JP3480189B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3480189B2
JP3480189B2 JP22211396A JP22211396A JP3480189B2 JP 3480189 B2 JP3480189 B2 JP 3480189B2 JP 22211396 A JP22211396 A JP 22211396A JP 22211396 A JP22211396 A JP 22211396A JP 3480189 B2 JP3480189 B2 JP 3480189B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
secondary battery
heat
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22211396A
Other languages
Japanese (ja)
Other versions
JPH1064548A (en
Inventor
憲樹 村岡
義幸 尾崎
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22211396A priority Critical patent/JP3480189B2/en
Publication of JPH1064548A publication Critical patent/JPH1064548A/en
Application granted granted Critical
Publication of JP3480189B2 publication Critical patent/JP3480189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
のような非水電解液二次電池における熱安定性について
の技術分野に関するものである。
TECHNICAL FIELD The present invention relates to the technical field of thermal stability in a non-aqueous electrolyte secondary battery such as a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、情報関連機器あるいはパソコン等
の電子機器のポータブル化、コードレス化が急速に進ん
でいることにより、これらの機器の駆動用電源として小
型,軽量で高エネルギー密度を有する二次電池への要求
が高くなっている。このような背景の下で、非水電解液
二次電池、特にリチウム二次電池は、とりわけ高電圧,
高エネルギー密度を有する電池として大きく期待されて
いる。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as information-related devices or personal computers have rapidly progressed, and secondary power supplies for driving these devices have a small size, a light weight and a high energy density. The demand for batteries is increasing. Against this background, non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, are particularly high-voltage,
It is highly expected as a battery having a high energy density.

【0003】このように、リチウム二次電池に対する期
待が高まるにしたがい、リチウム二次電池に求められる
熱安定性等の信頼性も高くなり、特に電池が様々な状況
下で短絡したときの熱安定性がクローズアップされてき
ている。
As described above, as the expectation for the lithium secondary battery increases, the reliability such as the thermal stability required for the lithium secondary battery also increases, and particularly the thermal stability when the battery is short-circuited under various conditions. Sex is getting closer.

【0004】例えば、リチウム二次電池が組み込まれて
いる電子機器の内部回路の誤作動にによる短絡や、電池
外部から加わった衝撃による電池内部での短絡などが発
生したときの熱安定性が注目されている。
For example, attention is paid to thermal stability when a short circuit occurs due to a malfunction of an internal circuit of an electronic device incorporating a lithium secondary battery, or a short circuit occurs inside the battery due to a shock applied from the outside of the battery. Has been done.

【0005】かかる熱安定性の問題点を解決するため
に、非水電解液二次電池における渦巻電極体の巻芯とし
てポリエチレン,ポリプロピレン等のように融点が20
0℃以下の高分子化合物を用い、電池温度が急上昇し始
める前に巻芯が融解して電池の熱を融解熱として奪い、
電池の温度上昇を抑制することが提案されている(例え
ば、特開平7−192753号公報参照)。
In order to solve the problem of thermal stability, the melting point of polyethylene, polypropylene or the like is 20 as the core of the spirally wound electrode body in the non-aqueous electrolyte secondary battery.
A polymer compound of 0 ° C. or lower is used, the core melts before the battery temperature starts to rise rapidly, and the heat of the battery is taken as heat of fusion.
It has been proposed to suppress the temperature rise of the battery (see, for example, Japanese Patent Laid-Open No. 7-192753).

【0006】しかし、電池の内外で実際に短絡が起こっ
た場合、そのジュール熱によりまず初めに温度が上昇す
るのは正極や負極であり、その上昇速度は短絡した直後
からかなり大きいので、極板の熱が巻芯に拡散して融解
熱として吸熱されるより先に極板の温度が急激に上昇
し、結果的に電池全体の温度も上昇して漏液に至ること
があるという問題点があった。
However, when a short circuit actually occurs inside or outside the battery, the temperature of the positive electrode and the negative electrode first rise due to the Joule heat, and the rising speed is considerably large immediately after the short circuit occurs. There is a problem that the temperature of the electrode plate rises sharply before the heat of is diffused to the core and is absorbed as heat of fusion, and as a result, the temperature of the entire battery also rises and leads to liquid leakage. there were.

【0007】そこで、この問題点を解決するために、非
水電解液二次電池における極板中に、融解熱の大きい高
分子化合物、例えばオレフィン系の熱可塑性ポリマーを
熱吸収材として直接添加することによって、極板の温度
上昇を抑制する提案があった(例えば、特開昭63−2
66764号公報参照)。
Therefore, in order to solve this problem, a polymer compound having a large heat of fusion, for example, an olefin-based thermoplastic polymer is directly added as a heat absorbing material to the electrode plate of the non-aqueous electrolyte secondary battery. Therefore, there has been a proposal to suppress the temperature rise of the electrode plate (for example, JP-A-63-2).
66764).

【0008】[0008]

【発明が解決しようとする課題】従来の非水電解液二次
電池にあっては、極板中に熱吸収材として添加する高分
子化合物が一旦融解することによって極板構成過程での
結着剤としての機能も発現できれば好ましいが、一旦溶
融させた高分子化合物は、再び室温に戻してもすべてが
可逆的に再結晶することはなく、融解熱が減少してしま
い、熱吸収材としての機能が損なわれるという問題点が
あった。
In the conventional non-aqueous electrolyte secondary battery, the polymer compound added as a heat absorbing material in the electrode plate once melts to cause binding in the electrode plate forming process. It is preferable if the function as an agent can be expressed, but once the polymer compound is once melted, it does not reversibly recrystallize even if it is returned to room temperature, and the heat of fusion is reduced. There was a problem that the function was impaired.

【0009】[0009]

【課題を解決するための手段】上記の問題点を解決する
ために、本発明においては、負極中に熱吸収材および結
着剤を添加し、熱吸収材として融点が90〜130℃と
比較的低く、融解熱が30J/g以上と大きい高分子化
合物を用い、結着剤として高温処理しなくても結着性を
有する高分子化合物を用いることとしている。そして、
電池の内外部で短絡が起こりジュール熱が発生しても、
この熱は添加した熱吸収材としての高分子化合物の融解
熱として吸熱されるので、電池温度の上昇を抑制するこ
とができる。
In order to solve the above problems, in the present invention, a heat absorbing material and a binder are added to the negative electrode, and the melting point of the heat absorbing material is 90 to 130 ° C. A polymer compound having a relatively low heat of fusion of 30 J / g or more is used, and a polymer compound having a binding property without high temperature treatment is used as a binder. And
Even if a short circuit occurs inside and outside the battery and Joule heat is generated,
This heat is absorbed as the heat of fusion of the added polymer compound as the heat absorbing material, so that the increase in battery temperature can be suppressed.

【0010】また、熱吸収材として加えた高分子化合物
以外に、高温処理しなくても結着性のあるスチレンーブ
タジエンゴム,ポリフッ化ビニリデン,ポリ四フッ化エ
チレン,四フッ化エチレン−六フッ化プロピレン共重合
体から選ばれる少なくとも1種を結着剤として負極合剤
に添加しているので、用いる熱吸収材の機能が損なわれ
ることがなく、熱安定性を向上させることができ、合剤
の脱落も阻止できる。
In addition to the polymer compound added as the heat absorbing material, styrene-butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene, and tetrafluoroethylene-6 hexafluoride, which have binding properties without high temperature treatment, are also available. reduction since added to the negative electrode mixture at least one selected from propylene copolymer as a binder, without the function of the heat absorbing material is impaired to use, can improve the thermal stability, if It is possible to prevent the drug from falling off.

【0011】[0011]

【発明の実施の形態】本発明の非水電解液二次電池は、
リチウムを吸蔵,放出する炭素材料からなる負極中に、
熱吸収材として融点が90〜130℃で融解熱が30J
/g以上、好ましくは融点が90〜110℃で融解熱が
50J/g以上の高分子化合物を含み、結着剤としてス
チレン−ブタジエンゴム,ポリフッ化ビニリデン,ポリ
四フッ化エチレン,四フッ化エチレン−六フッ化プロピ
レン共重合体,アクリロニトリル−ブタジエンゴムの群
から選ばれる少なくとも1種の物質を含むものである。
BEST MODE FOR CARRYING OUT THE INVENTION The non-aqueous electrolyte secondary battery of the present invention comprises:
In a negative electrode made of a carbon material that absorbs and releases lithium,
As a heat absorbing material, the melting point is 90 ~ 130 ℃ and the heat of fusion is 30J
/ G or more, preferably a polymer compound having a melting point of 90 to 110 ° C and a heat of fusion of 50 J / g or more, and styrene-butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene as a binder. It contains at least one substance selected from the group consisting of a propylene hexafluoride copolymer and an acrylonitrile-butadiene rubber.

【0012】また、熱吸収材として用いる高分子化合物
としては、ポリエチレン,ポリプロピレン,エチレン−
エチルアクリレート−無水マレイン酸共重合体,エチレ
ン−酢酸ビニル酸共重合体,エチレン−アクリル酸共重
合体の群から選ばれた少なくとも1種の物質が好まし
い。
Further, as the polymer compound used as the heat absorbing material, polyethylene, polypropylene, ethylene-
At least one substance selected from the group of ethyl acrylate-maleic anhydride copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer is preferable.

【0013】また、熱吸収材の形状としては、平均粒径
が1〜12μmの球状、好ましくは平均粒径が3〜12
μmの球状のものが効果的である。
The shape of the heat absorbing material is spherical with an average particle size of 1 to 12 μm, preferably 3 to 12.
A spherical shape of μm is effective.

【0014】また、熱吸収材の添加量としては、融解熱
による吸熱が負極合剤1gあたり1J以上で、負極合剤
に対して重量分率で10%以下、好ましくは負極合剤1
gあたり3J以上で、負極合剤に対して重量分率で7%
以下が効果的である。
The addition amount of the heat absorbing material is such that the heat absorption due to the heat of fusion is 1 J or more per 1 g of the negative electrode mixture, and the weight fraction of the negative electrode mixture is 10% or less, preferably the negative electrode mixture 1
3% or more per gram, 7% in weight fraction with respect to the negative electrode mixture
The following are effective:

【0015】また、正極活物質としてはリチウム含有複
合酸化物が挙げられているが、好ましくはLixy
1-y2 (1.10≧x≧0.50,1≧y≧0,M
はCo,Mn,Cr,Fe,Mg,Al,Znのいずれ
か1種以上)である。より好ましくはLixy Ni
1-y2 (1.10≧x≧0.50,1≧y≧0,Mは
Co,Mnのいずれか1種以上)が良好である。
As the positive electrode active material, a lithium-containing composite oxide is mentioned, but Li x M y N is preferable.
i 1-y O 2 (1.10 ≧ x ≧ 0.50, 1 ≧ y ≧ 0, M
Is any one or more of Co, Mn, Cr, Fe, Mg, Al and Zn). More preferably Li x M y Ni
1-y O 2 (1.10 ≧ x ≧ 0.50, 1 ≧ y ≧ 0, M is at least one of Co and Mn) is good.

【0016】また、負極活物質としてはリチウムを吸
蔵,放出する炭素材料が挙げられるが、好ましくは人造
黒鉛が効果的である。
Further, as the negative electrode active material, a carbon material which occludes and releases lithium can be mentioned, but artificial graphite is preferable.

【0017】さらに、電解液の溶媒としては、エチレン
カーボネート,エチルメチルカーボネート,プロピレン
カーボネート,ジエチルカーボネート等のカーボネート
類,エーテル類,脂肪族カルボン酸等が好ましく、電解
質としては、LiBF4 ,LiClO4 ,LiPF6
LiCF3 SO3 等が好ましい。
Further, as the solvent of the electrolytic solution, carbonates such as ethylene carbonate, ethylmethyl carbonate, propylene carbonate and diethyl carbonate, ethers and aliphatic carboxylic acids are preferable, and as the electrolyte, LiBF 4 , LiClO 4 , LiPF 6 ,
LiCF 3 SO 3 and the like are preferable.

【0018】そして、上記のように構成された本発明の
非水電解液二次電池にあっては、熱吸収材の存在によ
り、短絡してジュール熱が発生しても熱吸収材の融解熱
として吸熱され、電池温度が上昇するのを抑制すること
ができ、また結着剤の存在により合剤の脱落がなくな
り、熱安定性が向上し、電池特性も満足なものとなる。
In the non-aqueous electrolyte secondary battery of the present invention configured as described above, the heat of fusion of the heat absorbing material is generated even if short circuit occurs and Joule heat is generated due to the presence of the heat absorbing material. As a result, the temperature of the battery can be prevented from rising and the temperature of the battery can be prevented from rising. Further, the presence of the binder prevents the mixture from falling off, the thermal stability is improved, and the battery characteristics are also satisfactory.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0020】(実施例1)図1に実施例で用いた円筒形
リチウム二次電池の縦断面図を示す。
(Embodiment 1) FIG. 1 is a vertical sectional view of a cylindrical lithium secondary battery used in the embodiment.

【0021】セパレータ1を介して対向させたシート状
正極板2およびシート状負極板3を複数回渦巻状に捲回
して構成される極板群4が、内側表面に耐有機電解液処
理を施したステンレス鋼製の電池ケース5内に収納され
ている。極板群4の上下部には、絶縁リング6がそれぞ
れ設けられている。電池ケース5の開口部には、安全弁
を備えた封口板7が、絶縁パッキング8を挟んで嵌合さ
れている。正極板2から引き出された正極リード9は封
口板7に接続され、負極板3から引き出された負極リー
ド10は電池ケース5の底部に接続されている。
An electrode plate group 4 formed by spirally winding a sheet-shaped positive electrode plate 2 and a sheet-shaped negative electrode plate 3 facing each other with a separator 1 in between is subjected to an organic electrolytic solution resistant treatment. It is stored in a battery case 5 made of stainless steel. Insulating rings 6 are provided on the upper and lower portions of the electrode plate group 4, respectively. A sealing plate 7 having a safety valve is fitted in the opening of the battery case 5 with an insulating packing 8 sandwiched therebetween. The positive electrode lead 9 drawn from the positive electrode plate 2 is connected to the sealing plate 7, and the negative electrode lead 10 drawn from the negative electrode plate 3 is connected to the bottom of the battery case 5.

【0022】以下、正極板,負極板について詳しく説明
する。まず、正極活物質の合成法について説明する。水
酸化ニッケル,水酸化コバルトおよび水酸化リチウムの
各粉末を、Ni,CoおよびLiの原子数の比が0.
8:0.2:1.0となるように秤量し、ボールミルで
十分に混合した。この混合物をアルミナ製のるつぼに入
れ、乾燥空気中において750℃で10時間、熱処理を
行った後、自然冷却し、粉砕,分級を行い、平均粒径1
0μmの正極活物質を得た。
The positive electrode plate and the negative electrode plate will be described in detail below. First, a method for synthesizing the positive electrode active material will be described. The powders of nickel hydroxide, cobalt hydroxide and lithium hydroxide were mixed with each other in which the atomic ratio of Ni, Co and Li was 0.
It was weighed so as to be 8: 0.2: 1.0 and thoroughly mixed with a ball mill. This mixture was placed in a crucible made of alumina, heat-treated in dry air at 750 ° C. for 10 hours, then naturally cooled, pulverized and classified to obtain an average particle size of 1
A positive electrode active material of 0 μm was obtained.

【0023】上記のようにして得られた正極活物質10
0重量部に、導電材として平均粒径4μmの人造黒鉛粉
末を4重量部と、結着材としてポリフッ化ビニリデン4
重量部を溶媒に溶かしたものを加えて混練し、ペースト
状にした。次いで、このペーストを厚さ0.02mmの
アルミ箔の両面に塗布し、乾燥した後、圧延して正極シ
ートを得た。この正極シートを、長さ380mm,幅3
7mmに裁断して正極板2とした。なお、厚さは0.1
4mmであった。また、正極板2の作製に当たっては、
混練以降の一連の工程は乾燥空気中で行った。
Positive electrode active material 10 obtained as described above
0 parts by weight, 4 parts by weight of artificial graphite powder having an average particle diameter of 4 μm as a conductive material, and polyvinylidene fluoride 4 as a binder.
What was melt | dissolved in the solvent by weight part was added, and it knead | mixed, and it was set as the paste form. Next, this paste was applied to both sides of an aluminum foil having a thickness of 0.02 mm, dried and then rolled to obtain a positive electrode sheet. This positive electrode sheet has a length of 380 mm and a width of 3
It was cut into 7 mm to obtain a positive electrode plate 2. The thickness is 0.1
It was 4 mm. Further, in manufacturing the positive electrode plate 2,
A series of steps after kneading were performed in dry air.

【0024】負極活物質には、平均粒径6.0μmの天
然黒鉛を用いた。この天然黒鉛100重量部に、結着材
としてスチレン−ブタジエンゴムを溶液状態で3重量部
と、熱吸収材として表1に示す融点および融解熱の異な
る各種ポリエチレン粉末4重量部とを加えて混練し、ペ
ースト状にした。このペーストを厚さ0.025mmの
銅箔の両面に塗布し、乾燥した後、圧延して負極シート
を得た。この負極シートを、長さ420mm,幅39m
mに裁断して負極板3とした。なお、厚さは0.2mm
であった。
As the negative electrode active material, natural graphite having an average particle size of 6.0 μm was used. To 100 parts by weight of this natural graphite, 3 parts by weight of styrene-butadiene rubber as a binder in solution and 4 parts by weight of various polyethylene powders having different melting points and heats of fusion shown in Table 1 as heat absorbing materials were added and kneaded. And made into a paste. This paste was applied onto both sides of a copper foil having a thickness of 0.025 mm, dried and then rolled to obtain a negative electrode sheet. This negative electrode sheet has a length of 420 mm and a width of 39 m.
It was cut into m to obtain a negative electrode plate 3. The thickness is 0.2 mm
Met.

【0025】次いで、正極板2にアルミニウム製の正極
リード9、負極板3にニッケル製の負極リード10をそ
れぞれ取り付けた。この正極板2および負極板3を、厚
さ0.025mm,幅45mm,長さ1000mmのポ
リエチレン製のセパレータ1を介して重ね合わせ、長さ
方向に渦巻状に捲回して極板群4とし、この極板群4
を、直径17mm,高さ50mmの電池ケース5に収納
した。
Then, the positive electrode lead 9 made of aluminum was attached to the positive electrode plate 2, and the negative electrode lead 10 made of nickel was attached to the negative electrode plate 3. The positive electrode plate 2 and the negative electrode plate 3 are stacked via a polyethylene separator 1 having a thickness of 0.025 mm, a width of 45 mm and a length of 1000 mm, and are spirally wound in the length direction to form a plate group 4. This electrode group 4
Was stored in a battery case 5 having a diameter of 17 mm and a height of 50 mm.

【0026】電池ケース5に、エチレンカーボネート
(EC)とエチルメチルカーボネート(EMC)とを2
0:80の体積比で混合した溶媒に電解質として1モル
/リットルのLiPF6 を溶解した電解液を注入した。
その後、電池ケース5の開口部に封口板7を嵌合して電
池ケース5を封口し、リチウム二次電池を得た。
In the battery case 5, 2 parts of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are placed.
An electrolyte solution in which 1 mol / liter of LiPF 6 was dissolved as an electrolyte was injected into a solvent mixed in a volume ratio of 0:80.
After that, the sealing plate 7 was fitted into the opening of the battery case 5 to seal the battery case 5 to obtain a lithium secondary battery.

【0027】これらの電池それぞれについて、正極板2
と負極板3とを直径0.8mm,長さ200mmの導線
を用いて短絡させ、短絡後の電池表面の最高到達温度を
測定した。そのとき漏液の有無についても調べた。また
電池を一旦85℃で5時間放置した後、室温に戻してか
らの電池容量についてもNo.1からNo.7の各仕様
の電池についてそれぞれ測定した。これは高性能のノー
トパソコンで使用されたとき、電池が置かれる高温環境
を測定したものであり、それぞれの結果を表1に示す。
For each of these batteries, the positive electrode plate 2
The negative electrode plate 3 and the negative electrode plate 3 were short-circuited using a conductor wire having a diameter of 0.8 mm and a length of 200 mm, and the maximum temperature reached on the surface of the battery after the short circuit was measured. At that time, the presence or absence of leakage was also examined. Regarding the battery capacity after the battery was once left at 85 ° C. for 5 hours and then returned to room temperature, No. 1 to No. Each of the batteries of 7 specifications was measured. This is a measurement of the high temperature environment in which the battery is placed when it is used in a high performance notebook computer, and the respective results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】No.1,No.2のように、融点が90
℃以下のものを用いると、電池が高温環境下(ここでは
85℃)に置かれた場合に電池容量が損なわれる。これ
はポリエチレンの一部が融解をし始めて、それが室温に
戻ったときに活物質の一部をコートしたためと考えられ
る。
No. 1, No. 2 has a melting point of 90
If the temperature is lower than 0 ° C, the battery capacity will be impaired when the battery is placed in a high temperature environment (here, 85 ° C). This is probably because part of the polyethylene began to melt and coated part of the active material when it returned to room temperature.

【0030】No.1,No.3,No.5のように、
融解熱が30J/g以下になると最高到達温度が高くな
り漏液しやすくなる。またNo.6のように、融解熱が
30J/g以上あっても融点が130℃より高いと、や
はり最高到達温度が高くなり漏液する。
No. 1, No. 3, No. Like 5,
When the heat of fusion is 30 J / g or less, the maximum temperature reaches a high level and liquid leakage easily occurs. In addition, No. Even if the heat of fusion is 30 J / g or more as in No. 6, if the melting point is higher than 130 ° C., the maximum temperature reached is also high and liquid leakage occurs.

【0031】なお、熱吸収材をまったく含まない場合
は、電池温度がかなり高温まで上昇し、やはり漏液に至
った。
When the heat absorbing material was not contained at all, the battery temperature rose to a considerably high temperature, which also led to liquid leakage.

【0032】(実施例2)負極板の別の形態について詳
しく説明する。
Example 2 Another form of the negative electrode plate will be described in detail.

【0033】負極活物質には、平均粒径6.0μmの天
然黒鉛を用いた。この天然黒鉛100重量部に、結着材
として表2に示す各種有機化合物を溶液状態で3重量部
と、熱吸収材としてポリエチレン粉末4重量部とを加え
て混練し、ペースト状にした。
As the negative electrode active material, natural graphite having an average particle size of 6.0 μm was used. To 100 parts by weight of this natural graphite, 3 parts by weight of various organic compounds shown in Table 2 as a binder in solution and 4 parts by weight of polyethylene powder as a heat absorbing material were added and kneaded to form a paste.

【0034】このペーストを厚さ0.025mmの銅箔
の両面に塗布し、乾燥した後、圧延して負極シートを得
た。この負極シートを、長さ420mm,幅39mmに
裁断して負極板3とした。なお、厚さは0.2mmであ
った。この負極板3を直径10mmの巻芯に捲回し、そ
の際の合剤の脱落重量を測定した。表2には極板に塗着
した全合剤重量に対する脱落合剤を重量パーセントとし
て表している。
This paste was applied to both sides of a copper foil having a thickness of 0.025 mm, dried and rolled to obtain a negative electrode sheet. This negative electrode sheet was cut into a length of 420 mm and a width of 39 mm to obtain a negative electrode plate 3. The thickness was 0.2 mm. The negative electrode plate 3 was wound around a winding core having a diameter of 10 mm, and the weight of the mixture dropped off was measured. In Table 2, the delaminating agent is expressed as a weight percentage with respect to the total weight of the mixture applied to the electrode plate.

【0035】[0035]

【表2】 [Table 2]

【0036】表2から本実施例のスチレン−ブタジエン
ゴム,ポリフッ化ビニリデン,ポリ四フッ化エチレン,
四フッ化エチレン−六フッ化プロピレン共重合体,アク
リロニトリル−ブタジエンゴムの結着性が、アクリル樹
脂やエチレン−プロピレン−−ジエン共重合体に比べて
良好である。なお、結着剤を含まずポリエチレンのみの
場合は特に合材の脱落が多く、結着剤が必要である。
From Table 2, the styrene-butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene of this example,
The binding properties of tetrafluoroethylene-hexafluoropropylene copolymer and acrylonitrile-butadiene rubber are better than those of acrylic resin and ethylene-propylene-diene copolymer. In addition, especially when polyethylene is used without a binder, the mixture is often dropped off and a binder is required.

【0037】(実施例3)負極板の形態以外は実施例1
の場合と同様のリチウム二次電池を構成して測定した。
以下、負極板の他の形態について詳しく説明する。
(Example 3) Example 1 except the form of the negative electrode plate
A lithium secondary battery similar to the above was constructed and measured.
Hereinafter, another form of the negative electrode plate will be described in detail.

【0038】負極活物質には、平均粒径6.0μmの天
然黒鉛を用いた。この天然黒鉛100重量部に、結着剤
としてスチレン−ブタジエンゴムを溶液状態で3重量部
と、熱吸収材として表3に示す各種高分子化合物の粉末
4重量部とを加えて混練し、ペースト状にした。このペ
ーストを厚さ0.025mmの銅箔の両面に塗布し、乾
燥した後、圧延して負極シートを得た。この負極シート
を、長さ420mm,幅39mmに裁断して負極板3と
した。なお、厚さは0.2mmであった。
As the negative electrode active material, natural graphite having an average particle size of 6.0 μm was used. To 100 parts by weight of this natural graphite, 3 parts by weight of styrene-butadiene rubber as a binder in a solution state and 4 parts by weight of powders of various polymer compounds shown in Table 3 as a heat absorbing material were added and kneaded to obtain a paste. I made it. This paste was applied onto both sides of a copper foil having a thickness of 0.025 mm, dried and then rolled to obtain a negative electrode sheet. This negative electrode sheet was cut into a length of 420 mm and a width of 39 mm to obtain a negative electrode plate 3. The thickness was 0.2 mm.

【0039】これらの負極板3を用いて組み立てたリチ
ウム二次電池を85℃で5時間放置した後、電池の内部
抵抗を測定した。
The lithium secondary battery assembled using these negative electrode plates 3 was left at 85 ° C. for 5 hours, and then the internal resistance of the battery was measured.

【0040】また、No.16からNo.22の各仕様
のリチウム二次電池それぞれについて、実施例1の場合
と同様の短絡試験も行った。
No. 16 to No. A short circuit test similar to that in Example 1 was also performed on each of the lithium secondary batteries having specifications 22.

【0041】[0041]

【表3】 [Table 3]

【0042】融点と融解熱が本実施例の範囲にあるよう
な高分子化合物を用いれば、No.16からNo.22
のように、短絡後の電池温度の上昇は抑制できるが、N
o.21,No.22のように、その種類によっては高
温保存後の内部抵抗が大きくなって好ましくない。これ
は高温環境下で高分子化合物と電解液との反応がおこ
り、負極板中に高分子の薄膜が生成したためと考えられ
る。よって熱吸収材として用いる高分子化合物として
は、ポリエチエレン,ポリプロピレン,エチレン−エチ
ルアクリレート−無水マレイン酸共重合体,エチレン−
酢酸ビニル酸共重合体,エチレン−アクリル酸共重合体
の群から選ばれた少なくとも1種の物質が好ましい。
If a polymer compound having a melting point and a heat of fusion within the range of this embodiment is used, No. 16 to No. 22
As described above, the increase in battery temperature after a short circuit can be suppressed, but N
o. 21, No. As in No. 22, the internal resistance after storage at high temperature becomes large depending on the type, which is not preferable. It is considered that this is because the polymer compound and the electrolytic solution reacted in a high temperature environment to form a polymer thin film in the negative electrode plate. Therefore, as the polymer compound used as the heat absorber, polyethylene, polypropylene, ethylene-ethyl acrylate-maleic anhydride copolymer, ethylene-
At least one substance selected from the group of vinyl acetate copolymer and ethylene-acrylic acid copolymer is preferable.

【0043】(実施例4)負極板の他の形態について詳
しく説明する。
(Example 4) Another form of the negative electrode plate will be described in detail.

【0044】負極活物質には、平均粒径6.0μmの天
然黒鉛を用いた。この天然黒鉛100重量部に、結着剤
としてスチレン−ブタジエンゴムを溶液状態で3重量部
と、熱吸収材として表4に示す各形状のポリエチレン粉
末4重量部とを加えて混練し、ペースト状にした。この
ペーストを厚さ0.025mmの銅箔の両面に塗布し、
乾燥した後、極板の厚みが一定値に到達して変化しなく
なるまで圧延して負極板3とし、このときの合剤密度を
表4に示す。
As the negative electrode active material, natural graphite having an average particle size of 6.0 μm was used. To 100 parts by weight of this natural graphite, 3 parts by weight of styrene-butadiene rubber as a binder in solution and 4 parts by weight of polyethylene powder of each shape shown in Table 4 as a heat absorbing material were added and kneaded to form a paste. I chose Apply this paste to both sides of 0.025mm thick copper foil,
After drying, the negative electrode plate 3 was rolled until the thickness of the electrode plate reached a certain value and did not change, and the mixture density at this time is shown in Table 4.

【0045】[0045]

【表4】 [Table 4]

【0046】No.23のように、平均粒径が1μm以
下になると、ポリエチレン粉末の嵩密度自体が小さくな
ることもあり、負極合剤密度が小さくなった。また、N
o.27のように、平均粒径が13μm以上になると負
極活物質の間隙にポリエチレン粉末が入れなくなり、や
はり負極合剤密度が小さくなった。No.28,No.
29のように、繊維状のポリエチレンの場合には、繊維
の長さによらず負極合材密度が極端に小さくなって好ま
しくない。
No. When the average particle size was 1 μm or less as shown in No. 23, the bulk density itself of the polyethylene powder might be decreased, and the density of the negative electrode mixture was decreased. Also, N
o. As shown in No. 27, when the average particle size was 13 μm or more, the polyethylene powder could not enter the gaps of the negative electrode active material, and the density of the negative electrode mixture also decreased. No. 28, No.
In the case of fibrous polyethylene as in No. 29, the density of the negative electrode mixture is extremely low regardless of the length of the fiber, which is not preferable.

【0047】(実施例5)負極板の形態以外は実施例1
の場合と同様のリチウム二次電池を構成して測定した。
以下、負極板の他の形態について詳しく説明する。
(Example 5) Example 1 except for the form of the negative electrode plate
A lithium secondary battery similar to the above was constructed and measured.
Hereinafter, another form of the negative electrode plate will be described in detail.

【0048】負極活物質には、平均粒径6.0μmの天
然黒鉛を用いた。この天然黒鉛100重量部に、結着材
としてスチレン−ブタジエンゴムを溶液状態で3重量部
と、熱吸収材として表5に示す各種ポリエチレンの粉末
の各重量部とを加えて混練し、ペースト状にした。この
ペーストを厚さ0.025mmの銅箔の両面に塗布し、
乾燥した後、圧延して負極シートを得た。この負極シー
トを、長さ420mm,幅39mmに裁断して負極板3
とした。なお、厚さは0.2mmであった。
As the negative electrode active material, natural graphite having an average particle size of 6.0 μm was used. To 100 parts by weight of this natural graphite, 3 parts by weight of styrene-butadiene rubber as a binder in solution and each part by weight of various polyethylene powders shown in Table 5 as a heat absorbing material were added and kneaded to form a paste. I chose Apply this paste to both sides of 0.025mm thick copper foil,
After drying, it was rolled to obtain a negative electrode sheet. This negative electrode sheet was cut into a length of 420 mm and a width of 39 mm to obtain a negative electrode plate 3
And The thickness was 0.2 mm.

【0049】これらの負極板3を用いて組み立てたリチ
ウム二次電池について、実施例1の場合と同様の短絡試
験を行った。
A short circuit test similar to that in Example 1 was conducted on a lithium secondary battery assembled using these negative electrode plates 3.

【0050】[0050]

【表5】 [Table 5]

【0051】表5からわかるように、負極合剤1gあた
りの熱吸収材による吸熱量が大きい方が最高到達温度が
低くなる傾向がある。ただし、熱吸収材として用いる高
分子化合物は比重が1g/cc前後と小さく、No.3
6のように重量分率で10%以上添加すると電池容量の
ロスが大きくなって好ましくない。
As can be seen from Table 5, the maximum reached temperature tends to be lower as the amount of heat absorbed by the heat absorbing material per 1 g of the negative electrode mixture is larger. However , the specific gravity of the polymer compound used as the heat absorbing material is as small as about 1 g / cc, and No. Three
When 10% by weight or more is added as in No. 6, the loss of battery capacity becomes large, which is not preferable.

【0052】(実施例6)負極板の形態以外は実施例1
の場合と同様のリチウム二次電池を構成して測定した。
以下、負極板の他の形態について詳しく説明する。
(Example 6) Example 1 except for the form of the negative electrode plate
A lithium secondary battery similar to the above was constructed and measured.
Hereinafter, another form of the negative electrode plate will be described in detail.

【0053】負極活物質100重量部に、結着材として
スチレン−ブタジエンゴムを溶液状態で3重量部と、熱
吸収材としてポリエチレンの粉末4重量部とを加えて混
練し、ペースト状にした。このペーストを厚さ0.02
5mmの銅箔の両面に塗布し、乾燥した後、圧延して負
極シートを得た。この負極シートを、長さ420mm,
幅39mmに裁断して負極板3とした。なお、厚さは
0.2mmであった。
To 100 parts by weight of the negative electrode active material, 3 parts by weight of styrene-butadiene rubber as a binder in solution and 4 parts by weight of polyethylene powder as a heat absorbing material were added and kneaded to form a paste. This paste has a thickness of 0.02
It was applied on both sides of a 5 mm copper foil, dried, and then rolled to obtain a negative electrode sheet. This negative electrode sheet has a length of 420 mm,
A negative electrode plate 3 was obtained by cutting into a width of 39 mm. The thickness was 0.2 mm.

【0054】ここで負極活物質として、ロンザ社製の人
造黒鉛KS15と日本黒鉛製のSP−20、さらに比較
例として天然黒鉛を用いた。
Here, artificial graphite KS15 manufactured by Lonza and SP-20 manufactured by Nippon Graphite were used as the negative electrode active material, and natural graphite was used as a comparative example.

【0055】[0055]

【表6】 [Table 6]

【0056】表6からわかるように、天然黒鉛より人造
黒鉛のほうが最高到達温度が低くなった。
As can be seen from Table 6, the maximum temperature reached was lower in artificial graphite than in natural graphite.

【0057】なお、本実施例1〜6においては、正極活
物質にLiCo0.2 No0.82 を用いたが、化学式L
xy Ni1−y2 (1.10≧x≧0.50,1
≧y≧0,MはCo,Mn,Cr,Fe,Mg,Al,
Znのいずれか1種以上)であらわされる活物質を用い
ても同様な効果が得られた。
In Examples 1 to 6, LiCo 0.2 No 0.8 O 2 was used as the positive electrode active material.
i x M y Ni 1-y O 2 (1.10 ≧ x ≧ 0.50,1
≧ y ≧ 0, M is Co, Mn, Cr, Fe, Mg, Al,
The same effect was obtained by using an active material represented by any one of Zn).

【0058】また、負極活物質として、コークス類,炭
素繊維類等、リチウムを吸蔵,放出する炭素材料を用い
た場合も、ほぼ同様な効果が得られた。
Also, when a carbon material that absorbs and releases lithium, such as cokes and carbon fibers, was used as the negative electrode active material, almost the same effect was obtained.

【0059】[0059]

【発明の効果】本発明は、以上説明したような形態で実
施され、電池特性を満足し、かつ電池の内外部で短絡し
たときの電池の温度上昇を抑制することができるという
効果を奏する。
The present invention is carried out in the form described above, and has the effects of satisfying the battery characteristics and suppressing the temperature rise of the battery when a short circuit occurs inside or outside the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるリチウム二次電池の一
部を切り欠いた縦断面図
FIG. 1 is a vertical cross-sectional view in which a part of a lithium secondary battery according to an embodiment of the present invention is cut away.

【符号の説明】[Explanation of symbols]

2 正極板 3 負極板 2 Positive plate 3 Negative electrode plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−266764(JP,A) 特開 平7−192753(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 63-266764 (JP, A) JP 7-192753 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム含有複合酸化物を活物質とする
正極と、リチウムを吸蔵,放出する炭素材料からなる負
極と、非水電解液とを備え、前記負極中には、熱吸収材
および結着剤を含み、熱吸収材としては融点が90〜1
30℃で、融解熱が30J/g以上の高分子化合物、結
着剤としてはスチレン−ブタジエンゴム,ポリフッ化ビ
ニリデン,ポリ四フッ化エチレン,四フッ化エチレン−
六フッ化プロピレン共重合体,アクリロニトリル−ブタ
ジエンゴムの群から選ばれる少なくとも1種の物質を用
いる非水電解液二次電池。
1. A positive electrode using a lithium-containing composite oxide as an active material, a negative electrode made of a carbon material that occludes and releases lithium, and a non-aqueous electrolyte, wherein the negative electrode contains a heat absorbing material and a binder. Contains a binder and has a melting point of 90 to 1 as a heat absorbing material.
A polymer compound having a heat of fusion of 30 J / g or more at 30 ° C. As a binder, styrene-butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene-
A non-aqueous electrolyte secondary battery using at least one substance selected from the group consisting of a propylene hexafluoride copolymer and an acrylonitrile-butadiene rubber.
【請求項2】 熱吸収剤としての高分子化合物が、ポリ
エチレン,ポリプロピレン,エチレン−エチルアクリレ
ート−無水マレイン酸共重合体,エチレン−酢酸ビニル
酸共重合体,エチレン−アクリル酸共重合体の群から選
ばれる少なくとも1種の物質からなる請求項1記載の非
水電解液二次電池。
2. The polymer compound as a heat absorber is selected from the group consisting of polyethylene, polypropylene, ethylene-ethyl acrylate-maleic anhydride copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer. The non-aqueous electrolyte secondary battery according to claim 1, comprising at least one selected substance.
【請求項3】 熱吸収材としての高分子化合物の形状
が、平均粒径1〜12μmの球状である請求項1もしく
は2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the polymer compound serving as the heat absorbing material has a spherical shape having an average particle diameter of 1 to 12 μm.
【請求項4】 熱吸収材としての高分子化合物の添加量
が、融解熱による吸熱が負極合剤1gあたり1J以上
で、負極合剤に対して重量分率で10%以下である請求
項1もしくは2記載の非水電解液二次電池。
4. The addition amount of the polymer compound as a heat absorbing material is such that the endothermic heat of fusion is 1 J or more per 1 g of the negative electrode mixture, and the weight fraction of the negative electrode mixture is 10% or less. Alternatively, the non-aqueous electrolyte secondary battery described in 2.
【請求項5】 炭素材料が人造黒鉛である請求項1記載
の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material is artificial graphite.
【請求項6】 リチウム含有複合酸化物を活物質とする
正極と、リチウムを吸蔵,放出する人造黒鉛からなる負
極と、非水電解液とを備え、前記負極中には、熱吸収材
として融点が90〜130℃で、融解熱が30J/g以
上、かつ形状が平均粒径1〜12μmの球状であるポリ
エチレン,ポリプロピレン,エチレン−エチルアクリレ
ート−無水マレイン酸共重合体,エチレン−酢酸ビニル
酸共重合体,エチレン−アクリル酸共重合体の群から選
ばれる少なくとも1種の物質を、その融解熱による吸熱
が負極合剤1gあたり1J以上で、負極合剤に対して重
量分率で10%以下含み、結着剤としてスチレン−ブタ
ジエンゴムを含む非水電解液二次電池。
6. A positive electrode using a lithium-containing composite oxide as an active material, a negative electrode made of artificial graphite that occludes and releases lithium, and a non-aqueous electrolyte, wherein the negative electrode has a melting point as a heat absorbing material. Is 90 to 130 ° C., the heat of fusion is 30 J / g or more, and the shape is spherical, having an average particle diameter of 1 to 12 μm, polyethylene, polypropylene, ethylene-ethyl acrylate-maleic anhydride copolymer, ethylene-vinyl acetate copolymer. At least one substance selected from the group consisting of polymers and ethylene-acrylic acid copolymers has an endotherm due to its heat of fusion of 1 J or more per 1 g of the negative electrode mixture, and the weight fraction of the negative electrode mixture is 10% or less. A non-aqueous electrolyte secondary battery containing a styrene-butadiene rubber as a binder.
【請求項7】 正極としてのリチウム含有複合酸化物
が、Lixy Ni1-y2 (1.10≧x≧0.5
0,1≧y≧0,MはCo,Mn,Cr,Fe,Mg,
Al,Znの1種以上)である請求項1記載の非水電解
液二次電池。
7. A lithium-containing composite oxide as a positive electrode is Li x M y Ni 1 -y O 2 (1.10 ≧ x ≧ 0.5.
0, 1 ≧ y ≧ 0, M is Co, Mn, Cr, Fe, Mg,
The non-aqueous electrolyte secondary battery according to claim 1, which is one or more of Al and Zn).
JP22211396A 1996-08-23 1996-08-23 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3480189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22211396A JP3480189B2 (en) 1996-08-23 1996-08-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22211396A JP3480189B2 (en) 1996-08-23 1996-08-23 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1064548A JPH1064548A (en) 1998-03-06
JP3480189B2 true JP3480189B2 (en) 2003-12-15

Family

ID=16777360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22211396A Expired - Fee Related JP3480189B2 (en) 1996-08-23 1996-08-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3480189B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891353B2 (en) 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US7592776B2 (en) 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
KR100446660B1 (en) * 2001-11-22 2004-09-04 주식회사 엘지화학 Lithium secondary battery comprising auxiliary binder
US7443136B2 (en) 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
JP4838987B2 (en) * 2004-06-29 2011-12-14 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP4725163B2 (en) * 2005-03-31 2011-07-13 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100838979B1 (en) * 2006-01-03 2008-06-17 주식회사 엘지화학 Safety-enhanced electrochemical device
KR100858417B1 (en) 2006-05-01 2008-09-11 주식회사 엘지화학 Secondary Battery Having Improved Safety by Surface-treatment of Endothermic Inorganic Material
JP5055350B2 (en) * 2009-12-28 2012-10-24 シャープ株式会社 Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
US20140312268A1 (en) * 2013-04-23 2014-10-23 E I Du Pont De Nemours And Company Battery binder
JP2015115168A (en) * 2013-12-11 2015-06-22 日立化成株式会社 Electrode for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof
CN111048739B (en) * 2019-12-25 2022-02-18 中国科学院过程工程研究所 Ternary positive electrode slurry, preparation method thereof and lithium battery

Also Published As

Publication number Publication date
JPH1064548A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP3480190B2 (en) Non-aqueous electrolyte secondary battery
KR100638771B1 (en) Nonaqueous Electrolyte Battery
JP4915390B2 (en) Non-aqueous electrolyte battery
KR20200127786A (en) Lithium secondary battery
JP5109359B2 (en) Nonaqueous electrolyte secondary battery
US8841025B2 (en) Positive electrode with heteropoly and phosphorous additives and nonaqueous electrolyte battery
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
JP2006252895A (en) Battery
KR20140085337A (en) Lithium secondary battery
JP2008234872A (en) Positive electrode active material and battery
JP2006344505A (en) Electrolyte solution and battery
JP3480189B2 (en) Non-aqueous electrolyte secondary battery
JP4310646B2 (en) Negative electrode and battery using the same
EP2461391A1 (en) Battery
JP5446495B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing cathode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011060558A (en) Nonaqueous electrolyte battery
JP4713886B2 (en) Nonaqueous electrolyte secondary battery
JP4867218B2 (en) Lithium ion secondary battery
JP2008159385A (en) Lithium secondary battery
JP4836612B2 (en) Nonaqueous electrolyte battery and battery pack
JP2005347222A (en) Electrolyte liquid and battery
JP2006260906A (en) Battery
US6627352B1 (en) Lithium ion secondary battery and its negative electrode
JP2010257624A (en) Positive electrode active material, method for manufacturing positive electrode active material, and nonaqueous electrolyte battery
JP4784133B2 (en) Secondary battery and battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees