JP3480340B2 - DC discharge lamp - Google Patents

DC discharge lamp

Info

Publication number
JP3480340B2
JP3480340B2 JP31851398A JP31851398A JP3480340B2 JP 3480340 B2 JP3480340 B2 JP 3480340B2 JP 31851398 A JP31851398 A JP 31851398A JP 31851398 A JP31851398 A JP 31851398A JP 3480340 B2 JP3480340 B2 JP 3480340B2
Authority
JP
Japan
Prior art keywords
cathode
tip
anode
volume
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31851398A
Other languages
Japanese (ja)
Other versions
JP2000149868A (en
Inventor
康彦 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP31851398A priority Critical patent/JP3480340B2/en
Publication of JP2000149868A publication Critical patent/JP2000149868A/en
Application granted granted Critical
Publication of JP3480340B2 publication Critical patent/JP3480340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、画像の投影や光化
学反応の光源として使用される直流放電ランプに関する
ものである。 【0002】 【従来の技術】直流放電ランプは、石英ガラスからなる
発光管内に陰極と陽極が対向配置されるが、点灯時にお
いて、陰極と陽極が放電プラズマから受け取るエネルギ
ーを比較すると、陽極表面ではほとんどが電子による電
流であり、電子が流入するときにエネルギーを受け取る
のみであるのに対して、陰極表面では正イオンによる電
流と電子による電流があり、正イオンが陰極に衝突する
ときに陰極はエネルギーを受け取り、電子を放出すると
きにエネルギーを奪われる。つまり、陰極が受けるエネ
ルギーは陽極が受けるエネルギーより小さいので、陰極
の体積は陽極の体積より小さく設計されるが、陰極の体
積を陽極の体積の20〜30%程度にすると、陰極と陽
極の温度が例えば2800℃において平衡を保つことが
実験的に知られている。このため、従来の直流放電ラン
プにおいては、陰極の体積を陽極の体積の20〜30%
程度に設計されていた。 【0003】 【発明が解決しようとする課題】ところで、直流放電ラ
ンプは、点灯時において、陰極先端に陰極輝点が形成さ
れるが、画像の投影や光化学反応などの光源は高輝度の
点光源が要求されるので、陰極先端に高輝度の陰極輝点
が形成されるキセノンランプ、キセノン水銀ランプ、超
高圧水銀ランプなどが用いられる。そして最近では、光
源の高輝度の要請がますます強くなり、このために、陰
極先端の電流密度を20,000〜30,000A/c
程度にして高輝度の光源を得ているが、このような
高密度の電流を流すには陰極の温度を極めて高くする必
要がある。 【0004】直流放電ランプの陰極は、ランプの始動を
容易にし、かつ光束劣化を少なくするため、エミッター
が付加されるが、通常は、数wt%の酸化トリウムをド
ープしたタングステン(以下、トリエーテッドタングス
テン)で陰極を成形することが多い。そして、陰極の先
端を円錐状に成形してその最先端に放電の陰極輝点をつ
くらせるが、トリエーテッドタングステンは仕事関数が
高いので、前記のような高い電流密度を得るためには、
陰極先端の温度を2,800℃程度にする必要がある。 【0005】このため、点灯初期においては、図2の点
線で示すように、先端面積が小さくて尖っていた陰極の
先端は、点灯時間の経過とともに溶損して変形し、点灯
約300時間後においては、図2の実線で示すように、
先端の形状は先端面積が大きくて歪な台形になる。この
ため、陰極先端の電流密度が小さくなって輝度が低下す
る。そして、溶損した分だけ陰極先端の位置が後退して
電極間距離が大きくなり、陰極輝点の位置も変化するの
で、陰極輝点が反射ミラーの焦点位置から変位して配光
特性が変化してしまう。更には、溶損したトリエーテッ
ドタングステンの蒸気が発光管の内壁に付着して黒化す
るので光の透過率が低下し、放電ランプの寿命が短くな
る。 【0006】また、タングステンからなる陰極の先端
に、酸化バリウムや酸化カルシウム、酸化ストロンチウ
ムを含むタングステン粉末を焼結したアルカリ土類系の
エミッターを付加した陰極も使用されるが、アルカリ土
類系のエミッターはトリエーテッドタングステンよりも
仕事関数が低いので、陰極先端の温度が2,300℃程
度で20,000〜30,000A/cm程度の高い
電流密度を得ることができる。このため、アルカリ土類
系のエミッターを付加した陰極は、トリエーテッドタン
グステンで成形された陰極よりも、点灯時の蒸発が少な
く、それだけ長寿命ではあるが、陰極先端の変形はトリ
エーテッドタングステンで成形された陰極の場合とあま
り変わらず、陰極先端の電流密度が小さくなって輝度が
低下し、陰極輝点の位置も変位して配光特性が変化して
しまう。 【0007】そこで本発明は、陰極先端の溶損や変形が
少なく、陰極輝点の輝度や位置が長時間安定してランプ
寿命の長い直流放電ランプを提供することを目的とす
る。 【0008】 【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、発光管内にタングステンからなる陰極
と陽極が対向配置され、酸化バリウム、酸化カルシウ
ム、酸化ストロンチウムの単体又は、これらの複合体を
含むタングステン粉末の焼結体からなるエミッターが陰
極の先端に配置された画像の投影および光化学反応用の
直流放電ランプにおいて、陰極および陽極を先端部分が
テーパ形状の円柱体とこの円柱体を支持する電極芯棒で
構成し、陰極の体積を陽極の体積の70〜200%にす
る。 【0009】 前記したように、従来の直流放電ランプ
においては、陰極の体積は陽極の体積の20〜30%程
度に設計されていたが、本発明者は、酸化バリウム、酸
化カルシウム、酸化ストロンチウムの単体又は、これら
の複合体を含むタングステン粉末の焼結体からなるエミ
ッターを陰極に付加し、陰極および陽極を先端部分がテ
ーパ形状の円柱体とこの円柱体を支持する電極芯棒で構
成した画像の投影および光化学反応用の直流放電ランプ
において、陰極の体積を陽極の体積の70〜200%に
することにより、陰極先端の温度が1,900〜2,0
00℃であっても、陰極先端の電流密度を20,000
〜30,000A/cm2程度にできることを見出して
本発明を完成した。 【0010】バリウム(Ba)、カルシウム(Ca)、
ストロンチウム(Sr)はいずれもアルカリ土類金属で
あり、その特性は類似しているが、その酸化物は仕事関
数が低い物質である。点灯初期において陰極先端の温度
が高いと、酸化バリウムなどの陰極にアルカリ土類系の
エミッターに含まれる、陰極先端の仕事関数を低くする
物質の蒸発が速いので、この物質による陰極先端の被覆
率が小さくなる。従って、仕事関数の低い物質を含むエ
ミッターを使用しても、点灯時間の経過に伴って陰極先
端の温度は高くならざるを得ない。 【0011】しかし、本発明においては、点灯初期にお
いて陰極先端の温度が低いので、陰極先端の仕事関数を
低くする物質の蒸発が遅く、この物質が陰極先端を被覆
する割合は高く保たれる。つまり、陰極先端の仕事関数
が長時間低く保たれることにより、陰極の温度が低い状
態で電子放出が安定している。従って、長時間点灯して
も、発光管内壁の黒化が少なく、陰極先端の形状は尖っ
た状態が維持され、陰極輝点の輝度は安定し、配光特性
も安定してランプ寿命の長い直流放電ランプとすること
ができる。 【0012】 【発明の実施の形態】以下に、図面に基づいて本発明の
実施の形態を具体的に説明する。図1は、定格消費電力
が500W、ランプ電圧が25V、ランプ電流が20A
のキセノン水銀ランプを示す。内容積が約11cm3 で
あり、石英ガラスからなる発光管11内に電極芯棒31
の先端に取り付けられた陰極本体部21と電極芯棒32
の先端に取り付けられた陽極本体部22が、極間距離3
mmで対向して配置されている。そして、発光管11内
には所定量の水銀とキセノンガスが封入されている。電
極芯棒31,32の尾端部は、それぞれモリブデン箔4
0に溶接され、モリブデン箔40は、発光管11の両端
に連設された封止管12内に埋設されて封止されてい
る。また、封止管12の尾端には口金50がそれぞれ取
り付けられている。 【0013】ここで、陽極本体部22は、直径が6m
m、長さが20mmのタングステンの円柱体であり、先
端部分はテーパー状に成形されて台形形状をしている。
陽極用の電極芯棒32は、直径が3mm、長さが22m
mのタングステン棒からなり、陽極本体部22と電極芯
棒32の体積の和(本願発明における陽極の体積)は6
90cmである。一方、陰極本体部21は、直径が7
mm、長さが18mmのタングステンの円柱体であり、
先端部分はテーパー状に成形されて先端面積の小さな尖
った台形形状をしている。陰極側の電極芯棒31は、直
径が3mm、長さが17mmのタングステン棒からな
り、陰極本体部21と電極芯棒31の体積の和(本願発
明における陰極の体積)は812cmである。従っ
て、陰極の体積は陽極の体積の117%である。そし
て、陰極本体部21の先端には、酸化バリウムを10%
含むタングステン粉末を焼結したエミッターが埋設され
ている。また、同上の構成で、陰極と陽極の体積比が異
なる数種の放電ランプを同時に製作した。 【0014】かかるキセノン水銀ランプを実際に連続点
灯し、波長365nmの光の放射強度の減衰率、電極間
距離の伸びおよび陰極先端の形状変化を調べた。その結
果、陰極の体積が陽極の体積の117%である放電ラン
プは、1000時間点灯時における電極間距離の伸びは
0.05mmであり、陰極先端の形状変化はほとんどな
かった。そして、波長365nmの光の放射強度の減衰
率は、図3に示すように、15%であった。 【0015】また、陰極の体積が陽極の体積の70%で
ある放電ランプは、1000時間点灯時における電極間
距離の伸びは0.08mmであり、陰極先端の形状変化
が少し認められた。また、波長365nmの光の放射強
度の減衰率は、図3に示すように、20%であった。ま
た、陰極の体積が陽極の体積の50%である放電ランプ
は、1000時間点灯時における電極間距離の伸びは
0.2mmであり、陰極先端の形状変化が少し認められ
た。また、波長365nmの光の放射強度の減衰率は、
図3に示すように、35%であった。 【0016】一方、比較例として、陰極がトリエーテッ
ドタングステンで成形され、陰極の体積が陽極の体積の
21%である放電ランプを点灯したところ、1000時
間点灯時における電極間距離の伸びは0.3mmであ
り、陰極先端の形状は図2の実線で示すように変化し
た。そして、波長365nmの光の放射強度の減衰率
は、図3に示すように、45%であった。これから分か
るように、本発明実施例の直流放電ランプは、陰極先端
の形状変化がほとんどなくて電極間距離の伸びも極く僅
かであり、光の放射強度の減衰率も少なくてランプ寿命
が長い利点を有する。 【0017】次に、エミッターとして、酸化バリウムを
10%含むタングステン粉末を焼結したもの、および酸
化カルシウムを10%含むタングステン粉末を焼結した
ものを使用し、陽極に対する陰極の体積の割合を50%
から200%まで変化させて、1000時間点灯時にお
ける365nmの放射強度の減衰率(%)、電極間距離
の伸び(nm)、陰極先端の形状変化および陰極先端の
温度(℃)を調べた。その結果を表1に示す。 【0018】 【表1】 【0019】表1から分かるように、エミッターの種類
にかかわらず、陰極の先端温度、電極間距離の伸び、陰
極先端の形状変化は同じであるが、陽極に対する陰極の
体積の割合が70%以上では、陰極の先端の温度は2,
000℃以下であっては陰極先端の形状は変形せず、図
2の点線で示す状態が維持された。また、電極間の伸び
も0.08mm以下であり、陰極先端の位置がほとんど
変化しないことが認められた。365nmの放射強度の
減衰率はエミッターの種類により少し異なり、バリウム
系のエミッターの方が減衰率が幾分小さいが、陽極に対
する陰極の体積の割合が70%以上では、いずれにして
も20%以下であり、この減衰率は、陰極がトリエーテ
ッドタングステンで成形され従来の放電ランプに減衰率
45%に比べて小さく、ランプ寿命がきわめて長いこと
分かる。 【0020】これに対して、陽極に対する陰極の体積の
割合が50%の場合は、陰極の先端の温度は2,400
℃であっては陰極先端の形状は、図2の実線で示す状態
に変形した。また、電極間の伸びは0.2mmであり、
陰極先端の位置が比較的大きく変化した。また、365
nmの放射強度の減衰率は35%以上であり、比較的大
きく減衰する。 【0021】このことから、陽極に対する陰極の体積の
割合は70%以上であることが必要であることが分か
る。一方、陽極に対する陰極の体積の割合があまり大き
くなると、ランプの製造上、工数が増加するとともに、
陰極に低温部分ができて未蒸発の水銀が付着するなどの
不具合が生じる。このため、陽極に対する陰極の体積の
割合は200%以下にする必要がある。従って、結局の
ところ、陽極に対する陰極の体積の割合は70〜200
%にすることにより、陰極先端の溶損や変形が少なく、
陰極輝点の輝度や位置が長時間安定してランプ寿命が長
く、製造も容易な放電ランプとすることができる。 【0022】ところで、陽極に対する陰極の体積の割合
が小さい方が、前述のとおり、ランプ製造上、工数が少
なく、低コストで製造できる。そして、陰極先端の温度
は、陽極に対する陰極の体積の割合とともに、陰極先端
のテーパー角度にも影響されるが、陰極先端のテーパー
角度は、要求される光の放射強度の分布により定まる。
図4(A)に示すように、光の放射強度の分布幅が狭い
場合は、陰極先端のテーパー角度は大きく、図4(B)
に示すように、光の放射強度の分布幅が広い場合は、陰
極先端のテーパー角度は小さくなる。そして、陰極先端
のテーパー角度が大きい方が、陰極先端の温度は低くな
り、陽極に対する陰極の体積の割合を小さくできる。従
って、図4(A)に示すように、要求される光の放射強
度の分布幅が狭くて、陰極先端のテーパー角度が大きい
場合は、陽極に対する陰極の体積の割合を例えば70〜
120%とし、図4(B)に示すように、光の放射強度
の分布幅が広くて、陰極先端のテーパー角度は小さい場
合は、陽極に対する陰極の体積の割合を例えば120〜
200%とし、陰極先端のテーパー角度によって陽極に
対する陰極の体積の割合を使い分けるのがよい。 【0023】なお、以上の実施例においては、エミッタ
ーとして、酸化バリウムおよび酸化カルシウムを使用し
たが、酸化ストロンチウムあるいはこれらの混合物を使
用しても同様の結果を得ることができる。 【0024】 【発明の効果】以上説明したように、本発明の画像の投
影および光化学反応用の直流放電ランプは、酸化バリウ
ム、酸化カルシウム、酸化ストロンチウムの単体又は、
これらの複合体を含むタングステン粉末の焼結体からな
るエミッターを使用し、陰極および陽極を先端部分がテ
ーパ形状の円柱体とこの円柱体を支持する電極芯棒で構
成し、陰極の体積を陽極の体積の70〜200%にした
ので、陰極先端の電流密度を大きくして輝度の高い陰極
輝点を得るようにしても、陰極先端の溶損や変形が少な
く、陰極輝点の輝度や位置が長時間安定してランプ寿命
の長い画像の投影および光化学反応用の直流放電ランプ
とすることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct current discharge lamp used as a light source for projecting an image or performing a photochemical reaction. 2. Description of the Related Art In a DC discharge lamp, a cathode and an anode are arranged opposite to each other in an arc tube made of quartz glass. Most of the current is due to electrons, and only receives energy when electrons flow in.On the cathode surface, there are currents due to positive ions and currents due to electrons. It receives energy and is deprived of energy when emitting electrons. That is, since the energy received by the cathode is smaller than the energy received by the anode, the volume of the cathode is designed to be smaller than the volume of the anode. However, when the volume of the cathode is set to about 20 to 30% of the volume of the anode, the temperature of the cathode and the anode becomes lower. Is experimentally known to maintain equilibrium at, for example, 2800 ° C. For this reason, in the conventional DC discharge lamp, the volume of the cathode is 20 to 30% of the volume of the anode.
It was designed to a degree. [0003] By the way, in a DC discharge lamp, a cathode luminescent spot is formed at the tip of a cathode when the DC discharge lamp is turned on. However, a light source such as an image projection or a photochemical reaction has a high brightness point light source. Therefore, a xenon lamp, a xenon mercury lamp, an ultra-high pressure mercury lamp, etc., in which a high-brightness cathode luminescent spot is formed at the tip of the cathode, are used. Recently, the demand for high brightness of the light source has become more and more intense. For this reason, the current density at the tip of the cathode has been increased to 20,000 to 30,000 A / c.
Although a high-brightness light source has been obtained by setting it to about m 2, it is necessary to make the temperature of the cathode extremely high in order to flow such a high-density current. The cathode of a DC discharge lamp is provided with an emitter for facilitating the starting of the lamp and reducing the deterioration of the luminous flux. Usually, tungsten doped with a few wt% of thorium oxide (hereinafter referred to as triated) is used. The cathode is often formed from tungsten). Then, the tip of the cathode is formed in a conical shape to form a cathode luminescent spot of discharge at the forefront, but since the work function of thoriated tungsten is high, in order to obtain the high current density as described above,
The temperature at the tip of the cathode needs to be about 2,800 ° C. For this reason, in the initial stage of lighting, as shown by the dotted line in FIG. 2, the tip of the cathode, which has a small tip area and is sharp, is melted and deformed as the lighting time elapses, and after about 300 hours of lighting. Is, as shown by the solid line in FIG.
The shape of the tip becomes a distorted trapezoid with a large tip area. For this reason, the current density at the tip of the cathode decreases and the luminance decreases. Then, the position of the cathode tip recedes by the amount of melting, the distance between the electrodes increases, and the position of the cathode luminescent spot also changes, so that the cathode luminescent spot is displaced from the focal position of the reflecting mirror and the light distribution characteristics change. Resulting in. Furthermore, the vapor of the melted thoriated tungsten adheres to the inner wall of the arc tube and becomes black, so that the light transmittance is reduced and the life of the discharge lamp is shortened. [0006] Further, a cathode having an alkaline earth type emitter obtained by sintering tungsten powder containing barium oxide, calcium oxide and strontium oxide at the tip of a cathode made of tungsten is also used. Since the emitter has a work function lower than that of thoriated tungsten, a high current density of about 20,000 to 30,000 A / cm 2 can be obtained at a temperature of the cathode tip of about 2,300 ° C. For this reason, the cathode with an alkaline earth emitter added has less evaporation during lighting and has a longer life than the cathode made of thoriated tungsten, but the deformation of the cathode tip is made of thoriated tungsten. The current density at the cathode tip is small, the brightness is reduced, and the position of the cathode luminescent spot is also displaced, so that the light distribution characteristic is changed. SUMMARY OF THE INVENTION It is an object of the present invention to provide a direct current discharge lamp which has little erosion or deformation at the cathode tip, and has a long and stable lamp luminance and position for a long time. [0008] In order to achieve the above object, the present invention provides an arc tube in which a cathode and an anode made of tungsten are arranged to face each other, and a barium oxide, a calcium oxide, a strontium oxide alone or In a direct current discharge lamp for projecting an image and a photochemical reaction in which an emitter made of a sintered body of tungsten powder containing these composites is arranged at the tip of the cathode, the tips of the cathode and anode are connected to each other.
With a tapered cylindrical body and an electrode core supporting this cylindrical body
Configured, the volume of the cathode 70 to 200% of the anode volume. As described above, in the conventional DC discharge lamp, the volume of the cathode is designed to be about 20% to 30% of the volume of the anode. However, the present inventor has proposed that barium oxide, calcium oxide, and strontium oxide be used. An emitter consisting of a single body or a sintered body of tungsten powder containing a composite of these is added to the cathode, and the cathode and anode are tapered at the tip.
And an electrode core supporting the cylindrical body.
In a direct current discharge lamp for projecting the formed image and photochemical reaction , by setting the volume of the cathode to 70 to 200% of the volume of the anode, the temperature at the tip of the cathode is 1,900 to 2.0%.
Even at 00 ° C, the current density at the cathode tip is 20,000
The present invention was completed by finding that it can be reduced to about 30,000 A / cm 2. Barium (Ba), calcium (Ca),
Strontium (Sr) is an alkaline earth metal, and although their properties are similar, their oxides are substances having a low work function. If the temperature of the cathode tip is high in the early stage of lighting, the evaporation of the material that lowers the work function of the cathode tip, such as barium oxide, contained in the alkaline earth-based emitter in the cathode, is rapid, and this material covers the cathode tip. Becomes smaller. Therefore, even when an emitter containing a material having a low work function is used, the temperature at the tip of the cathode must increase with the lapse of the lighting time. However, in the present invention, since the temperature of the cathode tip is low in the initial stage of lighting, the evaporation of the substance which lowers the work function of the cathode tip is slow, and the rate at which this substance coats the cathode tip is kept high. That is, since the work function of the tip of the cathode is kept low for a long time, the electron emission is stable in a state where the temperature of the cathode is low. Therefore, even when the lamp is lit for a long time, the blackening of the inner wall of the arc tube is small, the shape of the cathode tip is kept sharp, the brightness of the cathode luminescent spot is stable, the light distribution characteristics are stable, and the lamp life is long. It can be a DC discharge lamp. Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows that the rated power consumption is 500 W, the lamp voltage is 25 V, and the lamp current is 20 A.
2 shows a xenon mercury lamp. The inner volume of the electrode core rod 31 is about 11 cm @ 3,
Body 21 and electrode core 32 attached to the tip of
The anode body 22 attached to the tip of the
mm. A predetermined amount of mercury and xenon gas are sealed in the arc tube 11. The tail ends of the electrode core rods 31 and 32 are each molybdenum foil 4
The molybdenum foil 40 is buried and sealed in a sealing tube 12 connected to both ends of the arc tube 11. Further, bases 50 are respectively attached to the tail ends of the sealing tubes 12. The anode body 22 has a diameter of 6 m.
m, a cylindrical body of tungsten having a length of 20 mm, and a tip portion is formed in a tapered shape to have a trapezoidal shape.
The electrode core rod 32 for the anode has a diameter of 3 mm and a length of 22 m.
m, and the sum of the volumes of the anode main body 22 and the electrode core rod 32 (the volume of the anode in the present invention) is 6
90 cm 3 . On the other hand, the cathode body 21 has a diameter of 7 mm.
mm, a 18 cm long tungsten cylinder,
The tip portion is formed into a tapered shape and has a sharp trapezoidal shape with a small tip area. The electrode rod 31 on the cathode side is a tungsten rod having a diameter of 3 mm and a length of 17 mm, and the sum of the volumes of the cathode main body 21 and the electrode rod 31 (the volume of the cathode in the present invention) is 812 cm 3 . Therefore, the volume of the cathode is 117% of the volume of the anode. Then, 10% barium oxide is applied to the tip of the cathode main body 21.
The emitter which sintered the tungsten powder containing is embedded. In addition, several types of discharge lamps having the same configuration and different in volume ratio between the cathode and the anode were manufactured at the same time. The xenon mercury lamp was actually turned on continuously, and the decay rate of the radiation intensity of light having a wavelength of 365 nm, the extension of the distance between the electrodes, and the shape change of the cathode tip were examined. As a result, in the discharge lamp in which the volume of the cathode was 117% of the volume of the anode, the elongation of the distance between the electrodes after lighting for 1000 hours was 0.05 mm, and the shape of the tip of the cathode was hardly changed. Then, the attenuation rate of the radiation intensity of the light having a wavelength of 365 nm was 15% as shown in FIG. In the discharge lamp in which the volume of the cathode was 70% of the volume of the anode, the distance between the electrodes was increased by 0.08 mm after 1000 hours of operation, and a slight change in the shape of the cathode tip was recognized. Further, the attenuation rate of the radiation intensity of the light having a wavelength of 365 nm was 20% as shown in FIG. Further, in the discharge lamp in which the volume of the cathode was 50% of the volume of the anode, the extension of the distance between the electrodes after lighting for 1000 hours was 0.2 mm, and a slight change in the shape of the cathode tip was recognized. Further, the attenuation rate of the radiation intensity of the light having a wavelength of 365 nm is
As shown in FIG. 3, it was 35%. On the other hand, as a comparative example, when a discharge lamp in which the cathode was formed of thoriated tungsten and the volume of the cathode was 21% of the volume of the anode was turned on, the elongation of the distance between the electrodes when the lamp was turned on for 1000 hours was 0.1 mm. 3 mm, and the shape of the cathode tip changed as shown by the solid line in FIG. Then, the attenuation rate of the radiation intensity of the light having a wavelength of 365 nm was 45% as shown in FIG. As can be seen from the graph, the DC discharge lamp of the embodiment of the present invention has almost no change in the shape of the cathode tip, has a very small extension of the distance between the electrodes, has a small attenuation rate of light emission intensity, and has a long lamp life. Has advantages. Next, a sintered body of a tungsten powder containing 10% of barium oxide and a sintered body of a tungsten powder containing 10% of calcium oxide are used as emitters. %
From 200% to 200%, and the decay rate (%) of the radiation intensity at 365 nm, the elongation of the distance between the electrodes (nm), the change in the shape of the cathode tip, and the temperature (° C.) of the cathode tip during 1000 hours of operation were examined. Table 1 shows the results. [Table 1] As can be seen from Table 1, regardless of the type of emitter, the tip temperature of the cathode, the extension of the distance between the electrodes, and the change in the shape of the cathode tip are the same, but the ratio of the volume of the cathode to the anode is 70% or more. Then, the temperature at the tip of the cathode is 2,
When the temperature was lower than 000 ° C., the shape of the cathode tip did not change, and the state shown by the dotted line in FIG. 2 was maintained. The elongation between the electrodes was 0.08 mm or less, and it was confirmed that the position of the tip of the cathode hardly changed. The decay rate of the 365 nm radiation intensity is slightly different depending on the type of the emitter. The decay rate of the barium type emitter is somewhat smaller than that of the barium type emitter. This decay rate is smaller than that of the conventional discharge lamp in which the cathode is formed of thoriated tungsten and the decay rate is 45%, indicating that the lamp life is extremely long. On the other hand, when the volume ratio of the cathode to the anode is 50%, the temperature at the tip of the cathode is 2,400.
At ℃, the shape of the cathode tip was deformed to the state shown by the solid line in FIG. The elongation between the electrodes is 0.2 mm,
The position of the cathode tip changed relatively largely. Also, 365
The attenuation rate of the radiation intensity in nm is 35% or more, and the attenuation is relatively large. From this, it is understood that the volume ratio of the cathode to the anode needs to be 70% or more. On the other hand, if the ratio of the volume of the cathode to the anode becomes too large, the number of steps in the manufacture of the lamp increases,
Problems such as formation of a low-temperature portion on the cathode and adhesion of unevaporated mercury occur. Therefore, the ratio of the volume of the cathode to the volume of the anode needs to be 200% or less. Therefore, after all, the ratio of the volume of the cathode to the anode is 70-200.
%, Less erosion and deformation of the cathode tip,
The brightness and position of the cathode luminescent spot are stable for a long time, the lamp life is long, and the discharge lamp can be easily manufactured. As described above, the smaller the ratio of the volume of the cathode to the volume of the anode, the smaller the number of steps in manufacturing the lamp, and the lower the cost. The temperature of the cathode tip is affected by the taper angle of the cathode tip as well as the ratio of the volume of the cathode to the anode, and the taper angle of the cathode tip is determined by the required distribution of light emission intensity.
As shown in FIG. 4 (A), when the distribution width of the light emission intensity is narrow, the taper angle at the tip of the cathode is large, and FIG.
As shown in (2), when the distribution width of the light emission intensity is wide, the taper angle at the cathode tip becomes small. The larger the taper angle at the tip of the cathode, the lower the temperature at the tip of the cathode, and the smaller the ratio of the volume of the cathode to the anode. Therefore, as shown in FIG. 4A, when the distribution width of the required light emission intensity is narrow and the taper angle at the tip of the cathode is large, the ratio of the volume of the cathode to the anode is set to, for example, 70 to 70%.
When the distribution width of light emission intensity is wide and the taper angle at the tip of the cathode is small as shown in FIG. 4B, the ratio of the volume of the cathode to the anode is set to, for example, 120 to 120%.
The ratio of the volume of the cathode to the anode is preferably selected depending on the taper angle at the tip of the cathode. Although barium oxide and calcium oxide are used as emitters in the above embodiments, similar results can be obtained by using strontium oxide or a mixture thereof. As described above, the projection of an image according to the present invention is performed.
DC discharge lamps for shadow and photochemical reactions are barium oxide, calcium oxide, strontium oxide alone or
An emitter consisting of a sintered body of tungsten powder containing these composites is used, and the cathode and anode are
And an electrode core supporting the cylindrical body.
Since the volume of the cathode is made 70% to 200% of the volume of the anode, even if the current density at the tip of the cathode is increased to obtain a bright cathode luminescent spot, the erosion and deformation of the cathode tip are reduced. The brightness and position of the cathode luminescent spot are stable for a long time, so that a DC discharge lamp for projecting an image and a photochemical reaction having a long lamp life can be obtained.

【図面の簡単な説明】 【図1】本発明実施例の説明図である。 【図2】陰極の溶損状況の説明図である。 【図3】点灯時間と光強度減衰率の関係図である。 【図4】光強度分布と陰極先端の形状の関係図である。 【符号の説明】 11 発光管 12 封止管 21 陰極本体部 22 陽極本体部 31 陰極側電極芯棒 32 陽極側電極芯棒 40 モリブデン箔 50 口金[Brief description of the drawings] FIG. 1 is an explanatory diagram of an embodiment of the present invention. FIG. 2 is an explanatory diagram of a state of erosion of a cathode. FIG. 3 is a relationship diagram between a lighting time and a light intensity decay rate. FIG. 4 is a diagram showing the relationship between the light intensity distribution and the shape of the cathode tip. [Explanation of symbols] 11 arc tube 12 sealing tube 21 Cathode body 22 Anode body 31 Electrode rod on cathode side 32 Anode electrode rod 40 Molybdenum foil 50 bases

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 61/067 H01J 61/073 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01J 61/067 H01J 61/073

Claims (1)

(57)【特許請求の範囲】 【請求項1】 発光管内にタングステンからなる陰極と
陽極が対向配置され、酸化バリウム、酸化カルシウム、
酸化ストロンチウムの単体又は、これらの複合体を含む
タングステン粉末の焼結体からなるエミッターが該陰極
の先端に配置された画像の投影および光化学反応用の直
流放電ランプにおいて、前記陰極および陽極は、先端部分がテーパ形状の円柱体
とこの円柱体を支持する電極芯棒より構成され、 前記陰極の体積が陽極の体積の70〜200%であるこ
とを特徴とする画像の投影および光化学反応用の直流放
電ランプ。
(57) [Claims 1] A cathode and an anode made of tungsten are opposed to each other in an arc tube, and barium oxide, calcium oxide,
In a direct discharge lamp for projecting an image and performing a photochemical reaction in which an emitter composed of a strontium oxide alone or a sintered body of a tungsten powder containing a composite thereof is arranged at the tip of the cathode, And the anode is a cylindrical body with a tapered tip
A DC discharge lamp for projecting an image and performing a photochemical reaction , wherein the volume of the cathode is 70 to 200% of the volume of the anode.
JP31851398A 1998-11-10 1998-11-10 DC discharge lamp Expired - Fee Related JP3480340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31851398A JP3480340B2 (en) 1998-11-10 1998-11-10 DC discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31851398A JP3480340B2 (en) 1998-11-10 1998-11-10 DC discharge lamp

Publications (2)

Publication Number Publication Date
JP2000149868A JP2000149868A (en) 2000-05-30
JP3480340B2 true JP3480340B2 (en) 2003-12-15

Family

ID=18099962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31851398A Expired - Fee Related JP3480340B2 (en) 1998-11-10 1998-11-10 DC discharge lamp

Country Status (1)

Country Link
JP (1) JP3480340B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203418B2 (en) 2001-09-27 2009-01-07 ハリソン東芝ライティング株式会社 High pressure discharge lamp, high pressure discharge lamp lighting device, and automotive headlamp device
JP3846282B2 (en) * 2001-11-21 2006-11-15 ウシオ電機株式会社 Short arc type high pressure discharge lamp
JP4696697B2 (en) 2005-06-03 2011-06-08 ウシオ電機株式会社 Super high pressure mercury lamp
JP5812053B2 (en) * 2013-04-24 2015-11-11 ウシオ電機株式会社 Short arc type discharge lamp

Also Published As

Publication number Publication date
JP2000149868A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
JPS63248050A (en) Rare gas discharge lamp
JP3175592B2 (en) Discharge lamp electrode
US3849690A (en) Flash tube having improved cathode
JP3480340B2 (en) DC discharge lamp
US7423379B2 (en) High-pressure gas discharge lamp having tubular electrodes
US5614784A (en) Discharge lamp, particularly cold-start fluorescent lamp, and method of its manufacture
US4123685A (en) HID lamp electrode comprising solid solution of dibarium calcium molybdate and tungstate
JP3156904B2 (en) Mercury discharge lamp
KR20000069526A (en) Electron emission electrode strutures, discharge lamps and discharge lamp devices
JPS6360498B2 (en)
JP2002141018A (en) Discharge lamp
JPS60218755A (en) Discharge tube for light source
JP3611984B2 (en) Discharge tube and method for manufacturing cathode for discharge tube
JPS6324539A (en) Discharge tube for light source
JPH09129178A (en) Sintered type electrode for metal vapor discharge lamp
JP3025411B2 (en) Discharge lamp
JPH05144412A (en) Fluorescent lamp
JPS61233961A (en) Discharge tube for light source
JPS61233960A (en) Discharge tube for light source
JP3970788B2 (en) Discharge tube
JP2922913B2 (en) Manufacturing method of low pressure discharge lamp
JP3970418B2 (en) Discharge tube
JPS5818863A (en) High pressure sodium lamp
JP2939421B2 (en) Cold cathode small fluorescent tube
GB2079036A (en) Electron emitting coating in metal halide arc lamp

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees