レを有孔ポリ
エチレンでラミネ−トした紙小袋に詰め、更にこの小袋
をアルミ箔/PEの包装体に入れて脱気した。この脱気
したアルミ箔/PEの包装体をグロ−ブボックスの外に
出し、これに湿度40%RHの空気を250ml注入
し、これを25℃で保存して経時的に袋内の酸素吸収
量、湿度分析を行った。この結果を表1に示した。
Example 6 19.48 g of ammonium molybdate tetrahydrate was added as 6 parts.
Dissolve in 200 ml of water at 0 ° C and add 20 g of zeolite.
Was added, and the mixture was stirred as it was for 3 hours. After the completion of stirring, water was distilled off under reduced pressure and dried at 110 ° C. About 0.5g of this dried product
Example 1 was molded exactly as in Example 1, and the two molded bodies were placed in a small Petri dish with a lid of an aluminum net, preheated in a nitrogen stream at 200 ° C for 30 minutes, and then a hydrogen stream at 650 ° C.
Reduced for 4 hours. After the reduction is completed, nitrogen is circulated to cool to room temperature, and a small pouch made of quartz containing 0.76 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is taken out of the glove box, 250 ml of air with a humidity of 40% RH is injected into it, and this is stored at 25 ° C. to absorb oxygen in the bag over time. The amount and humidity were analyzed. The results are shown in Table 1.

【0027】実施例7 タングステン酸アンモニウム・5水和物12.17gを
80℃の水200mlに溶解し、これにゼオライト20
g入れ、このまま3時間撹拌した。撹拌終了後、水を減
圧留去し、110℃で乾燥した。この乾燥品約0.5g
を実施例1と全く同じく成型し、その成型体2個をアル
ミ網の蓋が付いた石英製の小シャ−レに入れ、窒素気流
中200℃、30分間予備加熱後、水素気流650℃、
4時間還元した。 還元終了後、窒素を流通させて室温
まで冷却し、窒素を満たしたグロ−ブボックス中で還元
品0.77gが入っている石英製小シャ−レを有孔ポリ
エチレンでラミネ−トした紙小袋に詰め、更にこの小袋
をアルミ箔/PEの包装体に入れて脱気した。この脱気
したアルミ箔/PEの包装体をグロ−ブボックスの外に
出し、これに湿度40%RHの空気を250ml注入
し、これを25℃で保存して経時的に袋内の酸素吸収
量、湿度分析を行った。この結果を表1に示した。
Example 7 12.17 g of ammonium tungstate pentahydrate was dissolved in 200 ml of water at 80 ° C. and zeolite 20 was added thereto.
g, and stirred for 3 hours as it was. After the completion of stirring, water was distilled off under reduced pressure and dried at 110 ° C. About 0.5g of this dried product
Example 1 was molded exactly as in Example 1, and the two molded bodies were placed in a small Petri dish with a lid of an aluminum net, preheated in a nitrogen stream at 200 ° C for 30 minutes, and then a hydrogen stream at 650 ° C.
Reduced for 4 hours. After the reduction is completed, nitrogen is circulated to cool it to room temperature, and a small pouch made of quartz containing 0.77 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated. This degassed aluminum foil / PE package is taken out of the glove box, 250 ml of air with a humidity of 40% RH is injected into it, and this is stored at 25 ° C. to absorb oxygen in the bag over time. The amount and humidity were analyzed. The results are shown in Table 1.

【0028】参考例1 硝酸ニッケル・6水和物45.0gを60gの水150
mlに溶解し、これにゼオライト20gを入れ撹拌し
た。 次に、無水炭酸ナトリュウム20.0gを水10
0mlに溶解した水溶液を滴下し、その後、2時間撹拌
した。撹拌終了後、不溶物を濾取し、水で濾液が中性に
なるまで洗浄し、110℃で乾燥した。 この乾燥品約
0.5gを実施例1と全く同じく成型し、その成型体2
個をアルミ網の蓋が付いた石英製の小シャ−レに入れ、
窒素気流中200℃、30分間予備加熱後、水素気流4
50℃、3時間還元した。 還元終了後、窒素を流通さ
せて室温まで冷却し、窒素を満たしたグロ−ブボックス
中で還元品0.67gが入っている石英製小シャ−レを
有孔ポリエチレンでラミネ−トした紙小袋に詰め、更に
この小袋をアルミ箔/PEの包装体に入れて脱気した。
この脱気したアルミ箔/PEの包装体をグロ−ブボック
スの外に出し、これに湿度40%RHの空気を250m
l注入し、これを25℃で保存して経時的に袋内の酸素
吸収量、湿度分析を行った。この結果を表1に示した。
Reference Example 1 Nickel nitrate hexahydrate 45.0 g was added to 60 g of water 150.
It was dissolved in ml, and 20 g of zeolite was added thereto and stirred. Next, 20.0 g of anhydrous sodium carbonate was added to water 10
An aqueous solution dissolved in 0 ml was added dropwise and then stirred for 2 hours. After the completion of stirring, the insoluble matter was collected by filtration, washed with water until the filtrate became neutral, and dried at 110 ° C. About 0.5 g of this dried product was molded in exactly the same way as in Example 1, and a molded body 2
Put the pieces in a small quartz dish with an aluminum net lid,
After preheating at 200 ° C for 30 minutes in a nitrogen stream, hydrogen stream 4
It was reduced at 50 ° C. for 3 hours. After the reduction is completed, nitrogen is circulated and cooled to room temperature, and a small pouch made of quartz containing 0.67 g of the reduced product is laminated with perforated polyethylene in a nitrogen-filled glove box. Then, the pouch was placed in an aluminum foil / PE package and deaerated.
The degassed aluminum foil / PE package is taken out of the glove box, and air with a humidity of 40% RH is set to 250 m.
Then, the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1より明かなように、乾燥条件でも脱酸
素能を有する活性化金属として、ニッケル以外にマンガ
ン、鉄、コバルト、銅があり、この中でも鉄、コバル
ト、特にコバルトは、脱酸素能が大きく実用性に優れて
いることが分かる。また、これらの担持された活性化金
属を用いた脱酸素剤は、担持された金属種によらずに脱
湿能にも優れていることが分かる。更に、水を添加した
条件で脱酸素能を有したバナジウム、モリブデン、タン
グステンは、乾燥条件では脱酸素能が殆どなくなること
から、担持金属の種類によって水添加条件と乾燥条件と
では脱酸素能が著しく異なることが分かる。
As is clear from Table 1, there are manganese, iron, cobalt, and copper in addition to nickel as the activated metals having deoxidizing ability even under dry conditions. Among them, iron, cobalt, and particularly cobalt have deoxidizing ability. It can be seen that is large and excellent in practicality. Further, it is found that the oxygen scavenger using these supported activated metals has an excellent dehumidifying ability regardless of the supported metal species. Furthermore, vanadium, molybdenum, and tungsten, which have a deoxidizing ability under the condition of adding water, have almost no deoxidizing ability under a drying condition. It can be seen that they are significantly different.

【0031】比較例1 二酸化マンガン8.90gと珪藻土10gを均一に混合
し、この混合物約0.5gを実施例1と全く同じ条件で
成型し、この成型体2個をアルミの蓋の付いた石英製小
シャ−レに入れ、実施例1と全く同じく還元、仕込みを
行い、これを25℃で保存して経時的に袋内の酸素吸収
量、湿度分析を行った。この結果を表2に示した。
Comparative Example 1 8.90 g of manganese dioxide and 10 g of diatomaceous earth were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1, and two molded bodies were covered with an aluminum lid. The sample was placed in a small quartz dish and subjected to the same reduction and preparation as in Example 1, and this was stored at 25 ° C., and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 2.

【0032】比較例2 実施例2においてゼオライト担体20gを用いないで全
く同じ反応を行い鉄化合物を調製した。 この鉄化合物
2gとゼオフィル2.5gを均一に混合し、この混合物
約0.5gを実施例1と全く同じ条件で成型し、この成
型体2個をアルミの蓋の付いた石英製小シャ−レに入
れ、実施例2と全く同じく還元、仕込みを行い、これを
25℃で保存して経時的に袋内の酸素吸収量、湿度分析
を行った。この結果を表2に示した。
Comparative Example 2 An iron compound was prepared in the same manner as in Example 2 except that 20 g of the zeolite carrier was not used. 2 g of this iron compound and 2.5 g of Zeophyl were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1, and two molded bodies were made of quartz with a small aluminum cap. Then, reduction and charging were carried out in exactly the same manner as in Example 2, and this was stored at 25 ° C. and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 2.

【0033】比較例3 実施例3において酸性白土担体20gを用いないで全く
同じ反応を行い、コバルト化合物を調製した。 このコ
バルト化合物11.85gとゼオライト10gを均一に
混合し、この混合物約0.5gを実施例1と全く同じ条
件で成型し、この成型体2個をアルミの蓋の付いた石英
製小シャ−レに入れ、実施例3と全く同じく還元、仕込
みを行い、これを25℃で保存して経時的に袋内の酸素
吸収量、湿度分析を行った。この結果を表2に示した。
Comparative Example 3 A cobalt compound was prepared in the same manner as in Example 3, except that 20 g of the acidic clay carrier was not used. 11.85 g of this cobalt compound and 10 g of zeolite were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1, and two of these molded bodies were made of quartz with a small aluminum cap. The bag was placed in a bag, reduced and charged exactly as in Example 3, stored at 25 ° C., and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 2.

【0034】比較例4 酸化第二銅8.0gとゼオライト10gを均一に混合
し、この混合物約0.5gを実施例1と全く同じ条件で
成型し、この成型体2個をアルミの蓋の付いた石英製小
シャ−レに入れ、実施例4と全く同じく還元、仕込みを
行い、これを25℃で保存して経時的に酸素吸収量、湿
度分析を行った。この結果を表2に示した。
Comparative Example 4 8.0 g of cupric oxide and 10 g of zeolite were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1, and two molded bodies were covered with an aluminum lid. The sample was placed in a small quartz dish attached thereto, subjected to the same reduction and preparation as in Example 4, stored at 25 ° C., and subjected to oxygen absorption amount and humidity analysis with time. The results are shown in Table 2.

【0035】比較例5 メタバナジン酸アンモニウム9.83gとゼオライト1
0gを均一に混合し、この混合物約0.5gを実施例1
と全く同じ条件で成型し、この成型体2個をアルミの蓋
の付いた石英製小シャ−レに入れ、実施例5と全く同じ
く還元、仕込みを行い、これを25℃で保存して経時的
に袋内の酸素吸収量、湿度分析を行った。この結果を表
2に示した。
Comparative Example 5 9.83 g of ammonium metavanadate and zeolite 1
0 g was mixed uniformly and about 0.5 g of this mixture was added to Example 1
Molded under exactly the same conditions as in the above, placed two of these molded bodies in a small quartz dish with an aluminum lid, reduced and charged exactly as in Example 5, and stored this at 25 ° C. The amount of oxygen absorbed in the bag and the humidity were analyzed. The results are shown in Table 2.

【0036】比較例6 三酸化モリブデン6.44gとゼオフィル10gを均一
に混合し、この混合物約0.5gを実施例1と全く同じ
条件で成型し、この成型体2個をアルミの蓋の付いた石
英製小シャ−レに入れ、実施例6と全く同じく還元、仕
込みを行い、これを25℃で保存して経時的に袋内の酸
素吸収量、湿度分析を行った。この結果を表2に示し
た。
Comparative Example 6 6.44 g of molybdenum trioxide and 10 g of Zeophyl were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1, and two molded bodies were covered with an aluminum lid. The mixture was placed in a small quartz dish and reduced and charged in exactly the same manner as in Example 6, and this was stored at 25 ° C. and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 2.

【0037】比較例7 三酸化タングステン5.41gとゼオフィル10gを均
一に混合し、この混合物約0.5gを実施例1と全く同
じ条件で成型し、この成型体2個をアルミの蓋の付いた
石英製小シャ−レに入れ、実施例7と全く同じく還元、
仕込みを行い、これを25℃で保存して経時的に袋内の
酸素吸収量、湿度分析を行った。この結果を表2に示し
た。
Comparative Example 7 Tungsten trioxide (5.41 g) and zeophyl (10 g) were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1, and two molded bodies were covered with an aluminum lid. Placed in a small quartz dish and reduced exactly as in Example 7.
After preparation, the bag was stored at 25 ° C., and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 2.

【0038】参考例2 参考例1においてゼオライト担体20gを用いないで全
く同じ反応を行いニッケル化合物を調製した。このニッ
ケル化合物2.5gとゼオフィル2.1gを均一に混合
し、この混合物約0.5gを実施例1と全く同じ条件で
成型し、この成型体2個をアルミの蓋の付いた石英製小
シャ−レに入れ、参考例1と全く同じく還元、仕込みを
行い、これを25℃で保存して経時的に袋内の酸素吸収
量、湿度分析を行った。この結果を表2に示した。
Reference Example 2 The same reaction as in Reference Example 1 was carried out without using 20 g of the zeolite carrier to prepare a nickel compound. 2.5 g of this nickel compound and 2.1 g of Zeophyl were uniformly mixed, and about 0.5 g of this mixture was molded under exactly the same conditions as in Example 1. Two molded bodies were made of quartz with an aluminum lid. The mixture was placed in a dish, reduced and charged exactly as in Reference Example 1, stored at 25 ° C., and the amount of oxygen absorbed in the bag and the humidity were analyzed over time. The results are shown in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】表1と表2の比較から明かなように、担持
された活性化金属の乾燥条件での脱酸素能は、担持され
ていない活性化金属のそれよりも著しく大きいことがわ
かる。
As is clear from the comparison between Table 1 and Table 2, the deoxidizing ability of the supported activated metal under the dry condition is significantly higher than that of the unsupported activated metal.

【0041】実施例8 実施例3において、担体酸性白土の代わりに珪藻土、ゼ
オライト、シリカ、アルミナ、チタニア、パ−ライト、
酸性白土、シリカチタニア、活性炭を用いた以外は、全
く実施例3と同じくして各担持品を調製した。これらの
調製品を、各々約0.5g用い実施例1と全く同じ条件
で成型し、この成型体2個をアルミの蓋の付いた石英製
小シャ−レに入れ、実施例3と全く同じく還元、仕込み
を行い、これを25℃に保存して経時的に袋内の酸素吸
収量、湿度分析を行った。この結果を表3に示した。
Example 8 In Example 3, instead of the carrier acid clay, diatomaceous earth, zeolite, silica, alumina, titania, pearlite,
Each supported product was prepared in exactly the same manner as in Example 3 except that acid clay, silica titania, and activated carbon were used. About 0.5 g of each of these preparations was molded under exactly the same conditions as in Example 1, and the two molded products were placed in a small quartz dish with an aluminum lid. It was reduced and charged, stored at 25 ° C., and the oxygen absorption in the bag and the humidity were analyzed over time. The results are shown in Table 3.

【0042】[0042]

【表3】 [Table 3]

【0043】表3から明かなように脱酸素能に対する担
体効果は大きく、酸性白土、ゼオライト、珪藻土、チタ
ニア、活性炭が好適に用いられる。一方、脱湿能に関し
ては、担体による差異はあまり大きくなく、いずれも殆
ど1時間以内で10%RH以下の乾燥状態にする能力が
あることが分かる。
As is apparent from Table 3, the carrier effect on the deoxidizing ability is large, and acid clay, zeolite, diatomaceous earth, titania and activated carbon are preferably used. On the other hand, regarding the dehumidifying ability, it is understood that there is not much difference depending on the carrier, and all have the ability to bring the dried state to 10% RH or less within almost one hour.

【0044】実施例9 硝酸コバルト・6水和物14.55gを約70℃の水5
0mlに溶解し、これに酸性白土の担体をCo担持率が
それぞれ5、20、37、60、80、90wt%にな
るような量を入れ撹拌した。 次に無水炭酸ナトリウム
10.6gを水50mlに溶かした水溶液を滴下した。
滴下終了後そのまま2時間撹拌した。撹拌後、不溶物を
濾別し、水で濾液が中性になるまで洗浄し、110℃で
乾燥した。これらの調製品を、各々約0.5g用い実施
例1と全く同じ条件で成型し、この成型体2個をアルミ
の蓋の付いた石英製小シャ−レに入れ、実施例3と全く
同じく還元、仕込みを行い、これを25℃に保存して経
時的に袋内の酸素吸収量、湿度分析を行った。この結果
を表4に示した。
Example 9 14.55 g of cobalt nitrate hexahydrate was added to water of about 70 ° C. in 5 parts of water.
The solution was dissolved in 0 ml, and the carrier of acidic clay was added thereto in an amount such that the Co loading rate would be 5, 20, 37, 60, 80, 90 wt%, and the mixture was stirred. Next, an aqueous solution prepared by dissolving 10.6 g of anhydrous sodium carbonate in 50 ml of water was added dropwise.
After completion of dropping, the mixture was stirred for 2 hours as it was. After stirring, the insoluble matter was filtered off, washed with water until the filtrate became neutral, and dried at 110 ° C. About 0.5 g of each of these preparations was molded under exactly the same conditions as in Example 1, and the two molded products were placed in a small quartz dish with an aluminum lid. It was reduced and charged, stored at 25 ° C., and the oxygen absorption in the bag and the humidity were analyzed over time. The results are shown in Table 4.

【0045】[0045]

【表4】 [Table 4]

【0046】表4から明らかなように活性化金属の担持
率は、5〜90wt%が用いられ、この中でも37〜8
0wt%が好適に用いられることが分かる。
As is clear from Table 4, the loading rate of the activated metal is 5 to 90% by weight, among which 37 to 8 are used.
It can be seen that 0 wt% is preferably used.

【0047】実施例10 実施例2において仕込み後の酸素濃度に変化が見られな
くなるまで実験を続けた後、収納紙小袋から担持品を空
気中に取り出した。取り出した担持品は空気中に取り出
してから30秒後から発熱し始め、数分後には室温に冷
えた。次に、上記の使用済み担持品を再び1回目と全く
同じく還元、仕込み、酸素濃度に変化が見られなくまで
実験を続けた後、担持品を1回目と同じく空気中に取り
出した。この操作を5回繰り返した後の袋内の酸素吸収
量、湿度変化を表5に示した。
Example 10 After carrying out the experiment in Example 2 until the oxygen concentration after charging did not change, the supported product was taken out from the storage paper pouch into the air. The loaded product taken out began to generate heat 30 seconds after being taken out into the air, and cooled to room temperature after several minutes. Next, the above-mentioned used supported product was reduced and charged again exactly as in the first time, and the experiment was continued until no change in oxygen concentration was observed, and then the supported product was taken out into the air as in the first time. Table 5 shows the oxygen absorption amount and humidity change in the bag after this operation was repeated 5 times.

【0048】[0048]

【表5】 [Table 5]

【0049】表5から明なように本発明の脱酸素剤は、
還元により容易に再活性化され、再使用が可能になるこ
とが分かる。
As is clear from Table 5, the oxygen scavenger of the present invention is
It can be seen that the reduction facilitates reactivation and allows reuse.

【0050】実施例11 実施例2で調製した乾燥品約1.0gを実施例1と全く
同じく成型し、その成型体5個をアルミ網の蓋が付いた
石英製の小シャ−レに入れ、実施例2と全く同じく還元
した。還元終了後、窒素を流通させて室温まで冷却し、
窒素を満たしたグロ−ブボックス中で還元品4.0gが
入っている石英製小シャ−レを有孔ポリエチレンでラミ
ネ−トした紙小袋に詰めた。この紙小袋をグロ−ブボッ
クスの外に出し、この紙小袋と10cm×10cmの大
きさの焼き板海苔10枚をアルミ箔/PEの包装体に入
れ脱気した後、これに湿度80%RHの空気を250m
l仕込み、これを25℃で保存して経時的に袋内の酸素
濃度、湿度の分析を行った。更に、保存開始1週間後、
一ヶ月後に開封し、異臭の官能試験及び保存品の外観目
視検査を行った。その結果を表6に示した。
Example 11 About 1.0 g of the dried product prepared in Example 2 was molded in exactly the same manner as in Example 1, and 5 molded products were placed in a small quartz dish with an aluminum net lid. , Exactly the same as in Example 2. After the reduction is completed, nitrogen is circulated to cool it to room temperature,
In a glove box filled with nitrogen, a small quartz dish containing 4.0 g of the reduced product was packed in a paper pouch laminated with perforated polyethylene. This paper pouch is taken out of the glove box, and this paper pouch and 10 pieces of grilled plate laver with a size of 10 cm × 10 cm are put in an aluminum foil / PE package to be deaerated, and then the humidity is 80% RH. 250m of air
It was charged into the bag and stored at 25 ° C., and the oxygen concentration and humidity in the bag were analyzed over time. Furthermore, one week after the start of storage,
One month later, the container was opened, and a sensory test for offensive odor and a visual inspection of the preserved product were conducted. The results are shown in Table 6.

【0051】比較例8〜10 実施例11との比較のため、実施例11で用いた脱酸素
剤の代わりに鉄粉0.2g、水0.2g、塩化ナトリウ
ム0.5g、活性炭0.2gを混合し、この混合物を実
施例11と同じ紙小袋に収納した鉄系脱酸素剤を用い、
実施例11と全く同じく行ない、評価した(比較例
8)。 また、実施例11で用いた脱酸素剤の代わりに
オレイン酸2gとオレイン酸鉄0.2gを均一に混合し
た後に酸化カルシウム0.2gを添加して良く混合し、
室温で30分放置した固形物を乳鉢で粉砕して調製した
顆粒状組成物を実施例11と同じ紙小袋に収納した不飽
和脂肪系脱酸素剤を用い、実施例11と全く同じく行な
い評価した(比較例9)。更に、脱酸素剤を用いないで
実施例11と全く同じく行ない評価した(比較例1
0)。これらの結果を表6に示した。
Comparative Examples 8 to 10 For comparison with Example 11, iron powder 0.2 g, water 0.2 g, sodium chloride 0.5 g, activated carbon 0.2 g were used instead of the oxygen scavenger used in Example 11. Was mixed, and the mixture was mixed with the iron-based oxygen scavenger housed in the same paper pouch as in Example 11,
It carried out and evaluated exactly as in Example 11 (Comparative Example 8). Further, instead of the oxygen scavenger used in Example 11, 2 g of oleic acid and 0.2 g of iron oleate were uniformly mixed, and then 0.2 g of calcium oxide was added and well mixed,
The granular composition prepared by crushing the solid substance left at room temperature for 30 minutes in a mortar was evaluated in exactly the same manner as in Example 11 using the unsaturated fatty oxygen scavenger stored in the same paper pouch as in Example 11. (Comparative example 9). Furthermore, the same evaluation as in Example 11 was performed without using an oxygen absorber (Comparative Example 1).
0). The results are shown in Table 6.

【0052】表6から明らかなように本発明の脱酸素剤
を用いることによって、乾燥状態を維持し、しかも臭気
や異臭の発生も全くなく乾燥食品を良好に保存できるこ
とが分かる。
As is clear from Table 6, by using the oxygen scavenger of the present invention, the dried state can be maintained and the dried food can be satisfactorily preserved without any odor or offensive odor.

【0053】[0053]

【表6】 [Table 6]

【0054】実施例12 実施例11と全く同じく成型、還元して得た還元品4.
1gを窒素を満たしたグロ−ブボックス中でアルミ網の
蓋が付いた石英製シャ−レの容器に入れたまま有孔ポリ
エチレンでラミネ−トした紙小袋に詰めた。 この紙小
袋をグロ−ブボックスの外に出し、この紙小袋と市販の
乾燥漢方薬ゲンノウショウコ50gを更に70℃で1晩
乾燥させたものをアルミ箔/PEの包装体に入れ脱気し
た後、これに湿度80%RHの空気を250ml仕込
み、これを35℃で保存して経時的に袋内の酸素濃度、
湿度の分析を行った。更に、保存開始2週間後、1カ月
後に開封し、異臭の官能試験及び保存品の外観目視検査
を行った。その結果を表7に示した。
Example 12 Reduced product obtained by molding and reducing in exactly the same manner as in Example 11.
In a glove box filled with nitrogen, 1 g was packed in a paper pouch laminated with perforated polyethylene while being placed in a container of a quartz dish with an aluminum net lid. This paper pouch was taken out of the glove box, and this paper pouch and 50 g of a commercially available dried Chinese herbal medicine Genshosho were further dried overnight at 70 ° C., which was then placed in an aluminum foil / PE package and deaerated, 250 ml of air having a humidity of 80% RH was charged into this, and this was stored at 35 ° C. to store the oxygen concentration in the bag over time.
Humidity analysis was performed. Further, two weeks after the start of storage and one month later, the package was opened, and a sensory test for offensive odor and a visual inspection of the stored product were conducted. The results are shown in Table 7.

【0055】比較例11〜13 実施例12との比較のため、実施例12で用いた脱酸素
剤の代わりに比較例8の鉄系脱酸素剤を用い、実施例1
2と全く同じく行ない評価した(比較例11)。また、
実施例12で用いた脱酸素剤の代わりに比較例9の不飽
和脂肪系脱酸素剤を用い、実施例12と全く同じく行な
い評価した(比較例12)。更に、脱酸素剤を用いない
で実施例12と全く同じく行ない評価した(比較例1
3)。これらの結果を表7に示した。
Comparative Examples 11 to 13 For comparison with Example 12, the iron-based oxygen scavenger of Comparative Example 8 was used instead of the oxygen scavenger used in Example 12.
Evaluation was carried out exactly as in 2 (Comparative Example 11). Also,
The unsaturated fatty oxygen scavenger of Comparative Example 9 was used in place of the oxygen scavenger used in Example 12, and the same evaluation as in Example 12 was performed (Comparative Example 12). Furthermore, the same evaluation as in Example 12 was carried out without using an oxygen absorber (Comparative Example 1).
3). The results are shown in Table 7.

【0056】[0056]

【表7】 [Table 7]

【0057】表7から明らかなように本発明の脱酸素剤
は、乾燥保存を必要とする医薬品にも好適に用いること
ができる。
As is clear from Table 7, the oxygen scavenger of the present invention can be preferably used for pharmaceuticals requiring dry storage.

【0058】実施例13 実施例3で調製した乾燥品約1.0gを実施例1と全く
同じく成型し、その成型体2個をアルミ網の蓋が付いた
石英製の小シャ−レに入れ、実施例3と全く同じく還元
した。還元終了後、窒素を流通させて室温まで冷却し、
窒素を満たしたグロ−ブボックス中で還元品1.7gが
入っている石英製小シャ−レを有孔ポリエチレンでラミ
ネ−トした紙小袋に詰めた。 この紙小袋をグロ−ブボ
ックスの外に出し、この紙小袋と機械研磨した銅メッキ
銅片(10mm×60mm×0.3mm)をアルミ箔/
PEの包装体に入れ脱気した後、これに湿度80%RH
の空気を250ml仕込み、これを35℃で保存して経
時的に袋内の酸素濃度、湿度の分析を行った。更に、保
存開始1週間後、2週間後、3週間後、1カ月後に開封
し、異臭の官能試験及び保存品の錆発生の状態を調べ
た。その結果を表8に示した。
Example 13 About 1.0 g of the dried product prepared in Example 3 was molded in exactly the same manner as in Example 1, and the two molded products were placed in a small quartz dish with an aluminum net lid. The reduction was performed in exactly the same manner as in Example 3. After the reduction is completed, nitrogen is circulated to cool it to room temperature,
A small quartz dish containing 1.7 g of the reduced product was packed in a nitrogen-filled glove box in a paper pouch laminated with perforated polyethylene. This paper pouch was taken out of the glove box, and the paper pouch and mechanically polished copper-plated copper pieces (10 mm x 60 mm x 0.3 mm) were attached to aluminum foil /
After degassing by putting it in a PE package, add 80% RH to it.
250 ml of the above air was charged and stored at 35 ° C., and the oxygen concentration and humidity in the bag were analyzed over time. Further, after 1 week, 2 weeks, 3 weeks, and 1 month after the start of storage, the container was opened, and a sensory test for offensive odor and a state of rust generation in the stored product were examined. The results are shown in Table 8.

【0059】比較例14〜16 実施例13との比較のため、実施例13で用いた脱酸素
剤の代わりに比較例8の鉄系脱酸素剤を用い、実施例1
3と全く同じく行ない評価した(比較例14)。また、
実施例13で用いた脱酸素剤の代わりに比較例9の不飽
和脂肪系脱酸素剤を用い、実施例13と全く同じく行な
い評価した(比較例15)。更に、脱酸素剤を用いない
で実施例13と全く同じく行ない評価した(比較例1
6)。これらの結果を表8に示した。
Comparative Examples 14 to 16 For comparison with Example 13, the iron-based oxygen scavenger of Comparative Example 8 was used instead of the oxygen scavenger used in Example 13.
Evaluation was carried out in the same manner as 3 (Comparative Example 14). Also,
The unsaturated fatty oxygen scavenger of Comparative Example 9 was used instead of the oxygen scavenger used in Example 13, and the evaluation was performed in exactly the same manner as Example 13 (Comparative Example 15). Furthermore, the same evaluation as in Example 13 was carried out without using an oxygen absorber (Comparative Example 1).
6). The results are shown in Table 8.

【0060】表8から明らかなように本発明の脱酸素剤
は、異臭の発生も全くなくしかも乾燥状態を維持し、湿
度を嫌う金属製品の防錆保存に好適に用いることができ
る。
As is clear from Table 8, the oxygen scavenger of the present invention does not generate any offensive odor, maintains a dry state, and can be suitably used for rust-preserving preservation of metal products which do not like humidity.

【0061】[0061]

【表8】 [Table 8]

【0062】[0062]

【発明の効果】本発明の脱酸素剤を用いることによっ
て、30%RH以下の乾燥条件でも効率よく脱酸素する
ことができ、しかも除湿能も有し、臭気や異臭などの発
生も全くなく、しかも、本発明の脱酸素剤は水や塩基性
物質を全く必要としないために、従来の脱酸素剤が適用
出来なかった乾燥食品や医薬品の保存及び金属の防錆保
存などに用いることができるようになった。さらに本発
明の脱酸素剤は、使用して失活しても廃棄する必要はな
く、主剤の担持金属を容易に再活性化して再使用でき、
資源有効利用に大いに寄与する脱酸素剤である。
EFFECTS OF THE INVENTION By using the oxygen scavenger of the present invention, oxygen can be efficiently deoxidized even under a drying condition of 30% RH or less, and also has a dehumidifying ability, and no odor or offensive odor is generated. Moreover, since the oxygen scavenger of the present invention does not require water or a basic substance at all, it can be used for preservation of dried foods and pharmaceuticals to which conventional oxygen scavengers cannot be applied, and preservation of metal rust. It became so. Furthermore, the oxygen scavenger of the present invention does not need to be discarded even if it is deactivated by using, and the metal supported on the main component can be easily reactivated and reused,
It is an oxygen scavenger that greatly contributes to the effective use of resources.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−214351(JP,A) 特開 平4−244228(JP,A) 特開 平8−38885(JP,A) 特開 平8−38884(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/02 A23L 3/3436 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-214351 (JP, A) JP-A-4-244228 (JP, A) JP-A-8-38885 (JP, A) JP-A-8- 38884 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 20/02 A23L 3/3436

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn、Fe、Co及びCuから選ばれる少
なくとも一種類の遷移金属の無機塩または有機塩を無機
担体に担持し加熱還元または加熱分解して得られた活性
化金属からなる脱酸素剤。
1. Deoxidization comprising an activated metal obtained by carrying out thermal reduction or thermal decomposition of an inorganic salt or organic salt of at least one transition metal selected from Mn, Fe, Co and Cu supported on an inorganic carrier. Agent.
【請求項2】30%RH以下の乾燥条件用の請求項1記
載の脱酸素剤。
2. The oxygen scavenger according to claim 1, which is for a drying condition of 30% RH or less.
【請求項3】加熱接触還元による再活性化処理によって
再使用可能な脱酸素剤であることを特徴とする請求項1
記載の脱酸素剤。
3. An oxygen scavenger which can be reused by a reactivation treatment by heating catalytic reduction.
The described oxygen scavenger.
JP17668094A 1994-07-28 1994-07-28 Oxygen scavenger Expired - Lifetime JP3480474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17668094A JP3480474B2 (en) 1994-07-28 1994-07-28 Oxygen scavenger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17668094A JP3480474B2 (en) 1994-07-28 1994-07-28 Oxygen scavenger

Publications (2)

Publication Number Publication Date
JPH0838883A JPH0838883A (en) 1996-02-13
JP3480474B2 true JP3480474B2 (en) 2003-12-22

Family

ID=16017851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17668094A Expired - Lifetime JP3480474B2 (en) 1994-07-28 1994-07-28 Oxygen scavenger

Country Status (1)

Country Link
JP (1) JP3480474B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW421608B (en) * 1996-11-12 2001-02-11 Mitsubishi Gas Chemical Co Method for drying resin-used electronic parts
JP3338341B2 (en) * 1997-08-29 2002-10-28 三洋電機株式会社 Oxygen absorbent and regeneration method thereof
KR20040007265A (en) * 2002-07-12 2004-01-24 닛폰 에쿠스란 고교 가부시키가이샤 Discoloration inhibitor for metals
JP5580503B1 (en) 2012-11-21 2014-08-27 三井化学株式会社 Polymerizable composition for optical material
WO2014080750A1 (en) 2012-11-21 2014-05-30 三井化学株式会社 Polyurethane resin production method
EP2980159B1 (en) 2013-03-26 2020-11-25 Mitsui Chemicals, Inc. Polymerizable composition for optical materials, optical material obtained from same, and method for producing optical material
KR20210102224A (en) * 2018-12-18 2021-08-19 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Oxygen scavenger composition

Also Published As

Publication number Publication date
JPH0838883A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
EP1550506B1 (en) Oxygen scavenger composition
EP0965381B1 (en) Oxygen absorbent
KR19980032770A (en) Composition for absorbing oxygen
JP3480474B2 (en) Oxygen scavenger
CA2013803C (en) Oxygen absorbent
DE60107627T2 (en) Oxygen and water vapor absorbing composition
JP6914507B2 (en) Manufacturing method of organic oxygen scavenger
KR20130094770A (en) Chabazite and clinoptilolite in oxygen absorbers
JP5626488B2 (en) Method for producing oxygen absorbent
JP2003144113A (en) Free-oxygen absorber
JP4453797B2 (en) Oxygen absorber composition
JPS6260936B2 (en)
WO2001025369A1 (en) Rapid oxygen absorption by using activators
JP3446774B2 (en) Oxygen scavenger
JPH0938486A (en) Disoxidant and its packed body
JP2923978B2 (en) Oxygen scavenger
JP3018430B2 (en) Oxygen absorber composition
JP2993085B2 (en) Oxygen scavenger
JP3134291B2 (en) Oxygen absorbing composition
JP2668888B2 (en) Oxygen absorber
JP2001037456A (en) Preservation of product of low moisture content
JP2822440B2 (en) Oxygen scavenger
JP3028966B2 (en) How to save bearings for rotating parts
WO2013190411A2 (en) Recyclable and reusable oxygen scavenger
JP2000005596A (en) Deoxidizing agent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

EXPY Cancellation because of completion of term