JP3480140B2 - Universal joint - Google Patents

Universal joint

Info

Publication number
JP3480140B2
JP3480140B2 JP21708995A JP21708995A JP3480140B2 JP 3480140 B2 JP3480140 B2 JP 3480140B2 JP 21708995 A JP21708995 A JP 21708995A JP 21708995 A JP21708995 A JP 21708995A JP 3480140 B2 JP3480140 B2 JP 3480140B2
Authority
JP
Japan
Prior art keywords
sectional area
cross
universal joint
pins
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21708995A
Other languages
Japanese (ja)
Other versions
JPH0960650A (en
Inventor
貴彦 内山
博 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP21708995A priority Critical patent/JP3480140B2/en
Publication of JPH0960650A publication Critical patent/JPH0960650A/en
Application granted granted Critical
Publication of JP3480140B2 publication Critical patent/JP3480140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/385Bearing cup; Bearing construction; Bearing seal; Mounting of bearing on the intermediate member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C21/00Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
    • F16C21/005Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement the external zone of a bearing with rolling members, e.g. needles, being cup-shaped, with or without a separate thrust-bearing disc or ring, e.g. for universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/40Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes
    • F16D3/41Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes with ball or roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明に係る自在継手は、例え
ば自動車のステアリング装置に組み込み、ハンドル軸の
動きをステアリングギヤに伝達する為に利用する。
BACKGROUND OF THE INVENTION The universal joint according to the present invention is incorporated in, for example, a steering device of an automobile and is used for transmitting the movement of a handle shaft to a steering gear.

【0002】[0002]

【従来の技術】自動車のステアリング装置に使用する自
在継手として従来から、カルダン継手と呼ばれる十字軸
継手が、広く知られている。例えば実開平5−3652
号公報には、図10に示す様なステアリング装置に組み
込む、図11に示す様な自在継手が記載されている。ス
テアリング装置は図10に示す様に、ステアリングホイ
ール1の動きを、ステアリングシャフト2、中間シャフ
ト3を介してステアリングギヤ4に伝達し、このステア
リングギヤ4によって車輪を操舵する様に構成してい
る。上記ステアリングシャフト2とステアリングギヤ4
の入力シャフト5とは、互いに同一直線上に設けられな
いのが通常である。この為、上記両シャフト2、5の間
に中間シャフト3を設け、この中間シャフト3の両端部
とステアリングシャフト2及び入力シャフト5の端部と
を、本発明の対象となる自在継手6、6を介して結合し
ている。
2. Description of the Related Art A cross joint called a cardan joint has been widely known as a universal joint used for a steering device of an automobile. For example, Actual Kaihei 5-3652
The publication describes a universal joint as shown in FIG. 11 which is incorporated in a steering device as shown in FIG. As shown in FIG. 10, the steering device is configured so that the movement of the steering wheel 1 is transmitted to a steering gear 4 via a steering shaft 2 and an intermediate shaft 3, and the steering gear 4 steers the wheels. The steering shaft 2 and steering gear 4
Normally, the input shaft 5 and the input shaft 5 are not provided on the same straight line. Therefore, the intermediate shaft 3 is provided between the both shafts 2 and 5, and both ends of the intermediate shaft 3 and the ends of the steering shaft 2 and the input shaft 5 are connected to the universal joints 6 and 6 which are objects of the present invention. Are connected through.

【0003】これら各自在継手6、6の構造に就いて、
上記図11に図12を加えて説明する。尚、図11に示
した構造は、振動の伝達を防止する、所謂防振継手であ
るが、本発明の対象となる自在継手は、必ずしも防振構
造を具備する必要はない。従って、以下の説明は防振構
造を省略して、この自在継手6に就いて説明する。この
自在継手6は、十分な剛性を有する金属材によりそれぞ
れが二又状に形成された1対のヨーク7a、7bと、合
金鋼等の硬質金属により造られた十字軸8とから構成さ
れる。上記各ヨーク7a、7bの両端部には、互いに同
心の円孔9、9を形成している。そして各円孔9、9
に、やはり軸受鋼等の硬質金属により有底円筒状に造ら
れた軸受カップ10、10を、互いの開口を対向させた
状態で内嵌固定している。又、上記十字軸8は、1対の
柱部の中間部同士を互いに直交させた如き形状を有し、
それぞれが円柱状である、4個所の軸部11、11を有
する。この4個所の軸部11、11は、上記各軸受カッ
プ10、10内に挿入されている。そして、これら各軸
受カップ10、10の内周面と上記各軸部11、11の
外周面との間に、ニードル軸受等のラジアル軸受12、
12を設け、上記十字軸8に対して上記各ヨーク7a、
7bが、軽い力で揺動する様にしている。この様に構成
する為、これら両ヨーク7a、7bの中心軸同士が一致
しない状態でも、これら両ヨーク7a、7bの間で回転
力の伝達を、殆ど伝達ロスを生じる事なく行なえる。
Regarding the structure of each of these universal joints 6, 6,
12 will be described in addition to FIG. 11 described above. The structure shown in FIG. 11 is a so-called vibration-proof joint that prevents transmission of vibration, but the universal joint that is the subject of the present invention does not necessarily have to have a vibration-proof structure. Therefore, in the following description, the vibration proof structure will be omitted and the universal joint 6 will be described. The universal joint 6 is composed of a pair of yokes 7a and 7b each formed in a bifurcated shape with a metal material having sufficient rigidity, and a cross shaft 8 made of a hard metal such as alloy steel. . Circular holes 9, 9 concentric with each other are formed at both ends of each of the yokes 7a, 7b. And each circular hole 9, 9
Further, the bearing cups 10 and 10, which are also made of a hard metal such as bearing steel and have a bottomed cylindrical shape, are internally fitted and fixed with their openings facing each other. The cross shaft 8 has a shape in which the intermediate portions of a pair of pillars are orthogonal to each other,
It has four shaft portions 11, 11 each having a cylindrical shape. The four shaft parts 11, 11 are inserted into the bearing cups 10, 10. A radial bearing 12, such as a needle bearing, is provided between the inner peripheral surface of each of the bearing cups 10 and 10 and the outer peripheral surface of each of the shaft portions 11 and 11.
12 is provided, and each of the yokes 7a is provided with respect to the cross shaft 8.
7b swings with a light force. With this configuration, even if the central axes of the two yokes 7a and 7b do not coincide with each other, the rotational force can be transmitted between the two yokes 7a and 7b with almost no transmission loss.

【0004】自在継手6の基本構成は上述の通りである
が、この様な自在継手6に於いては、上記十字軸8の基
部13と上記各軸受カップ10、10の開口部との間
に、それぞれシールリング14、14を設けている。そ
して、これら各シールリング14、14により、上記各
ラジアル軸受12、12の設置部分に泥水等が進入する
のを防止し、自在継手6の耐久性の確保を図っている。
更に、上記4個所の軸部11、11中心部にはそれぞ
れ有底の挿入孔15、15を、これら各軸部11、11
の端面に開口する状態で、これら各軸部11、11の軸
方向に亙って形成している。そして、上記各挿入孔1
5、15の内側には、例えば実公昭64−2982号公
報に詳しく記載されている様に、合成樹脂製のピン1
6、16を挿入している。
The basic structure of the universal joint 6 is as described above, but in such a universal joint 6, the space between the base portion 13 of the cross shaft 8 and the openings of the bearing cups 10 and 10 is provided. , And seal rings 14 and 14 are provided, respectively. The seal rings 14 and 14 prevent muddy water and the like from entering the installation portions of the radial bearings 12 and 12, thereby ensuring the durability of the universal joint 6.
Further, bottomed insertion holes 15 and 15 are provided in the central portions of the four shaft portions 11 and 11 , respectively.
Is formed in the axial direction of each of these shaft portions 11, 11 in a state of opening at the end face of the. Then, each of the above insertion holes 1
As described in detail in Japanese Utility Model Publication No. Sho 64-2982, pins 1 made of a synthetic resin are provided on the inside of Nos. 5 and 15.
6 and 16 are inserted.

【0005】これら各ピン16、16は従来、図13又
は図14に示す様な形状に造られていた。即ち、円柱状
の小径部17の軸方向両端部にフランジ状の大径部1
8、18を形成し、これら各大径部18、18の外端面
を、円錐台状の突出面19、19としている。図13に
示した例は、上記小径部17の軸方向両端から上記各大
径部18、18の基端部に亙ってリブ20、20を形成
したもの、図14に示した例は、この様なリブ20、2
0を省略したものである。何れにしても、上記自在継手
6の組立時にこれら各ピン16、16は、各挿入孔1
5、15に挿入されて、一端をこれら各挿入孔15、1
5の奥端に突き当てられ、他端を上記各軸受カップ1
0、10の底面に突き当てられる。
Conventionally, each of these pins 16 and 16 has been formed in a shape as shown in FIG. 13 or 14. That is, the flange-shaped large-diameter portion 1 is provided at both axial ends of the cylindrical small-diameter portion 17.
8 and 18 are formed, and the outer end surfaces of the large-diameter portions 18 and 18 are frustoconical projection surfaces 19 and 19, respectively. The example shown in FIG. 13 is one in which ribs 20, 20 are formed from both axial ends of the small-diameter portion 17 to the base end portions of the large-diameter portions 18, 18, and the example shown in FIG. Such ribs 20, 2
0 is omitted. In any case, at the time of assembling the universal joint 6, the pins 16 and 16 are inserted into the insertion holes 1
5 and 15, one end of each of these insertion holes 15, 1
5 is abutted against the rear end of the bearing cup 5 and the other end is the bearing cup 1
It is struck against the bottom of 0 and 10.

【0006】この様なピン16、16は、上記各軸受カ
ップ10、10と上記各軸部11、11との間で突っ張
る事により、これら各軸受カップ10、10の開口端部
と前記基部13との距離が縮まり過ぎる事を防止する。
これは、前記各シールリング14、14が過度に圧縮さ
れたり、反対に圧縮量が低下し過ぎる事を防止する為で
ある。即ち、自在継手6の使用時に前記十字軸8と上記
各軸受カップ10、10との間にはスラスト荷重が加わ
る。この為、何ら対策を施さないと、スラスト荷重作用
側(アンカ側)のシールリング14が過度に圧縮されて
耐久性が損なわれ、反対側(反アンカ側)のシールリン
グ14の圧縮量が低下し過ぎて、このシールリング14
によるシール性が損なわれる為である。上記各ピン1
6、16は、この様なスラスト荷重を支承する事によ
り、上記各シールリング14、14の圧縮量を適性範囲
に保持する役目を有する。
The pins 16 and 16 are stretched between the bearing cups 10 and 10 and the shaft portions 11 and 11 to open the end portions of the bearing cups 10 and 10 and the base portion 13. Prevents the distance between and from becoming too short.
This is to prevent the respective seal rings 14, 14 from being excessively compressed, or conversely, the amount of compression being too low. That is, when the universal joint 6 is used, a thrust load is applied between the cross shaft 8 and the bearing cups 10 and 10. Therefore, if no measures are taken, the seal ring 14 on the thrust load acting side (anchor side) is excessively compressed and the durability is impaired, and the compression amount of the seal ring 14 on the opposite side (anti-anchor side) decreases. This seal ring 14
This is because the sealing property is impaired. Each pin 1
By supporting such a thrust load, the reference numerals 6 and 16 serve to keep the compression amounts of the seal rings 14 and 14 in an appropriate range.

【0007】この様な役目を果たす上記各ピン16、1
6の装着作業を行なうには、先ず、これら各ピン16、
16を、軸方向反対位置に存在する上記各挿入孔15、
15に挿入する。この際、図13に示したピン16を使
用する場合には、前記各リブ20、20の外周端縁部を
塑性変形させつつ、各ピン16、16を上記各挿入孔1
5、15内に、これら各挿入孔15、15の奥端にまで
圧入する。圧入後はこれら各ピン16、16が各挿入孔
15、15から不用意に脱落する事はない。リブ20、
20を持たない、図14に示したピン16を使用する際
には、上記各挿入孔15、15にピン16、16を挿入
した後、次述する様に軸受カップ10、10を装着する
迄の間、これらピン16、16の脱落を防止すべく、こ
れら各ピン16、16を抑え付けておく。
Each of the pins 16 and 1 that fulfills such a role
In order to carry out the mounting work of 6, the pins 16 and
16, the insertion holes 15 existing at the positions opposite to each other in the axial direction,
Insert into 15. At this time, when the pin 16 shown in FIG. 13 is used, the pins 16 and 16 are inserted into the insertion holes 1 while the outer peripheral edge portions of the ribs 20 and 20 are plastically deformed.
The insertion holes 15 and 15 are press-fitted into the insertion holes 5 and 15 to the deep ends. After press-fitting, these pins 16 and 16 do not accidentally fall out of the insertion holes 15 and 15. Ribs 20,
When using the pin 16 shown in FIG. 14, which does not have the pin 20, after inserting the pins 16 and 16 into the insertion holes 15 and 15, until the bearing cups 10 and 10 are mounted as described below. between, in order to prevent falling off of the pins 16, 16, kept with suppressing the respective pins 16, 16.

【0008】この様にして、各挿入孔15、15内にピ
ン16、16を挿入した状態で、前記各軸部11、11
を当該ヨーク7a(7b)の円孔9、9内に位置させ
る。そして、上記各軸受カップ10、10をこれら円孔
9、9内に、外端開口側から圧入し、更にこれら各軸受
カップ10、10を上記各軸部11、11に向け、互い
に近付ける方向に押圧する。勿論、この押圧作業に先立
ってこれら各軸部11、11の基端部には、前記シール
リング14、14を外嵌しておく。又、押圧作業の際に
は、上記各軸受カップ10、10の内側に、前記ラジア
ル軸受12、12をセットしておく。更に、これら各軸
受カップ10、10の開口端部は、予め直径方向内方に
絞っておく。
In this way, with the pins 16 and 16 inserted into the insertion holes 15 and 15, the shaft portions 11 and 11 are inserted.
Is placed in the circular holes 9, 9 of the yoke 7a (7b). Then, the respective bearing cup 10, 10 in these circular holes 9, 9, and pressed from the outer end opening side, further toward the respective bearing cups 10, 10 to the respective shaft portions 11, 11, in a direction closer to each other Press. Of course, the base end portion of the shaft portions 11, 11 prior to the press work, previously fitted with the sealing ring 14, 14. Also, during the pressing operation, the radial bearings 12, 12 are set inside the bearing cups 10, 10. Furthermore, the open end of the bearing cups 10, 10 is previously squeezed in advance diametrically inwardly.

【0009】上記押圧作業により、軸方向反対側の軸受
カップ10、10が上記各円孔9、9内の所定位置に内
嵌固定されると同時に上記各ピン16、16が、軸方向
に圧縮される。即ち、これら各ピン16、16の小径部
17、17が、上記各軸受カップ10、10の底面と上
記各挿入孔15、15の奥面との間で強く挟持される事
で、図12に示す様にビヤ樽状に変形する。この状態で
上記各ピン16、16は、上記各軸受カップ10、10
の底面と上記各挿入孔15、15の奥面との間で突っ張
り、前記スラスト荷重に拘らず、これら各軸受カップ1
0、10が軸方向に変位する事を防止する。この結果、
上記各シールリング14、14の圧縮量が適正に保たれ
る。
By the pressing work, the bearing cups 10 and 10 on the opposite side in the axial direction are internally fitted and fixed in predetermined positions in the circular holes 9 and 9 and the pins 16 and 16 are compressed in the axial direction. To be done. That is, these small-diameter portion 17 of each pin 16, 16, by being strongly clamped between the inner surface of the bottom and the respective insertion holes 15, 15 of the respective bearing cups 10, 10, 12 As shown, it transforms into a barrel. In this state, the pins 16 and 16 are connected to the bearing cups 10 and 10, respectively.
Between the bottom surface of the bearing cup 1 and the inner surface of each of the insertion holes 15 and 15 so as to support the bearing cup 1 regardless of the thrust load.
Prevents 0 and 10 from being displaced in the axial direction. As a result,
The amount of compression of each of the seal rings 14, 14 is properly maintained.

【0010】尚、従来は上記各ピン16、16を構成す
る合成樹脂として、ポリアセタール樹脂を使用してい
た。ポリアセタール樹脂製のピン16、16に圧縮荷重
を加えた場合に於ける、圧縮荷重と圧縮量との関係は、
図15に鎖線aで示す様に、滑らかなものとなる。言い
換えれば、圧縮荷重の僅かな差が圧縮量に大きく影響す
る事はない。従って、前記押圧作業に伴って、軸方向反
対位置に存在する1対のピン16、16の圧縮量に大き
な差が生じる事はない。即ち、これら各ピン16、16
の圧縮特性は、製造上避けられない誤差(寸法誤差、材
料の品質誤差)により、多少異なる事がある。圧縮荷重
と圧縮量との関係が、上記鎖線aに示す様に滑らかであ
れば、上記1対のピン16、16の圧縮量に大きな差が
生じる事はなく、軸方向反対位置に存在する1対のシー
ルリング14、14の圧縮量に大きな差が生じる事もな
い。
[0010] Incidentally, conventionally a synthetic resin forming the respective pin 16, 16, were using polyacetal resin. When a compressive load is applied to the pins 16 made of polyacetal resin, the relationship between the compressive load and the compressive amount is
As shown by the chain line a in FIG. 15, it becomes smooth. In other words, a slight difference in compression load does not significantly affect the compression amount. Therefore, there is no great difference in the amount of compression of the pair of pins 16 and 16 existing at the axially opposite positions due to the pressing work. That is, these pins 16, 16
The compression characteristics of may differ somewhat due to errors that cannot be avoided in manufacturing (dimension errors, material quality errors). If the relationship between the compression load and the compression amount is smooth as shown by the chain line a, there is no great difference between the compression amounts of the pair of pins 16 and 16, and the pins 1 and 2 exist at the opposite positions in the axial direction. There is no significant difference in the amount of compression between the pair of seal rings 14, 14.

【0011】[0011]

【発明が解決しようとする課題】ところが、上述の様に
構成され作用する従来の自在継手の場合には、ピン1
6、16を構成する合成樹脂の材質に起因して、次に述
べる様な解決すべき点がある。即ち、これらピン16、
16を構成する合成樹脂として従来使用されていたポリ
アセタール樹脂は耐熱性が必ずしも十分でないのに対し
て、ステアリング装置を構成する自在継手6は、高温の
エンジンルーム内に設けられる。特に、近年に於けるエ
ンジン出力の向上、或は補機類の増大によるエンジンル
ーム内の空間減少等により、エンジンルーム内の温度が
高くなる傾向にある。しかも、ステアリング装置用の自
在継手は、しばしば排気管に隣接して配置される為、相
当の高温に曝らされる事も考慮しなければならない。ポ
リアセタール樹脂製のピン16、16の場合、高温に曝
らされると軟化して変形し、その結果、各ピン16、1
6の端部と軸受カップ10、10の底面との間に隙間が
生じる可能性がある。そして、隙間が生じた場合には、
自在継手6部分でがたつきを生じ、ステアリングホイー
ル1(図10)を操作する運転者に不快感を与える等、
好ましくない現象が発生する。
However, in the case of the conventional universal joint constructed and operated as described above, the pin 1 is used.
Due to the material of the synthetic resin constituting 6, 16, there are the following points to be solved. That is, these pins 16,
While the polyacetal resin conventionally used as the synthetic resin forming 16 is not necessarily sufficient in heat resistance, the universal joint 6 forming the steering device is provided in a high temperature engine room. In particular, there is a tendency that the temperature in the engine room becomes higher due to the improvement of the engine output in recent years or the reduction of the space in the engine room due to the increase of auxiliary machines. Moreover, since the universal joint for the steering device is often arranged adjacent to the exhaust pipe, it must be taken into consideration that it is exposed to a considerably high temperature. In the case of the polyacetal resin pins 16 and 16, when they are exposed to a high temperature, they are softened and deformed.
There may be a gap between the end of 6 and the bottom surface of the bearing cup 10, 10. And if there is a gap,
Rattling is generated at the universal joint 6 portion, which gives an uncomfortable feeling to the driver who operates the steering wheel 1 (FIG. 10).
An unfavorable phenomenon occurs.

【0012】上記各ピン16、16を構成する合成樹脂
として、耐熱性合成樹脂を使用すれば、上述の様な問題
を解決できるが、代わりに、耐熱性合成樹脂の特性に起
因して、次に述べる様な問題が発生する。即ち、一般的
な耐熱性合成樹脂製のピンに圧縮荷重を加えた場合に於
ける、圧縮荷重と圧縮量との関係は、図15に破線bで
示す様になる。この破線bから明らかな通り、一般的な
耐熱性合成樹脂の材料特性として、降伏点が明瞭に現れ
る。この結果として、圧縮荷重及び圧縮量が一定値を越
えると急に、圧縮荷重の変化量が小さい(少ない)にも
拘らず圧縮量が大きく(多く)なる。上記降伏点が使用
範囲から外れた部分に存在すれば、特に問題とはならな
いが、ステアリング装置用等として一般的に使用される
自在継手6に組み込むピン16、16を耐熱性合成樹脂
により構成すると、この降伏点が使用範囲内に表われ
る。
If a heat-resistant synthetic resin is used as the synthetic resin forming the pins 16 and 16, the above-mentioned problems can be solved, but instead, due to the characteristics of the heat-resistant synthetic resin, The problem as described in 1. occurs. That is, when a compressive load is applied to a general heat-resistant synthetic resin pin, the relationship between the compressive load and the compressive amount is as shown by the broken line b in FIG. As is clear from the broken line b, the yield point clearly appears as a material characteristic of a general heat resistant synthetic resin. As a result, when the compression load and the compression amount exceed a certain value, the compression amount suddenly becomes large (large) despite the change amount of the compression load being small (small). If the above-mentioned yield point exists in a portion outside the range of use, there is no particular problem, but if the pins 16 and 16 incorporated in the universal joint 6 generally used for steering devices are made of heat-resistant synthetic resin. , This yield point appears within the usable range.

【0013】この様に使用範囲内に降伏点が表われる
と、軸方向反対側に設けられる1対のピン16、16の
うち、一方のピン16の圧縮量が他方のピン16の圧縮
量に比較して、大きく異なり易い。即ち、製造上避けら
れない誤差に起因して、軸受カップ10、10を円孔
9、9内に押し込む押し込み作業時に、一方(例えば図
12の上方)のピン16の小径部17が降伏点に達する
以前に、他方(例えば図12の下方)のピン16の小径
部17が降伏点に達する場合がある。この様な場合に
は、他方のピン16の小径部17が降伏点に達した以後
も続行される押し込み作業に伴って、上記一方のピン1
6の圧縮量に比べて上記他方のピン16の圧縮量が多く
なる。上記1対のピン16、16の小径部17、17の
降伏点が極く近ければ良いが、離れていた場合には、こ
れら1対のピン16、16の圧縮量が、図12に示す様
に、大きく異なってしまう。この結果、上記他方のピン
16に対応するシールリング14の圧縮量が多く(過大
になり)、上記一方のピン16に対応するシールリング
14の圧縮量が少なくなる(不足する)。
When the yield point appears in the use range in this way, the compression amount of one pin 16 of the pair of pins 16, 16 provided on the opposite side in the axial direction becomes the compression amount of the other pin 16. Compared to each other, they are likely to differ greatly. That is, due to an unavoidable error in manufacturing, when the bearing cups 10 and 10 are pushed into the circular holes 9 and 9, the small diameter portion 17 of the pin 16 (for example, the upper side in FIG. 12) becomes the yield point. Before reaching, the small diameter portion 17 of the other pin 16 (for example, the lower side of FIG. 12) may reach the yield point. In such a case, the pin 1 of the one pin 1 is accompanied by the pushing operation which is continued after the small diameter portion 17 of the other pin 16 reaches the yield point.
The compression amount of the other pin 16 is larger than the compression amount of 6. The yield points of the small-diameter portions 17, 17 of the pair of pins 16, 16 are very close to each other, but when they are far apart, the compression amount of the pair of pins 16, 16 is as shown in FIG. However, it will be very different. As a result, the compression amount of the seal ring 14 corresponding to the other pin 16 is large (excessive), and the compression amount of the seal ring 14 corresponding to the one pin 16 is small (insufficient).

【0014】この様なピン16、16の圧縮量の偏りに
基づくシールリング14、14の圧縮量のばらつきは、
当該シールリング14の耐久性不足(圧縮量が過大であ
る場合)やシール性能の悪化(圧縮量が不足する場合)
を招く。そこで、上記各ピン16、16の圧縮特性のば
らつきに拘らず、軸方向反対側に設けられたピン16、
16の圧縮量がばらつかない様にする為には、十字軸8
を固定した状態で上記軸受カップ10、10の押し込み
作業を行なう事が考えられる。即ち、十字軸8を構成す
る4本の軸部11、11のうち、押し込み作業を行なわ
ない(例えば図12の水平方向に配置された)2本の軸
部11、11を支持固定し、上記押し込み作業を行な
う。この様にして押し込み作業を行なえば、上記圧縮量
のばらつきを防止できるが、十字軸8を固定する作業が
必要になり、自在継手6の製造工程が複雑化して、自在
継手6の製作費を高くしてしまう。本発明の自在継手
は、この様な事情に鑑みて発明したものである。
The variation in the amount of compression of the seal rings 14, 14 due to the bias of the amount of compression of the pins 16, 16 is as follows.
Insufficient durability of the seal ring 14 (when the compression amount is excessive) or deterioration of the sealing performance (when the compression amount is insufficient)
Invite. Therefore, regardless of variations in the compression characteristics of the pins 16 and 16, the pins 16 provided on the opposite side in the axial direction,
In order to prevent the amount of compression of 16 from varying, the cross shaft 8
It is conceivable that the bearing cups 10 and 10 are pushed in while fixing the. That is, of the four shafts 11, 11 forming the cross shaft 8, two shafts 11, 11 which are not pushed (for example, arranged in the horizontal direction in FIG. 12) are supported and fixed. Perform the pushing work. If the pushing operation is performed in this manner, the above-mentioned variation in the amount of compression can be prevented, but the work for fixing the cross shaft 8 is required, which complicates the manufacturing process of the universal joint 6 and reduces the manufacturing cost of the universal joint 6. I will raise it. The universal joint of the present invention was invented in view of such circumstances.

【0015】[0015]

【課題を解決するための手段】本発明の自在継手は、前
述した従来の自在継手と同様に、それぞれが二又状に形
成された1対のヨークと、各ヨークの両端部に互いに同
心に形成された円孔と、互いの開口を対向させた状態で
上記各円孔の内側に内嵌固定された、有底円筒状の軸受
カップと、それぞれが円柱状に形成された4個所の軸部
を有し、各軸部を上記各軸受カップ内に挿入された十字
軸と、上記各軸受カップの内周面と上記各軸部の外周面
との間に設けられたラジアル軸受と、上記十字軸の基部
と上記各軸受カップの開口部との間に設けられたシール
リングと、上記各軸部の端面に開口する状態で上記十字
軸の内側に、軸方向に亙って形成された有底の挿入孔
と、各挿入孔に挿入されてそれぞれの一端をこの挿入孔
の奥端に突き当てられ、それぞれの他端を上記各軸受カ
ップの底面に突き当てられた合成樹脂製のピンとを備え
ている。
The universal joint of the present invention, like the conventional universal joint described above, has a pair of yokes each formed in a bifurcated shape, and concentric with each other at both ends of each yoke. The formed circular holes, the bottomed cylindrical bearing cups fitted and fixed inside the circular holes with their openings facing each other, and the four shafts each formed in a cylindrical shape. A cross shaft having a shaft portion and each shaft portion inserted in each of the bearing cups, a radial bearing provided between an inner peripheral surface of each bearing cup and an outer peripheral surface of each shaft portion, and A seal ring provided between the base of the cross shaft and the opening of each of the bearing cups, and formed inside the cross shaft in the state of opening in the end face of each of the shafts in the axial direction. Insert the bottomed insertion hole and insert it into each insertion hole so that one end of each , And the other ends and a synthetic resin pin abuts the bottom surface of each bearing cup.

【0016】特に、本発明の自在継手に於いては、これ
ら各ピンは、80〜98重量%の直鎖型ポリフェニレン
サルファイド樹脂(以下「直鎖型PPS」とする。)
と、繊維状充填材である1〜10重量%のアラミド繊維
と、粒子状充填材である1〜10重量%の球状の等方性
無定形炭素粒子とにより構成される。又、好ましくは、
請求項2に記載した様に、上記アラミド繊維として、長
さが5mm以下、同じく直径が0.1〜20μmのもの
を、上記等方性無定形炭素粒子として、直径が0.1〜
50μmのものを、それぞれ使用する。
Particularly, in the universal joint of the present invention, each of these pins has a linear polyphenylene sulfide resin content of 80 to 98 % by weight (hereinafter referred to as "linear PPS").
And 1 to 10% by weight of fibrous filler , aramid fiber
And 1 to 10% by weight of spherical isotropic particle filler .
It is composed of amorphous carbon particles . Also, preferably,
As described in claim 2, as the aramid fiber, a long
With a diameter of 5 mm or less and a diameter of 0.1 to 20 μm
The above isotropic amorphous carbon particles have a diameter of 0.1 to
Those of 50 μm are used.

【0017】更に好ましくは、請求項3に記載した様
に、上記各ピンとして、軸方向両端部に形成された、上
記各挿入孔に挿入自在な大断面積部と、両大断面積部同
士の間に軸方向に亙って互いに直列に設けられた、小断
面積部及び中断面積部とを備えたものを使用する。
More preferably , as described in claim 3,
A large cross-sectional area portion formed at both axial end portions as the pins and insertable into the insertion holes, and provided between the large cross-sectional area portions in series in the axial direction. Also, those having a small cross-sectional area portion and an interrupted area portion are used.

【0018】尚、本発明に使用する直鎖型PPSは、重
合時に架橋剤や分岐剤などが添加されていない。又、重
合後、高温下での熱処理を受けていない。この為、分子
中に架橋や分岐構造を含まない高重合体である。この様
な直鎖型PPSは、特開昭61−7332号公報、或は
特開昭61−66720号公報等に開示された製造方法
により製造されるものが、好ましく使用できる。又、こ
の方法により造られる直鎖型PPSの分子量の尺度とな
る溶融粘度は、樹脂が310℃、剪断速度200(秒)
-1で測定した場合で、500ポアズ以上である。この様
なPPSとしては、例えば、呉羽化学工業社製の「フォ
ートロンKPS(登録商標)」を使用できる。
The linear PPS used in the present invention has no crosslinking agent or branching agent added during polymerization. Further, after the polymerization, it was not subjected to heat treatment at high temperature. Therefore, it is a high polymer that does not contain a cross-linking or branching structure in the molecule. As such a linear PPS, those produced by the production method disclosed in JP-A-61-7332 or JP-A-61-66720 can be preferably used. The melt viscosity, which is a measure of the molecular weight of the linear PPS produced by this method, has a resin of 310 ° C. and a shear rate of 200 (seconds).
It is 500 poises or more when measured at -1 . As such a PPS, for example, "Fortron KPS (registered trademark)" manufactured by Kureha Chemical Industry Co., Ltd. can be used.

【0019】又、本発明に使用するアラミド繊維として
は、例えば、デュポン社製のケブラー或はノーメック
ス、帝人社製のテクノーラ或はコーネックス等の高耐熱
性のアラミド繊維を例示できる。又、繊維状充填材であ
るアラミド繊維の形態としては、長さが10mm以下(好
ましくは5mm以下)で、直径が0.1〜20μmである
事が望ましい。この理由は、繊維状充填材であるアラミ
ド繊維と直鎖型PPSとを溶融混練し、更に射出成形す
る作業を容易に行なえる様にする為である。又、アラミ
ド繊維と直鎖型PPSとの親和性を向上させ、得られる
ピンの品質を向上させる為には、上記アラミド繊維をカ
ップリング剤等で処理したり、或はアラミド繊維と直鎖
型PPSとを配合する際に、上記カップリング剤等を直
接添加する事が望ましい。
Examples of the aramid fiber used in the present invention include highly heat resistant aramid fibers such as Kevlar or Nomex manufactured by DuPont and Technora or Conex manufactured by Teijin. In addition, the fibrous filler Der
Is in the form of that aramid fibers, in the 10mm or less in length (preferably 5mm or less), it is desirable that a diameter of 0.1 to 20 [mu] m. The reason for this is that the fibrous filler , Alami
This is because the work of melt-kneading the dough fiber and the straight-chain PPS and further performing injection molding can be easily performed. Also, Arami
In order to improve the affinity between the dough fiber and the linear PPS and improve the quality of the obtained pin, the aramid fiber is treated with a coupling agent or the like, or the aramid fiber and the linear PPS are treated. It is desirable to directly add the above-mentioned coupling agent or the like when blending.

【0020】更に、本発明に使用する球状の等方性無定
形炭素粒子の形態としては、直径が0.1〜50μm で
ある事が望ましい。この理由は、直鎖型PPSと溶融混
練した場合に於ける分散性や射出成形の容易性、更には
成形品であるピンの平滑性を確保する為である。更に、
これら球状の等方性無定形炭素粒子と直鎖型PPSとの
親和性の向上の為に、これら球状の等方性無定形炭素粒
をカップリング剤等で処理したり、或はこれら球状の
等方性無定形炭素粒子と直鎖型PPSとを配合する際
に、上記カップリング剤等を直接添加する事が望まし
い。尚、球状の等方性無定形炭素粒子は、フェノール類
を用いて、例えば特開昭58−17114号公報及び特
開昭57−177011号公報に開示の方法により製造
される球状のフェノール硬化物粒子を、不活性雰囲気中
で500℃以上の温度で焼成し炭化させて得られる、平
均粒径が1〜30μm の粒子である。この様な粒子とし
ては、鐘紡社製の「ベルパール−C(登録商標)」があ
る。
Furthermore, the spherical isotropic indeterminate used in the present invention
The shape of the shaped carbon particles is 0.1-50 μm in diameter.
Something is desirable. The reason for this is to ensure the dispersibility in the case of melt-kneading with the linear PPS, the ease of injection molding, and the smoothness of the pin which is a molded product. Furthermore,
In order to improve the affinity between these spherical isotropic amorphous carbon particles and linear PPS, these spherical isotropic amorphous carbon particles are used.
Or process the child with a coupling agent or the like, or of these spherical
When the isotropic amorphous carbon particles and the linear PPS are blended, it is desirable to directly add the coupling agent or the like. Incidentally, the spherical isotropic amorphous carbon particles are spherical phenol cured products produced by the method disclosed in, for example, JP-A-58-17114 and JP-A-57-177011, using phenols. It is a particle having an average particle diameter of 1 to 30 μm, which is obtained by baking the particle at a temperature of 500 ° C. or higher in an inert atmosphere and carbonizing. An example of such particles is "Bellpearl-C (registered trademark)" manufactured by Kanebo.

【0021】更に、本発明の直鎖型PPSに繊維状充填
材であるアラミド繊維と粒子状充填 材である球状の等方
性無定形炭素粒子とを配合する場合の配合割合は、直鎖
型PPSを80〜98重量%、アラミド繊維を1〜10
重量%、等方性無定形炭素粒子を1〜10重量%とす
る。この理由は次の通りである。繊維状充填材であるア
ラミド繊維は、衝撃強度、圧縮強度等の機械的性質を向
上させる為に添加するが、このアラミド繊維の添加量が
1重量%未満の場合には、これら機械的性質の向上は殆
ど期待できない。これに対して、上記アラミド繊維を1
0重量%を越えて添加した場合には、このアラミド繊維
を添加した直鎖型PPSの成形性が悪化し、更に圧縮破
壊歪みが低下すると共に圧縮永久歪みの増加を招来す
る。そこで、上記アラミド繊維の添加量を1〜10重量
%の範囲とした。又、粒子状充填材である等方性無定形
炭素粒子は耐摩耗性を向上させる為に添加するが、この
等方性無定形炭素粒子の添加量が1重量%未満の場合に
は、耐摩耗性の向上は殆んど期待できない。これに対し
て、上記等方性無定形炭素粒子を10重量%を越えて添
加しても耐摩耗性の顕著な改良は見られず、むしろ成形
性の悪化や圧縮破壊歪みの低下を招来してしまう。そこ
で、上記等方性無定形炭素粒子の添加量を1〜10重量
%の範囲とした。
Further, the linear PPS of the present invention is filled with fibrous material.
Aramid fiber as a material and spherical isotropic as a particulate filler
The blending ratio when blending with the amorphous carbon particles is 80 to 98% by weight of linear PPS and 1 to 10 of aramid fiber .
%, And the isotropic amorphous carbon particles are 1 to 10% by weight. The reason for this is as follows. A is a fibrous filler
The ramid fiber is added to improve mechanical properties such as impact strength and compressive strength. However, when the amount of the aramid fiber added is less than 1% by weight, improvement of these mechanical properties can hardly be expected. On the other hand, 1 part of the above aramid fiber
If it is added in an amount of more than 0% by weight, the moldability of the linear PPS containing the aramid fiber is deteriorated, the compression fracture strain is further lowered, and the compression set is increased. Therefore, the amount of the aramid fiber added is set within the range of 1 to 10% by weight. Also, isotropic amorphous that is a particulate filler
Carbon particles are added to improve wear resistance.
When the amount of the isotropic amorphous carbon particles added is less than 1% by weight, improvement in wear resistance can hardly be expected. On the other hand, even if the above-mentioned isotropic amorphous carbon particles are added in an amount of more than 10% by weight, no remarkable improvement in wear resistance is observed, but rather deterioration in formability and reduction in compression fracture strain are caused. Will end up. Therefore, the amount of the isotropic amorphous carbon particles added is set within the range of 1 to 10% by weight.

【0022】尚、本発明の目的を損なわない範囲で、必
要に応じて上記以外の各種充填材或は充填剤、更には各
種安定剤を配合する事もできる。但し、一般にその添加
量は、合計でも全量の10重量%以下が望ましい。この
様な充填材(剤)や安定剤としては、有機充填材、無機
充填材、靭性改良材(例えばエラストマー)、酸化防止
剤、紫外線吸収剤、光保護剤、耐熱安定剤、難燃剤、帯
電防止剤、過酸化物分解剤、流動性改良剤、非粘着性付
与剤、離型剤、増核剤、可塑剤、固体潤滑剤、顔料、染
料等が存在する。
If necessary, various fillers or fillers other than those mentioned above, and further various stabilizers may be blended within the range not impairing the object of the present invention. However, it is generally desirable that the total amount thereof be 10% by weight or less of the total amount. Such fillers (agents) and stabilizers include organic fillers, inorganic fillers, toughness improvers (e.g. elastomers), antioxidants, UV absorbers, light protectors, heat stabilizers, flame retardants, electrostatic charge There are inhibitors, peroxide decomposers, fluidity improvers, non-tackifiers, release agents, nucleating agents, plasticizers, solid lubricants, pigments, dyes and the like.

【0023】更に、本発明の自在継手を構成するピンの
組成物に使用する原材料の配合方法は、特に限定されな
い。例えば、予め直鎖型PPS、アラミド繊維、球状の
等方性無定形炭素粒子等の原料を、ヘンシェルミキサ、
リボンブレンダ、タンブラーミキサ等の乾式混合機で予
備混合した後に、溶融混合機へ供給する方法が採用でき
る。溶融混合機としては、単軸または二軸押出機、混合
ロール、加圧ニーダ、バンバリーミキサ、ブラベンダプ
ラストグラフ等、任意の装置を使用できる。溶融混合し
た材料は例えばペレット状にし、通常のスクリュウイン
ライン式等の射出成形機等で、自在継手のピンとしての
所定の形状に成形する。又、成形条件は特に限定され
ず、直鎖型PPSの通常の成形条件で実施すれば良い。
Furthermore, the method of blending the raw materials used in the composition of the pin constituting the universal joint of the present invention is not particularly limited. For example, linear PPS, aramid fiber, spherical
A raw material such as isotropic amorphous carbon particles , Henschel mixer,
It is possible to employ a method of premixing with a dry mixer such as a ribbon blender or a tumbler mixer, and then supplying the mixture to a melt mixer. As the melt mixer, any device such as a single-screw or twin-screw extruder, a mixing roll, a pressure kneader, a Banbury mixer, and a Brabender plastograph can be used. The melt-mixed material is formed into pellets, for example, and is molded into a predetermined shape as a pin of a universal joint by an ordinary screw-in-line type injection molding machine or the like. Further, the molding conditions are not particularly limited, and it may be carried out under normal molding conditions for the linear PPS.

【0024】[0024]

【作用】上述の様に構成される本発明の自在継手が、同
一直線上に存在しない1対のシャフト同士の間で回転力
を伝達する作用、並びに各ピンが挿入孔の奥端と軸受カ
ップの内面との間で突っ張る事により、シールリングの
圧縮量を適性範囲に規制する作用は、前述した従来の自
在継手と同様である。
The universal joint of the present invention having the above-described structure serves to transmit a rotational force between a pair of shafts that do not exist on the same straight line, and each pin has a rear end of the insertion hole and a bearing cup. The effect of restricting the compression amount of the seal ring within an appropriate range by stretching the seal ring with the inner surface is similar to that of the conventional universal joint described above.

【0025】特に、本発明の自在継手を構成するピン
は、150℃以上の耐熱性を有し、且つ靭性に優れ、高
温雰囲気での圧縮永久歪みが小さい直鎖型PPSを使用
している為、急激な圧縮荷重や過大な圧縮歪みが作用し
た場合でも破損する事がない。又、永久変形が小さい
為、自在継手の組立時に、各ピンの圧縮量に差が生じて
も、組立を完了した状態では、ピンの突出面と軸受カッ
プの底面との間に隙間が生じにくい。更に、繊維状充填
材であるアラミド繊維と粒子状充填材である球状の等方
性無定形炭素粒子とを添加しているので、靭性を低下さ
せる事なく、圧縮強度、耐衝撃性、耐摩耗性の何れもが
極めて優れたものとなる。
In particular, the pin constituting the universal joint of the present invention uses linear PPS having heat resistance of 150 ° C. or more, excellent toughness, and small compression set in a high temperature atmosphere. Even if a sudden compressive load or excessive compressive strain acts, it will not be damaged. Also, since the permanent deformation is small, even if there is a difference in the compression amount of each pin during the assembly of the universal joint, a gap is unlikely to be created between the protruding surface of the pin and the bottom surface of the bearing cup when the assembly is completed. . Furthermore, fibrous filling
Aramid fiber as a material and spherical isotropic as a particulate filler
Since the amorphous carbon particles are added , all of the compressive strength, impact resistance and abrasion resistance are extremely excellent without lowering the toughness.

【0026】更に、上記各ピンを大断面積部と中断面積
部と小断面積部とを直列に配置して構成した場合には、
これら各ピンの圧縮荷重と圧縮量との関係を滑らかにで
きる。即ち、これら各ピンに圧縮荷重が加わると、先ず
小断面積部が変形し、次いで中断面積部が変形する。中
断面積部が変形し始める時点で、上記1対のピンは何れ
も、或る程度圧縮されている。中断面積部の変形が開始
される以前に、変形し易い小断面積部で直鎖型PPSの
降伏点を通過するが、小断面積部が十分に圧縮された後
に、上記1対のピンの中断面積部は、更に圧縮荷重を加
えられる事で圧縮され始める。言い換えれば、小断面積
部の降伏後、中断面積部の降伏が引き続いて発生する。
この結果、ピン全体としての見掛け上の特性は、降伏点
が存在しない様な、滑らかな特性となり、上記1対のピ
ンの中断面積部の圧縮量に大きな差を生じる事がなくな
る。
Furthermore, in the case where each of the above pins is constructed by arranging a large cross-sectional area portion, an interruption area portion and a small cross-sectional area portion in series,
The relationship between the compression load and the compression amount of each of these pins can be smoothed. That is, when a compressive load is applied to each of these pins, the small cross-sectional area portion is first deformed, and then the interrupted area portion is deformed. Each of the pair of pins has been compressed to some extent at the time when the interrupted area portion begins to deform. Before the deformation of the interrupted area portion is started, the small cross-sectional area portion, which is easily deformed, passes through the yield point of the straight-chain type PPS, but after the small cross-sectional area portion is sufficiently compressed, The suspended area portion starts to be compressed by further applying a compressive load. In other words, after the breakdown of the small cross-sectional area portion, the breakdown of the interrupted area portion continues to occur.
As a result, the apparent characteristics of the pins as a whole are smooth characteristics such that there is no yield point, and there is no large difference in the amount of compression of the interrupted area portions of the pair of pins.

【0027】[0027]

【実施例】先ず、本発明の効果を確認する為に行なった
実験に就いて説明する。尚、本発明は、下述する実施例
に限定されるものではない。実施例及び比較例に用いた
原材料は次の通りである。各原材料名の後に記載した括
弧内の符号は、当該原材料の略号である。 ・直鎖型PPS(L−PPS):呉羽化学工業社製の
「フォートロン(登録商標)KPS W−214」 ・分岐型PPS(B−PPS):フィリップス石油社製
の「ライトン(登録商標)P4」 ・ポリアセタールコポリマー(POM):ポリプラスチ
ックス社製の「ジュラコン(登録商標)M90−44」 ・ナイロン66(PA66):東レ社製の「アミラン
(登録商標)3001−N」 ・ガラス繊維(GF):旭ファイバーグラス社製の「M
F−KAC(直径13μm、長さ50〜120μm)」 ・アラミド繊維(ArA):帝人社製の「コーネックス
(登録商標)カットファイバー(直径2デニール、長さ
0.6mm)」 ・球状の等方性無定形炭素粒子(BP):鐘紡社製の
「ベルパール(登録商標)C−800(直径1〜30μ
m )」 ・黒鉛(Gr):中越黒鉛社製の「BF」
EXAMPLES First, an experiment conducted to confirm the effect of the present invention will be described. The present invention is not limited to the embodiments described below. The raw materials used in Examples and Comparative Examples are as follows. The code in parentheses after each raw material name is the abbreviation of the raw material. -Linear PPS (L-PPS): "Fortron (registered trademark) KPS W-214" manufactured by Kureha Chemical Industry Co., Ltd.-Branched PPS (B-PPS): "Ryton (registered trademark)" manufactured by Philips Oil Co., Ltd. P4 "-Polyacetal copolymer (POM):" Duracon (registered trademark) M90-44 "manufactured by Polyplastics Co., Ltd.-Nylon 66 (PA66):" Amilan (registered trademark) 3001-N "manufactured by Toray Co., Ltd.-Glass fiber ( GF): “M” manufactured by Asahi Fiber Glass Co., Ltd.
F-KAC (diameter 13 μm, length 50 to 120 μm) ”-Aramid fiber (ArA):“ Conex (registered trademark) cut fiber (diameter 2 denier, length 0.6 mm) ”manufactured by Teijin Ltd. Amorphous amorphous carbon particles (BP): "Bellpearl (registered trademark) C-800 (diameter 1 to 30 µm, manufactured by Kanebo Co., Ltd.
m) ”・ Graphite (Gr):" BF "manufactured by Chuetsu Graphite Co., Ltd.

【0028】上記原材料を次の表1に示す様な割合で混
合する事により、本発明の実施例に就いて3種類、本発
明から外れる比較例に就いて9種類、合計12種類の試
料を作成した。
By mixing the above raw materials in the proportions shown in the following Table 1, a total of 12 types of samples, 3 types for the examples of the present invention and 9 types for the comparative examples deviating from the present invention, were obtained. Created.

【0029】[0029]

【表1】 [Table 1]

【0030】上記表1に記載した実施例1〜3及び比較
1〜9を、三井三池製作所社製のヘンシェルミキサで
予備混合した後、池貝鉄工社製の2軸押出機(PCM−
30)を用い混練押し出して、ストランドとした。そし
て、このストランドを、押し出し直後に連続的に切断し
て、上記表1に記載した組成を有するペレットを得た。
そして、このペレットを、テクノプラス社製の射出成形
機(MODEL SIM−4749)を用いて、次述す
る各試験方法に応じた形状及び寸法を有する試験片に成
形した。そして、得られた試験片の各種物性を、以下の
試験方法に基づいて測定した。この測定結果を、組成と
共に上記表1に記載した。
After premixing Examples 1 to 3 and Comparative Examples 1 to 9 shown in Table 1 above with a Henschel mixer manufactured by Mitsui Miike Seisakusho, a twin-screw extruder (PCM-
30) and kneaded and extruded to form a strand. Then, this strand was continuously cut immediately after extrusion to obtain pellets having the composition shown in Table 1 above.
Then, the pellets were molded into a test piece having a shape and a size according to each test method described below by using an injection molding machine (MODEL SIM-4749) manufactured by Technoplus. And various physical properties of the obtained test piece were measured based on the following test methods. The measurement results are shown in Table 1 above together with the composition.

【0031】耐熱老化試験 表1に記載した組成を有する12種類の原材料により、
ASTM I 型ダンベル状引張試験片を作製し、15
0℃の熱風循環式恒温槽中で2000時間の耐熱老化試
験を行なった。そしてASTM D638に基づき、上
記各試験片引張強度と引張伸びとを測定し、引張強度及
び引張伸びのそれぞれに就いて、保持率を求めた。その
結果を、表1の物性の欄中、第1段目と第2段目とに記
載した。尚、この表1に記載した結果の値は、次式によ
り算出した。 保持率(%)={(試験後の物性値)/(初期の物性
値)}×100
Heat Aging Test Using 12 kinds of raw materials having the composition shown in Table 1,
ASTM I type dumbbell tensile test pieces were prepared and
A heat aging test was performed for 2000 hours in a hot air circulation type constant temperature bath at 0 ° C. Based on ASTM D638, the tensile strength and tensile elongation of each test piece were measured, and the retention rate was calculated for each of the tensile strength and tensile elongation. The results are shown in the first column and the second column in the column of physical properties in Table 1. The values of the results shown in Table 1 were calculated by the following formula. Retention rate (%) = {(physical property value after test) / (initial physical property value)} × 100

【0032】衝撃試験 上記12種類の原材料により、I−zod衝撃試験片を
作製し、ASTM D256に基づきI−zod衝撃強
度を測定した。測定結果を、表1の物性の欄中、第3段
目に記載した。
Impact Test I-zod impact test pieces were prepared from the above 12 kinds of raw materials, and the I-zod impact strength was measured according to ASTM D256. The measurement results are shown in the third column of the physical properties column of Table 1.

【0033】圧縮破壊歪み試験 上記12種類の原材料により、直径12.7mm、長さ2
5.4mmの円柱状試験片を作製し、ASTM D695
に基づき圧縮破壊歪みを測定した。測定結果を、表1の
物性の欄中、第4段目に記載した。尚、この表1に記載
した試験の結果は、次式により算出した。 圧縮破壊歪み(%)={25.4−(圧縮破壊時の試験片長
さ)/25.4}×100
Compressive Fracture Strain Test Using the above 12 kinds of raw materials, diameter 12.7 mm, length 2
A cylindrical test piece of 5.4 mm was prepared, and ASTM D695
The compressive fracture strain was measured based on. The measurement results are shown in the fourth column of the physical properties column of Table 1. The results of the tests shown in Table 1 were calculated by the following formula. Compressive fracture strain (%) = {25.4- (test piece length at compressive fracture) /25.4} x 100

【0034】圧縮永久歪み試験 上記12種類の原材料により、直径12.7mm、長さ2
5.4mmの円柱状試験片を作製した。そして、各試験片
に、長さ方向に10%の圧縮歪みを負荷した状態のま
ま、150℃の熱風循環式恒温槽中に1時間放置した
後、各試験片を取り出して、30分間経過後の試験片の
長さを測定し、圧縮永久歪みを求めた。測定結果を、表
1の物性の欄中、第5段目に記載した。尚、表1に記載
した結果は、次式により算出した。尚、2.54なる数
値は、10%の圧縮歪みに相当する。 圧縮永久歪み(%)={(25.4−試験後の試験片長さ)
/2.54}×100
Compression set test Using the above 12 kinds of raw materials, diameter 12.7 mm, length 2
A 5.4 mm cylindrical test piece was prepared. Then, each test piece was left in a hot air circulation type constant temperature bath at 150 ° C. for 1 hour while being loaded with 10% compressive strain in the lengthwise direction, and then each test piece was taken out and after 30 minutes passed. The length of each test piece was measured to determine the compression set. The measurement results are shown in the fifth column of the physical properties column of Table 1. The results shown in Table 1 were calculated by the following formula. The numerical value of 2.54 corresponds to a compressive strain of 10%. Compression set (%) = {(25.4-length of test piece after test)
/2.54} x 100

【0035】摩擦摩耗試験 上記12種類の原材料により、直径30mm、厚さ3mmの
円盤状試験片と、内径20mm、外径25.6mm、高さ1
5mmの中空円筒状相手材試験片(S45C、摺動面粗さ
0.8Ra、硬さHRC20)とを作製した。これら両
試験片に耐熱グリース(日本石油社製ENSグリース)
を薄く塗布して、鈴木式摩擦摩耗試験機により、滑り速
度毎分20m 、荷重80kgf/cm2 、雰囲気温度150℃
の条件で5時間運転した後、摩擦係数及び比摩耗量(mm
3/kgf・km)を求めた。測定結果を、表1の物性の欄
中、第6〜7段目に記載した。
Friction and abrasion test A disc-shaped test piece having a diameter of 30 mm and a thickness of 3 mm and an inner diameter of 20 mm, an outer diameter of 25.6 mm and a height of 1 were prepared from the above 12 kinds of raw materials.
A 5 mm hollow cylindrical mating material test piece (S45C, sliding surface roughness 0.8 Ra, hardness HRC20) was prepared. Heat resistant grease (ENS grease manufactured by Nippon Oil Co., Ltd.) on both of these test pieces
Was applied thinly, and using a Suzuki type friction and wear tester, sliding speed was 20 m / min, load was 80 kgf / cm 2 , and ambient temperature was 150 ° C.
After operating for 5 hours under the conditions, the friction coefficient and specific wear amount (mm
3 / kgf · km) was calculated. The measurement results are shown in the sixth to seventh columns in the physical properties column of Table 1.

【0036】以上に述べた各試験の結果を示した表1の
記載から明らかな様に、実施例1〜3及び比較例7〜9
は、ベース樹脂に直鎖型PPSを使用している為、良好
な耐熱老化性を示す。又、実施例1〜3及び比較例7〜
と比較例4〜6とを比較すると、実施例1〜3及び比
較例7〜9は、高温環境下で良好な耐圧縮永久歪み性を
示す。又、比較例7及び実施例1と比較例2、3とを比
較した場合、比較例7及び実施例1が衝撃強度の値が向
上している事から分る様に、同じPPSであっても、分
岐型PPSに代えて直鎖型PPSを用いる事により、靭
性が改良されている。又、実施例1〜3及び比較例7〜
と比較例1とを比較する事で、繊維状充填材と粒子状
充填材との充填量が何れも10重量%以下の範囲では良
好な圧縮特性を示すが、これらの充填量が多くなる(比
較例1は15重量%ずつ)と、圧縮特性が低下する事が
分る。更に実施例1〜3及び比較例7〜9に於いても、
繊維状充填材と粒子状充填材とを含有している実施例1
〜3及び比較例8、9は、優れた耐摩耗性を示す。特
に、実施例1〜3は、繊維状充填材として耐熱性有機繊
維であるアラミド繊維と、粒子状充填材として球状の等
方性無定形炭素粒子とを併用している為、一般的な強化
繊維であるガラス繊維や、代表的な固体潤滑材である非
球状の黒鉛を添加したものよりも優れた耐摩耗性を示す
事が分る。
As is clear from the description of Table 1 showing the results of the above-mentioned tests, Examples 1 to 3 and Comparative Examples 7 to 9 were obtained.
Shows good heat aging resistance because it uses linear PPS as the base resin. Moreover, Examples 1-3 and Comparative Examples 7-
Comparing 9 with Comparative Examples 4-6, Examples 1-3 and the ratio
Comparative Examples 7 to 9 exhibit good compression set resistance in a high temperature environment. Further, when comparing Comparative Example 7 and Example 1 with Comparative Examples 2 and 3, it can be seen from Comparative Example 7 and Example 1 that the impact strength values are improved, and thus the same PPS is obtained. Also, the toughness is improved by using the linear PPS instead of the branched PPS. Moreover, Examples 1-3 and Comparative Examples 7-
By comparing 9 with Comparative Example 1, good compression characteristics are exhibited when the filling amounts of the fibrous filler and the particulate filler are both 10% by weight or less, but the filling amount increases. (15% by weight in Comparative Example 1), it can be seen that the compression characteristics deteriorate. Furthermore, also in Examples 1 to 3 and Comparative Examples 7 to 9 ,
Example 1 containing a fibrous filler and a particulate filler
3 and Comparative Examples 8 and 9 show excellent wear resistance. In particular, Examples 1 to 3 use aramid fibers, which are heat-resistant organic fibers, as the fibrous filler and spherical isotropic amorphous carbon particles as the particulate filler, so that general reinforcement is achieved. It can be seen that it exhibits better wear resistance than glass fiber, which is a fiber, and non-spherical graphite, which is a typical solid lubricant, is added.

【0037】上述の様に、本発明の自在継手に組み込む
ピンを構成する組成物は、直鎖型PPSの持つ耐熱性及
び靭性を損なう事なく、優れた圧縮特性、耐摩耗性を有
する。この為、この組成物をピンに成形し、自在継手に
組込んだ場合に、高温雰囲気下での圧縮永久歪みが小さ
く、急激な圧縮荷重が作用した場合や、シールリングの
圧縮量を適正にする為、次述する具体的構造の様に、ピ
ンに小断面積部を設け、その結果このピンの一部の圧縮
量が過大となった場合でも、この小断面積部が破損する
事がない。又、ピンの永久変形が小さく、しかも耐摩耗
性が良好となる為、高温雰囲気下での耐久性が向上す
る。従って、エンジンルーム内等の高温雰囲気下で長期
間使用される自在継手の耐久性及び信頼性の向上を図れ
る。
As described above, the composition of the pin incorporated in the universal joint of the present invention has excellent compression characteristics and wear resistance without impairing the heat resistance and toughness of the linear PPS. Therefore, when this composition is molded into a pin and assembled in a universal joint, the compression set under a high temperature atmosphere is small, and when a sudden compression load is applied or the compression amount of the seal ring is properly adjusted. Therefore, as shown in the concrete structure below, the pin is provided with a small cross-sectional area, and even if the amount of compression of a part of this pin becomes excessive, this small cross-sectional area may be damaged. Absent. Moreover, since the permanent deformation of the pin is small and the wear resistance is good, the durability in a high temperature atmosphere is improved. Therefore, it is possible to improve the durability and reliability of the universal joint that is used for a long time in a high temperature atmosphere such as in the engine room.

【0038】次に、本発明の自在継手の具体的構造に関
する実施例に就いて説明する。尚、本発明は、下述する
実施例に示した構造で実施する事が、最も良好な結果を
得られるが、ピンの構成材料が特許請求の範囲に記載し
た組成を満たす限り、必ずしも図示の実施例に限定され
るものではない。図1〜4は、具体的構造に関する第一
実施例を示している。尚、具体的構造に関する実施例の
特徴は、ピン16a、16aとして直鎖型PPSを主体
とする組成物を使用し、しかも十字軸8の軸方向反対位
置に設けた1対のシールリング14、14の圧縮量を何
れも適性範囲に納めるべく、上記各ピン16a、16a
の形状を工夫した点にある。その他の部分の構造及び作
用は、前述した従来構造と同じである為、同等部分には
同一符号を付して重複する説明を省略若しくは簡略化
し、以下、実施例の特徴部分を中心に説明する。尚、図
1に示した自在継手6は防振構造を備えていないが、前
記図11に示す様に防振構造を持たせる事は自由であ
る。
Next, an example of a specific structure of the universal joint of the present invention will be described. It should be noted that the present invention provides the best results by carrying out the structure shown in the embodiments described below, but as long as the constituent material of the pin satisfies the composition described in the claims, it is not necessarily shown. It is not limited to the examples. 1 to 4 show a first embodiment relating to a specific structure. The feature of the embodiment relating to the specific structure is that the pins 16a, 16a are composed mainly of straight-chain PPS, and a pair of seal rings 14 are provided at positions opposite to the cross shaft 8 in the axial direction. Each of the pins 16a, 16a so that the compression amount of each of the fourteen is within an appropriate range.
The point is that the shape of the is devised. Since the structure and operation of the other parts are the same as the conventional structure described above, the same parts are designated by the same reference numerals to omit or simplify the overlapping description, and the characteristic parts of the embodiment will be mainly described below. . Although the universal joint 6 shown in FIG. 1 does not have a vibration isolation structure, it is free to have a vibration isolation structure as shown in FIG.

【0039】直鎖型PPS製のピン16a、16aの軸
方向(図1〜3の上下方向)両端部には、円柱形の大断
面積部21、21を形成している。この大断面積部2
1、21の外径は、十字軸8を構成する4本の軸部1
1、11の端面中央部に開口した挿入孔15、15の内
径と同じか、この内径よりも僅かに小さくしている。従
って上記各大断面積部21、21は、上記各挿入孔1
5、15に挿入自在である。又、上記各ピン16a、1
6aの軸方向中央部には、やはり円柱状の小断面積部2
2を形成している。そして、この小断面積部22の軸方
向両端と上記各大断面積部21、21との間に、それぞ
れ中断面積部23、23を設けている。
Large linear cross-section areas 21 and 21 are formed on both ends of the linear PPS pins 16a and 16a in the axial direction (vertical direction in FIGS. 1 to 3). This large cross-section area 2
The outer diameters of 1 and 21 are the four shaft portions 1 forming the cross shaft 8.
The inner diameters of the insertion holes 15 and 15 opened at the central portions of the end faces 1 and 11 are the same as or slightly smaller than the inner diameters. Thus each large-sectional area portion 21 and 21, each of the insertion holes 1
It can be inserted into 5 and 15. Also, the pins 16a, 1
At the central portion in the axial direction of 6a, a small cross-sectional area portion 2 having a cylindrical shape is also provided.
Forming 2. Further, interrupted area portions 23 and 23 are provided between both ends in the axial direction of the small sectional area portion 22 and the large sectional area portions 21 and 21, respectively.

【0040】この様な形状を有する上記各ピン16a、
16aは、それぞれ各軸部11、11に形成した挿入孔
15、15に挿入し、これら各挿入孔15、15の奥端
と各軸受カップ10、10の底面との間で突っ張らせ
る。図示の実施例の場合には、上記各中断面積部23、
23から上記各大断面積部21、21に亙ってリブ2
0、20を形成している。従って、上記各挿入孔15、
15内に挿入した上記各ピン16a、16aが、上記各
軸受カップ10、10の装着前に、不用意に脱落する事
はない。又、上記各ピン16a、16aを構成する直鎖
型PPSは、分岐型PPSに比べて優れた衝撃強度(靭
性)を有するので、上記各ピン16a、16aを挿入孔
15、15に挿入する際に、上記小断面積部が折損する
事はない。
Each of the pins 16a having such a shape,
16a are inserted into the insertion holes 15 and 15 formed in the shaft portions 11 and 11, respectively, and are stretched between the rear ends of the insertion holes 15 and 15 and the bottom surfaces of the bearing cups 10 and 10. In the case of the illustrated embodiment, each of the above-mentioned interruption area portions 23,
The rib 2 extends from 23 to the large cross-section areas 21 and 21.
0 and 20 are formed. Therefore, the insertion holes 15,
The pins 16a and 16a inserted into the shaft 15 do not accidentally fall off before the bearing cups 10 and 10 are mounted. Further, linear PPS constituting the respective pin 16a, and 16a, so has an excellent impact strength (toughness) as compared to branched PPS, when inserting each pin 16a, and 16a into the insertion hole 15, 15 In addition, the small cross-section area is not broken.

【0041】上述の様なピン16a、16aを含んで構
成される本実施例の自在継手の場合には、これら各ピン
16a、16aの圧縮荷重と圧縮量との関係を滑らかに
できて、軸方向反対側に設けられた1対のピン16a、
16aの圧縮量をほぼ均等にできる。即ち、ヨーク7
a、7bにそれぞれ1対ずつ形成した円孔9、9内への
上記各軸受カップ10、10の押し込み作業に伴って、
上記各ピン16a、16aに圧縮荷重が加わると、先
ず、上記小断面積部22が圧縮変形する。そして、この
小断面積部22が或る程度圧縮変形し切った状態で、上
記各中断面積部23、23が圧縮変形を開始する。尚、
小断面積部22が圧縮変形している間に、上記中断面積
部23、23も僅かに圧縮変形するが、小断面積部22
の変形量に比べれば遥かに少ない。
In the case of the universal joint of this embodiment including the pins 16a and 16a as described above, the relationship between the compression load and the compression amount of each of the pins 16a and 16a can be made smooth, and A pair of pins 16a provided on opposite sides of the direction,
The compression amount of 16a can be made substantially equal. That is, the yoke 7
With the work of pushing the bearing cups 10 and 10 into the circular holes 9 and 9 formed in the a and 7b, respectively,
When a compressive load is applied to each of the pins 16a, 16a, first, the small cross-sectional area portion 22 is compressed and deformed. Then, in the state in which the small cross-sectional area portion 22 has been compressed and deformed to some extent, the interrupted area portions 23, 23 start compressive deformation. still,
While the small cross-sectional area portion 22 is compressed and deformed, the interrupted area portions 23 and 23 are also slightly compressed and deformed.
It is far less than the amount of deformation.

【0042】従って、上記各中断面積部23、23が実
質的に圧縮変形し始める時点では、上記1対のピン16
a、16aは何れも、上記小断面積部22の圧縮変形に
より、或る程度圧縮されている。尚、この様に上記各中
断面積部23、23の圧縮変形が開始される以前に、上
記小断面積部22で直鎖型PPSの降伏点を通過する。
尚、上記各中断面積部23、23の圧縮変形が開始され
る段階で、上記各ピン16a、16a全体としての圧縮
量は未だ使用範囲に達しない。
Therefore, at the time when each of the interrupted area portions 23, 23 starts to be substantially compressed and deformed, the pair of pins 16 is formed.
Both a and 16a are compressed to some extent by the compressive deformation of the small cross-sectional area portion 22. Incidentally, before the compression deformation of each of the interrupted area portions 23, 23 is started in this way, the small cross-sectional area portion 22 passes through the yield point of the linear PPS.
It should be noted that, at the stage when the compression deformation of each of the interrupted area portions 23, 23 is started, the compression amount of each of the pins 16a, 16a as a whole has not reached the use range.

【0043】言い換えれば、上記各中断面積部23、2
3が実質的に圧縮変形を開始する時点で上記小断面積部
22は、殆ど圧縮変形し切っている。従って、上記1対
のピン16a、16aの小断面積部22の降伏点に差が
あっても、1対の軸受カップ10、10の押し込み完了
時点で、この差が上記各ピン16a、16a全体の圧縮
量に影響を及ぼす事は殆どない。
In other words, each of the interrupted area portions 23, 2
The small cross-sectional area portion 22 is almost completely compressed and deformed at the time point 3 is substantially compressed and deformed. Accordingly, the pair of pins 16a, even if there is a difference in yield point of the small cross-sectional area portion 22 of the 16a, a pair of in pushing completion of the bearing cups 10, 10, the difference is above the pins 16a, the overall 16a Has almost no effect on the amount of compression.

【0044】上記小断面積部22が圧縮変形し切った後
に、上記1対のピン16a、16aの各中断面積部2
3、23は、上記1対の軸受カップ10、10の押し込
み作業続行に伴って更に圧縮荷重を加えられる事で、実
質的に圧縮され始める。そして、上記1対のピン16
a、16aは、それぞれの小断面積部22に加えて各中
断面積部23、23が圧縮される事で、それぞれ全体と
して所定量ずつ圧縮される。即ち、上記各ピン16a、
16aは、上記小断面積部22部分での圧縮量に、上記
各中断面積部23、23部分での圧縮量を加えた分だ
け、全体として圧縮される。
After the small cross-sectional area portion 22 is completely compressed and deformed, the interrupted area portions 2 of the pair of pins 16a, 16a are formed.
When the compression work is further applied to the bearings 3 and 23 as the pair of bearing cups 10 and 10 are continuously pushed, the bearings 3 and 23 are substantially compressed. Then, the pin 16 of the pair
By compressing the interruption area portions 23, 23 in addition to the small cross-sectional area portions 22, a and 16a are respectively compressed by a predetermined amount as a whole. In other words, each of the pin 16a,
16a is compressed as a whole by the amount of compression in the small cross-sectional area portion 22 plus the amount of compression in the interrupted area portions 23, 23.

【0045】この様な、各ピン16a、16a毎の全体
としての圧縮量のうち、上記小断面積部22での圧縮量
が或る程度を占める為、上記各中断面積部23、23の
圧縮量は限られたものとなる。従って、これら各中断面
積部23、23の圧縮では降伏点を通過しないか、通過
したとしても上記1対の軸受カップ10、10の押し込
み作業の完了間際に通過するだけである。従って、上記
1対のピン16a、16aの中断面積部23、23の圧
縮量に大きな差を生じる事はない。この様に、これら1
対のピン16a、16aは、上記小断面積部22による
圧縮量を確保した状態で更に中断面積部23、23を圧
縮するので、これら各ピン16a、16aの見掛け上の
圧縮特性は、図15に実線cで示す如く、降伏点が存在
しない様な滑らかなものとなる。
Of the total compression amount of each pin 16a, 16a, the compression amount of the small cross-sectional area portion 22 occupies a certain degree, so that the compression of the interruption area portions 23, 23 is performed. The quantity will be limited. Therefore, the compression of each of the interrupted area portions 23, 23 does not pass the yield point, or even if it passes, it passes only just before the pushing operation of the pair of bearing cups 10, 10 is completed. Therefore, there is no great difference in the amount of compression of the interruption area portions 23, 23 of the pair of pins 16a, 16a. This way, these 1
Since the pair of pins 16a, 16a further compress the interrupted area portions 23, 23 in a state in which the amount of compression by the small cross-sectional area portion 22 is secured, the apparent compression characteristics of these pins 16a, 16a are as shown in FIG. As shown by the solid line c in FIG.

【0046】従って、優れた耐熱性を有する直鎖型PP
Sを使用し、しかもポリアセタール樹脂を使用した場合
と同様に、軸方向反対位置に存在する1対のピン16
a、16aの圧縮量に大きな差を生じない様にできる。
この結果、やはり軸方向反対位置に設けた1対のシール
リング14、14の圧縮量を、何れも適性範囲内に納め
る事ができる。この為、何れかのシールリング14が過
度に圧縮されて耐久性が低下したり、或は反対側のシー
ルリング14の圧縮量が不足してシール性能が損なわれ
る事がない。
Therefore, the linear PP having excellent heat resistance
As in the case of using S and polyacetal resin, a pair of pins 16 present at axially opposite positions
It is possible to prevent a large difference in the compression amounts of a and 16a.
As a result, the compression amounts of the pair of seal rings 14, 14 provided at axially opposite positions can be kept within the appropriate range. Therefore, one of the seal rings 14 will not be excessively compressed to lower the durability, or the compression amount of the seal ring 14 on the opposite side will not be insufficient and the sealing performance will not be impaired.

【0047】尚、直鎖型PPS製のピン16aの見掛け
上の圧縮特性を滑らかなものにする為には、このピン1
6aの寸法を次の様に規制すれば良い事が、本発明者の
実験により確認された。先ず、軸方向両端に形成した大
断面積部21、21同士の間隔D21を1.0とした場合
に、小断面積部22の長さ寸法L22を0.25〜0.4
の範囲に納める(L22=(0.25〜0.4)D21)。
この長さ寸法L22の絶対値は、ピン16a全体として必
要な圧縮量L0 よりも小さい(L22<L0 )。要は、上
記小断面積部22が完全に圧縮されて(それ以上圧縮す
る為には極く大きな荷重を必要とする様になって)も、
その圧縮量が上記必要な圧縮量L0 に達しない様に、上
記長さ寸法L22を規制する。又、上記小断面積部22の
軸方向両側に存在する中断面積部23、23の長さ寸法
は互いに等しくする。更に、これら各中断面積部23、
23の断面積S23を1とした場合に、上記小断面積部2
2の断面積S22を0.5〜0.7の範囲に納める(S22
=(0.5〜0.7)S23)。
In order to make the apparent compression characteristics of the linear PPS pin 16a smooth, this pin 1
It was confirmed by an experiment conducted by the present inventor that the size of 6a should be restricted as follows. First, when the interval D 21 between the large cross-sectional area portions 21 , 21 formed at both ends in the axial direction is 1.0, the length dimension L 22 of the small cross-sectional area portion 22 is 0.25 to 0.4.
Within the range (L 22 = (0.25 to 0.4) D 21 ).
The absolute value of the length dimension L 22 is smaller than the compression amount L 0 required for the pin 16a as a whole (L 22 <L 0 ). In short, even if the small cross-sectional area portion 22 is completely compressed (it requires an extremely large load to be compressed further),
The length dimension L 22 is regulated so that the compression amount does not reach the required compression amount L 0 . Further, the length dimensions of the interruption area portions 23, 23 existing on both sides in the axial direction of the small sectional area portion 22 are made equal to each other. Furthermore, each of these interruption area portions 23,
When the cross-sectional area S 23 of 23 is 1, the small cross-sectional area portion 2
The cross-sectional area S 22 of 2 is set within the range of 0.5 to 0.7 (S 22
= (0.5~0.7) S 23).

【0048】次に、図5〜7は具体的構造の第二実施例
を示している。本実施例の場合には、直鎖型PPS製の
ピン16bの小断面積部22の外周面4個所位置に、そ
れぞれが軸方向に亙る補強リブ24、24を形成してい
る。本実施例の場合には、この様な補強リブ24、24
の存在に基づき、上記ピン16bを挿入孔15に圧入す
る際に、上記小断面積部22が折れ曲がりにくくなる。
本実施例の場合には、小断面積部22の断面積は、これ
ら補強リブ24、24を含んだものとする。即ち、上記
断面積規制の式(S22=(0.5〜0.7)S23)は、
補強リブ24、24の断面積を含んだ断面積で満たす必
要がある。尚、上記補強リブ24、24の数は、ピン1
6bの機能の面からは特に規制されない。但し、補強リ
ブ24、24の数を2本又は4本とし、円周方向等間隔
に配置すれば、射出成形時にアンダーカット部分がなく
なり、単純な二つ割れの型で成形できる為、有利であ
る。その他の構成及び作用は、上述した第一実施例と同
様である。
Next, FIGS. 5 to 7 show a second embodiment having a specific structure. In the case of this embodiment, reinforcing ribs 24, 24 extending in the axial direction are formed at four positions on the outer peripheral surface of the small cross-sectional area portion 22 of the linear PPS pin 16b. In the case of the present embodiment, such reinforcing ribs 24, 24
Due to the existence of the above, when the pin 16b is press-fitted into the insertion hole 15, the small cross-sectional area portion 22 is less likely to bend.
In the case of this embodiment, the cross-sectional area of the small cross-sectional area portion 22 includes these reinforcing ribs 24, 24. That is, the above-mentioned cross-sectional area regulation formula (S 22 = (0.5 to 0.7) S 23 ) is
It is necessary to fill with a cross-sectional area including the cross-sectional areas of the reinforcing ribs 24, 24. The number of the reinforcing ribs 24, 24 is the same as that of the pin 1
There is no particular restriction on the function of 6b. However, if the number of the reinforcing ribs 24, 24 is 2 or 4, and the reinforcing ribs 24 are arranged at equal intervals in the circumferential direction, there is no undercut portion during injection molding, and it is possible to mold with a simple two-split mold, which is advantageous. is there. Other configurations and operations are similar to those of the above-described first embodiment.

【0049】次に、図8〜9は本発明の第三実施例を示
している。本実施例の場合には、直鎖型PPS製のピン
16cの小断面積部22の断面形状を正方形にしてい
る。その他の構成及び作用は、前述した第一実施例の場
合と同様である。尚、図示の各実施例は何れも、1対の
中断面積部23、23により小断面積部22を、軸方向
両側から挟んでいるが、本発明の作用効果を得る為に
は、必ずしもこの様な配置でなくても良い。要は、少な
くとも1個ずつの小断面積部22と中断面積部23と
が、両端の大断面積部21、21同士の間に、軸方向に
亙り互いに直列に設けられていれば良い。但し、図示の
実施例の様な配置にすれば、軸方向に隣り合う断面積部
同士の間の段差を少なくして、成形に伴う変形を小さく
できる等の効果がある。
Next, FIGS. 8 to 9 show a third embodiment of the present invention. In the case of this embodiment, the cross-sectional shape of the small cross-sectional area portion 22 of the linear PPS pin 16c is square. Other configurations and operations are similar to those of the above-described first embodiment. In each of the illustrated embodiments, the small cross-sectional area portion 22 is sandwiched by the pair of interrupted area portions 23, 23 from both sides in the axial direction, but this is not always necessary in order to obtain the effect of the present invention. It does not have to be such an arrangement. In short, at least one small cross-sectional area portion 22 and at least one interrupted area portion 23 may be provided in series in the axial direction between the large cross-sectional area portions 21, 21 at both ends. However, if the arrangement as in the illustrated embodiment is adopted, there is an effect that the step difference between the cross-sectional area portions adjacent to each other in the axial direction can be reduced and the deformation due to molding can be reduced.

【0050】尚、上述した各実施例の様な具体的構造に
組み込むピン16a〜16cを、例えば前記表1に比較
例2〜3として示した様な、一般的な耐熱性合成樹脂組
成物である分岐型PPSにより構成した場合には、靭性
不足により、上述の様に変形し易い小断面積部22部分
の圧縮永久歪みが過大となり、ピンの破損を招く可能性
がある。更に、ポリアセタール又はナイロン66の単体
により造った場合には、各軸受カップ10、10の底面
と上記各ピン16a〜16cの突出面19、19との滑
り接触に基づいて、突出面19、19の著しい摩耗を来
し、その結果、上記各ピン16a〜16cの突出面1
9、19と軸受カップ10、10の底面との間に隙間が
生じる可能性がある。この様な摩耗に基づく隙間が発生
した場合には、ピンが軟化して変形した場合と同様に、
がたつき等の好ましくない現象が発生する。本発明の場
合には、上記ピン16a〜16cを、優れた靱性を有す
る直鎖型PPSを主体とした組成物により構成する為、
小断面積部22を有するピンの破損を有効に防止でき
る。更に、適当な充填材を添加する事で摩耗を防止し、
摩耗に基づくがたつきの発生を防止できる。
The pins 16a to 16c incorporated into the concrete structures as in the above-mentioned respective examples are made of general heat-resistant synthetic resin compositions as shown in Table 1 as Comparative Examples 2 to 3, for example. In the case of a certain branch type PPS, due to insufficient toughness, the compression set of the small cross-section area portion 22 which is easily deformed as described above becomes excessive, which may lead to damage of the pin. Further, in the case of being made of polyacetal or nylon 66 alone, the sliding contact between the bottom surfaces of the bearing cups 10 and 10 and the protruding surfaces 19 of the pins 16a to 16c causes the protruding surfaces 19 and 19 to move. As a result, remarkable wear is caused, and as a result, the protruding surface 1 of each of the pins 16a to 16c is
There may be a gap between the bearings 9, 19 and the bottom surface of the bearing cups 10, 10. When a gap is generated due to such wear, as in the case where the pin is softened and deformed,
An undesirable phenomenon such as rattling occurs. In the case of the present invention, since the pins 16a to 16c are composed of a composition mainly composed of a linear PPS having excellent toughness,
It is possible to effectively prevent damage to the pin having the small cross-sectional area portion 22. Furthermore, wear is prevented by adding an appropriate filler,
It is possible to prevent rattling due to wear.

【0051】[0051]

【発明の効果】本発明の自在継手は、以上に述べた通り
構成され作用するので、次の〜の効果を同時に得ら
れる。 直鎖型PPS製のピンの使用により十分な耐
熱性を確保できる為、エンジンルーム内等の高温環境下
で長期間使用してもがたつき等の不具合を発生しにく
い。 シールリングの圧縮量を適正にできる為、この
シールリングの耐久性及びシール性能の確保を図れる。
組立時に十字軸を固定する等の面倒な作業を必要と
しない為、製品の歩留が向上する事と合わせて、価格の
低減を図れる。
Since the universal joint of the present invention is constructed and operates as described above, the following effects (1) to (3) can be obtained at the same time. Since sufficient heat resistance can be ensured by using the linear PPS pins, rattling and other problems are less likely to occur even after long-term use in a high temperature environment such as in an engine room. Since the amount of compression of the seal ring can be made appropriate, the durability and seal performance of this seal ring can be secured.
Since it does not require troublesome work such as fixing the cross shaft at the time of assembly, the product yield is improved and the price can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的構造の第一実施例を示す部分切
断側面図。
FIG. 1 is a partially cut side view showing a first embodiment of a specific structure of the present invention.

【図2】十字軸に一方のヨークのみを装着した状態を示
す、図1のA−A断面に相当する図。
FIG. 2 is a view corresponding to the AA cross section of FIG. 1, showing a state in which only one yoke is mounted on the cross shaft.

【図3】第一実施例に使用するピンの拡大側面図。FIG. 3 is an enlarged side view of a pin used in the first embodiment.

【図4】図3のB−B断面図。4 is a sectional view taken along line BB of FIG.

【図5】本発明の具体的構造の第二実施例を、軸受カッ
プの押し込み途中の状態で示す部分拡大断面図。
FIG. 5 is a partially enlarged cross-sectional view showing a second embodiment of the specific structure of the present invention in a state where the bearing cup is being pushed.

【図6】第二実施例に使用するピンの拡大側面図。FIG. 6 is an enlarged side view of a pin used in the second embodiment.

【図7】一部を省略して示す、図6のC−C断面図。7 is a cross-sectional view taken along the line CC of FIG. 6 with a part omitted.

【図8】本発明の具体的構造の第三実施例を示す、ピン
の拡大側面図。
FIG. 8 is an enlarged side view of the pin showing the third embodiment of the specific structure of the present invention.

【図9】一部を省略して示す、図8のD−D断面図。9 is a cross-sectional view taken along line DD of FIG. 8 with a part thereof omitted.

【図10】自在継手を組み込んだステアリング装置の斜
視図。
FIG. 10 is a perspective view of a steering device incorporating a universal joint.

【図11】従来から知られた自在継手の1例を示す部分
切断側面図。
FIG. 11 is a partially cut side view showing an example of a conventionally known universal joint.

【図12】従来の自在継手を示す、図2と同様の図。FIG. 12 is a view similar to FIG. 2, showing a conventional universal joint.

【図13】従来使用されていたピンの第1例を示す側面
図。
FIG. 13 is a side view showing a first example of a conventionally used pin.

【図14】同第2例を示す側面図。FIG. 14 is a side view showing the second example.

【図15】ピンの軸方向に加わる圧縮荷重とピンの軸方
向に亙る圧縮量との関係を示す線図。
FIG. 15 is a diagram showing the relationship between the compressive load applied in the axial direction of the pin and the amount of compression applied in the axial direction of the pin.

【符号の説明】[Explanation of symbols]

1 ステアリングホイール 2 ステアリングシャフト 3 中間シャフト 4 ステアリングギヤ 5 入力シャフト 6 自在継手 7a、7b ヨーク 8 十字軸 9 円孔 10 軸受カップ 11 軸部 12 ラジアル軸受 13 基部 14 シールリング 15 挿入孔 16、16a、16b、16c ピン 17 小径部 18 大径部 19 突出面 20 リブ 21 大断面積部 22 小断面積部 23 中断面積部 24 補強リブ 1 steering wheel 2 steering shaft 3 Intermediate shaft 4 steering gear 5 input shaft 6 universal joints 7a, 7b York 8 cross axis 9 circular holes 10 Bearing cup 11 Shaft 12 radial bearing 13 base 14 seal ring 15 insertion holes 16, 16a, 16b, 16c Pin 17 Small diameter part 18 Large diameter part 19 protruding surface 20 ribs 21 Large cross-section area 22 Small cross-section area 23 Suspended area section 24 Reinforcing rib

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−79419(JP,A) 特開 昭60−188460(JP,A) 特開 昭62−240351(JP,A) 特開 平3−287662(JP,A) 特開 平3−292366(JP,A) 実開 平3−7534(JP,U) 実開 昭57−61228(JP,U) 実公 昭64−2982(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) F16D 3/26 - 3/41 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-64-79419 (JP, A) JP-A-60-188460 (JP, A) JP-A-62-240351 (JP, A) JP-A-3- 287662 (JP, A) JP-A-3-292366 (JP, A) Actually open 3-7534 (JP, U) Actually open 57-61228 (JP, U) Actual public 64-2982 (JP, Y2) (58) Fields investigated (Int.Cl. 7 , DB name) F16D 3/26-3/41

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 それぞれが二又状に形成された1対のヨ
ークと、各ヨークの両端部に互いに同心に形成された円
孔と、互いの開口を対向させた状態で上記各円孔の内側
に内嵌固定された、有底円筒状の軸受カップと、それぞ
れが円柱状に形成された4個所の軸部を有し、各軸部を
上記各軸受カップ内に挿入された十字軸と、上記各軸受
カップの内周面と上記各軸部の外周面との間に設けられ
たラジアル軸受と、上記十字軸の基部と上記各軸受カッ
プの開口部との間に設けられたシールリングと、上記各
軸部の端面に開口する状態で上記十字軸の内側に、軸方
向に亙って形成された有底の挿入孔と、各挿入孔に挿入
されてそれぞれの一端をこの挿入孔の奥端に突き当てら
れ、それぞれの他端を上記各軸受カップの底面に突き当
てられた合成樹脂製のピンとを備えた自在継手に於い
て、これら各ピンは、80〜98重量%の直鎖型ポリフ
ェニレンサルファイド樹脂と、繊維状充填材である1
10重量%のアラミド繊維と、粒子状充填材である1
10重量%の球状の等方性無定形炭素粒子とにより構成
される事を特徴とする自在継手。
1. A pair of yokes each formed in a bifurcated shape, circular holes concentrically formed at both ends of each yoke, and the circular holes in the state where the openings are opposed to each other. A bottomed cylindrical bearing cup that is fitted in and fixed to the inside, and four shaft portions that are each formed in a cylindrical shape, and each shaft portion is a cross shaft that is inserted into each of the bearing cups. A radial bearing provided between an inner peripheral surface of each bearing cup and an outer peripheral surface of each shaft portion, and a seal ring provided between a base portion of the cross shaft and an opening portion of each bearing cup. A bottomed insertion hole formed in the axial direction inside the cross shaft while opening at the end face of each shaft portion, and one end of each insertion hole inserted into each insertion hole. Made of synthetic resin with the other end abutting against the bottom of each bearing cup. In the universal joint including the pins, each of the pins is 80 to 98 % by weight of linear polyphenylene sulfide resin and 1 to 1 which is a fibrous filler.
10% by weight of aramid fiber and particulate filler 1 to
A universal joint comprising 10% by weight of spherical isotropic amorphous carbon particles .
【請求項2】 アラミド繊維の長さが5mm以下、同じく
直径が0.1〜20μmであり、等方性無定形炭素粒子
の直径が0.1〜50μmである、請求項1に記載した
自在継手。
2. The flexible structure according to claim 1, wherein the aramid fiber has a length of 5 mm or less, a diameter of 0.1 to 20 μm, and the isotropic amorphous carbon particles have a diameter of 0.1 to 50 μm. Fittings.
【請求項3】 各ピンは、軸方向両端部に形成された、
各挿入孔に挿入自在な大断面積部と、両大断面積部同士
の間に軸方向に亙って互いに直列に設けられた、小断面
積部及び中断面積部とを備えたものである、請求項1〜
2の何れかに記載した自在継手。
3. Each pin is formed at both ends in the axial direction,
A large cross-sectional area portion that can be inserted into each insertion hole and a small cross-sectional area portion and an interrupted area portion that are provided in series between the large cross-sectional area portions in the axial direction and in series with each other are provided. , Claim 1
The universal joint described in any one of 2.
【請求項4】 各ピンの軸方向両端に形成した大断面積
部同士の間隔を1とした場合に、小断面積部の長さ寸法
を、0.25〜0.4の範囲内で上記各ピン全体として
必要な圧縮量よりも小さくし、上記小断面積部の軸方向
両側に存在する中断面積部の長さ寸法は互いに等しく、
且つ、これら各中断面積部の断面積を1とした場合に、
上記小断面積部の断面積を0.5〜0.7の範囲に納め
た、請求項3に記載した自在継手。
4. When the distance between the large cross-sectional area portions formed at both axial ends of each pin is 1, the length dimension of the small cross-sectional area portion is within the range of 0.25 to 0.4. Each pin is made smaller than the required compression amount as a whole, and the length dimensions of the interruption area portions existing on both sides in the axial direction of the small cross-sectional area portion are equal to each other
Moreover, when the cross-sectional area of each of these suspended area portions is 1,
The universal joint according to claim 3, wherein the cross-sectional area of the small cross-sectional area portion is within the range of 0.5 to 0.7.
【請求項5】 自動車のステアリング装置に組み込んだ
状態で使用される、請求項1〜4の何れかに記載した自
在継手。
5. The universal joint according to claim 1, which is used in a state where it is incorporated in a steering device of an automobile.
JP21708995A 1995-08-25 1995-08-25 Universal joint Expired - Lifetime JP3480140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21708995A JP3480140B2 (en) 1995-08-25 1995-08-25 Universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21708995A JP3480140B2 (en) 1995-08-25 1995-08-25 Universal joint

Publications (2)

Publication Number Publication Date
JPH0960650A JPH0960650A (en) 1997-03-04
JP3480140B2 true JP3480140B2 (en) 2003-12-15

Family

ID=16698670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21708995A Expired - Lifetime JP3480140B2 (en) 1995-08-25 1995-08-25 Universal joint

Country Status (1)

Country Link
JP (1) JP3480140B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1318808B1 (en) 1999-09-13 2003-09-10 Spicer Gelenkwellenbau Gmbh CRUISE ACCESSORY WITH CENTERING ELEMENT
DE10036203C2 (en) * 1999-09-13 2001-11-29 Spicer Gelenkwellenbau Gmbh Cross cone set with centering element
JP4983816B2 (en) * 2009-02-09 2012-07-25 日本精工株式会社 Universal joint
JP5035264B2 (en) * 2009-02-09 2012-09-26 日本精工株式会社 Universal joint
JP5251968B2 (en) * 2010-12-07 2013-07-31 日本精工株式会社 Cross shaft universal joint
WO2012102306A1 (en) 2011-01-26 2012-08-02 日本精工株式会社 Shell type needle bearing and joint cross type universal joint
CN104822957B (en) 2013-08-30 2018-01-02 日本精工株式会社 The manufacture method of universal-joint-pin type universal joint

Also Published As

Publication number Publication date
JPH0960650A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
US5797819A (en) Resin pulley
US6666438B2 (en) Cylindrical elastic mount
JP3480140B2 (en) Universal joint
US7598308B2 (en) Metal—elastomer compound
JP5738374B2 (en) Glass fiber reinforced thermoplastic resin molded article and method for producing the same
EP2719928A1 (en) Seal ring
WO2005119073A1 (en) Synthetic resin retainer and ball bearing using the same
KR100420391B1 (en) Tube based on vulcanized elastomer and fluoropolymer
DE19949909B4 (en) Self-adjusting release bearing
JP2002518572A (en) Thermoplastic composite material with improved tribological performance by heat transfer material and other fillers, method for producing the composite material, and molded article of the composite material
CN106751421A (en) Macromolecule self-lubricating material and preparation method thereof, the leaf spring grasswort bushing being made up of the macromolecule self-lubricating material
JP2924221B2 (en) Resin composition for resin wound bearing
EP0620252B1 (en) Polyphenylene sulfide resin composition and process for producing the same
US5590225A (en) Plastic holder for bearing
JP2009115128A (en) Retainer for roller bearing, and roller bearing
JP5150920B2 (en) Rubber composition and sealing material
JP2014098461A (en) Seal structure of electric oil pump
JP4300456B2 (en) Ball seat
JP2011111091A (en) Telescopic shaft for vehicle steering
JP2011111112A (en) Telescopic shaft for vehicle steering
JP2802418B2 (en) Sliding resin composition
JP5464738B2 (en) Hydrogenated nitrile rubber composition for lip seals
JPH072898B2 (en) Phenol resin molding material
JP5642756B2 (en) Seal member
JP3131973B2 (en) Resin composition for preventing creep of bearings

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

EXPY Cancellation because of completion of term