JP3476497B2 - Method for producing silica carrier having excellent dispersibility - Google Patents

Method for producing silica carrier having excellent dispersibility

Info

Publication number
JP3476497B2
JP3476497B2 JP08849993A JP8849993A JP3476497B2 JP 3476497 B2 JP3476497 B2 JP 3476497B2 JP 08849993 A JP08849993 A JP 08849993A JP 8849993 A JP8849993 A JP 8849993A JP 3476497 B2 JP3476497 B2 JP 3476497B2
Authority
JP
Japan
Prior art keywords
supported
silica
substance
supported material
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08849993A
Other languages
Japanese (ja)
Other versions
JPH06298518A (en
Inventor
勘治 坂田
豊喜 国武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP08849993A priority Critical patent/JP3476497B2/en
Publication of JPH06298518A publication Critical patent/JPH06298518A/en
Application granted granted Critical
Publication of JP3476497B2 publication Critical patent/JP3476497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の被担持物を分子
レベルで均一な高分散状態でシリカ多孔体に分散担持し
たシリカ担持物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silica-supported material in which various supported materials are dispersed and supported on a porous silica material in a highly dispersed state uniformly at the molecular level.

【0002】[0002]

【従来の技術】シリカ,アルミナ等の無機化合物は、そ
の多孔質構造を利用して触媒担体,微粒子分散媒体,色
素や酵素等の機能性有機化合物の分散固定化担体等とし
て広範な分野で使用されている。なかでも、シリカ担体
は、被担持物或いは被分散物(以下、被担持物で総称す
る)の機能や作用を効果的に発現させるために、被担持
物を高度に分散化させ安定化する働きをする。たとえ
ば、白金等の貴金属触媒に対する担体では、触媒活性成
分を微粒子化状態で分散担持し、触媒反応に有効な表面
が露出した白金の量、すなわち白金の表面積を増大させ
る作用を呈する。また、反応中に生じる担持白金粒子の
融合に起因した白金粒子の成長を抑制し、有効表面積を
維持することにより、白金微粒子を安定化させる。
2. Description of the Related Art Inorganic compounds such as silica and alumina are used in a wide range of fields as catalyst carriers, fine particle dispersion media, dispersion / immobilization carriers for functional organic compounds such as dyes and enzymes, etc. by utilizing their porous structure. Has been done. Among them, the silica carrier functions to highly disperse and stabilize the supported material in order to effectively exhibit the functions and actions of the supported material or the dispersed material (hereinafter, collectively referred to as the supported material). do. For example, in the case of a carrier for a noble metal catalyst such as platinum, the catalytically active component is dispersed and carried in the form of fine particles, and it has the effect of increasing the amount of platinum with which the surface effective for catalytic reaction is exposed, that is, the surface area of platinum. In addition, the platinum fine particles are stabilized by suppressing the growth of the platinum particles caused by the fusion of the supported platinum particles during the reaction and maintaining the effective surface area.

【0003】また、レーザ発振やPHB現象を利用した
光記録等の光機能性材料として注目されているポルフィ
リン等の色素化合物は、自己会合性が強いために希薄濃
度の溶液等の媒体中においても分子会合体を形成し、濃
度消光等の原因となる。その結果、本来の機能が十分に
発揮されない。そこで、色素等の化合物の会合を抑制す
るため、これら化合物を分子レベルでシリカ系の分散固
定化担体に分散させ、更にシリカ網目中に取り込むこと
により再会合を抑制して機能の向上を図ることが検討さ
れている。被担持物をシリカ担体に分散固定化してシリ
カ担持物を製造する方法として、被担持物又は被担持物
前駆体を溶解又は分散させて調製した溶液をシリカに含
浸させ、乾燥させる方法が知られている。被担持物前駆
体を含浸させた場合、必要に応じて化学的処理又は熱的
処理が含浸後に施される。得られた被担持物の分散状態
は、担体として使用されるシリカの細孔構造や表面特性
の影響を受ける。そのため、高分散化担持ができない。
また、被担持物が不安定なため、融合や再結合等によっ
て所期の担持効果が効果的に発現されないこともある。
Further, a dye compound such as porphyrin, which has been attracting attention as an optical functional material for optical recording utilizing laser oscillation or PHB phenomenon, has a strong self-association property and therefore even in a medium such as a dilute solution. It forms a molecular association and causes concentration quenching. As a result, the original function is not fully exerted. Therefore, in order to suppress the association of compounds such as dyes, it is necessary to disperse these compounds at the molecular level in a silica-based dispersion-immobilized carrier and further incorporate them into a silica network to suppress re-association and improve the function. Is being considered. As a method for producing a silica-supported material by dispersing and fixing the supported material on a silica carrier, a method of impregnating silica with a solution prepared by dissolving or dispersing a supported material or a supported-material precursor and drying it is known. ing. When impregnated with the supported material precursor, chemical treatment or thermal treatment is performed after impregnation, if necessary. The dispersion state of the obtained supported material is influenced by the pore structure and surface characteristics of silica used as a carrier. Therefore, highly dispersed support cannot be carried out.
Further, since the supported material is unstable, the desired supporting effect may not be effectively exhibited due to fusion, recombination and the like.

【0004】担持状態の改善を図るため、シリカ担体の
表面にあるシラノール基SiOHのイオン交換反応性を
利用して被担持物をカチオン性の化合物に変換する方法
や、被担持物としてカチオン性化合物を選択し、それら
カチオン性化合物の溶液をシリカ担体に含浸させて担持
する方法等が採用されている。しかし、これらの方法に
よるとき、被担持物がカチオン性化合物に制限される。
また、シリカ担体表面にあるシラノール基で担持量が制
限され、高担持量を維持することができない。
In order to improve the supported state, a method of converting the supported material into a cationic compound by utilizing the ion exchange reactivity of the silanol group SiOH on the surface of the silica carrier, or a cationic compound as the supported material And a method in which a silica carrier is impregnated with a solution of these cationic compounds to carry the solution. However, according to these methods, the supported substance is limited to the cationic compound.
In addition, the supported amount is limited by the silanol groups on the surface of the silica carrier, and a high supported amount cannot be maintained.

【0005】担体成分として、溶媒に溶解分散可能なヒ
ュームドシリカ等のシリカ化合物やアルコキシシランや
ケイ酸ソーダ等のシリカ形成化合物を使用することも知
られている。この場合、担体成分及び被担持物の均一な
混合溶液又はゾルを調製し、ゾルを化学的処理又は熱的
処理してゲル化させ、溶媒を除去する。この方法におい
ては、被担持物が会合状態や凝集状態にあったり、シリ
カ形成化合物等のゲル化時に被担持物の会合や凝集が進
行することがある。混合溶液又はゾルに界面活性剤等の
両親媒性物質を添加するとき、色素等の被担持物の会合
状態や凝集状態が解消される。しかし、界面活性剤等の
両親媒性物質を添加しても、色素等の被担持物をシリカ
担体中に分子分散させる上で十分な効果が得られる現状
に至っていない。
It is also known to use, as a carrier component, a silica compound such as fumed silica which can be dissolved and dispersed in a solvent, or a silica-forming compound such as alkoxysilane or sodium silicate. In this case, a uniform mixed solution or sol of the carrier component and the supported material is prepared, and the sol is chemically or thermally treated to be gelated, and the solvent is removed. In this method, the supported material may be in an associated state or an aggregated state, or the supported material may be associated or aggregated when the silica-forming compound or the like is gelated. When an amphipathic substance such as a surfactant is added to the mixed solution or sol, the association state or the aggregation state of the supported material such as the dye is eliminated. However, even if an amphipathic substance such as a surfactant is added, a sufficient effect can not be obtained in molecularly dispersing a supported material such as a dye in a silica carrier.

【0006】[0006]

【発明が解決しようとする課題】触媒成分や色素等の被
担持物の機能を十分に且つ効果的に発現させるために
は、それらを高度に分散化した安定状態で保持する機能
をシリカ担体がもつことが要求される。しかし、従来の
担持物製法方法によるとき、被担持物の高分散化が十分
でない。また、シリカの細孔構造を制御できないことか
ら、分散状態にも問題がある。このような問題を解消す
るものとして、本発明者等は、両親媒性物質とアルコキ
シシラン物質との混合分散液から細孔構造を制御した有
機シリカ薄膜及び多孔体を製造する方法を特願平1−1
31478号,特願平2−414138号等で提案し
た。この提案においては、両親媒性物質が形成する分子
レベルの規則性と高い安定性を有する分子組織体を鋳型
として、シリカ等の細孔の形態や分布等の細孔構造を制
御している。本発明は、先願で提案した方法を更に発展
させたものであり、分子レベルで規則的な分子組織体を
形成する両親媒性物質のイオン交換特性を利用すること
により、シリカ担体に被担持物を高分散化して担持させ
ることを目的とする。
In order to sufficiently and effectively exhibit the functions of supported components such as catalyst components and dyes, a silica carrier has a function of holding them in a highly dispersed and stable state. Required to have. However, when the conventional method for producing a supported material is used, it is not sufficient to make the supported material highly dispersed. Further, since the pore structure of silica cannot be controlled, there is a problem in the dispersed state. As a solution to such a problem, the present inventors propose a method for producing an organic silica thin film and a porous body having a controlled pore structure from a mixed dispersion liquid of an amphipathic substance and an alkoxysilane substance. 1-1
No. 31478 and Japanese Patent Application No. 2-414138. In this proposal, the pore structure such as the morphology and distribution of pores such as silica is controlled by using a molecular assembly formed by an amphipathic substance and having regularity at the molecular level and high stability as a template. The present invention is a further development of the method proposed in the prior application, and is carried on a silica carrier by utilizing the ion exchange property of an amphipathic substance that forms a regular molecular assembly at the molecular level. The object is to highly disperse and support the substance.

【0007】[0007]

【課題を解決するための手段】本発明においては、その
目的を達成するため、両親媒性物質が形成する分子組織
体の鋳型効果及びイオン交換特性を利用している。シリ
カ担持物は、次のような工程を経て製造される。先ず、
分子の両末端に極性基及び疎水性基がそれぞれ付加され
た両親媒性物質とアルコキシシラン等のシリカ形成物質
とを含有する混合分散液から溶媒を蒸発除去し、両親媒
性物質を含むシリカ複合体を調製する。次いで、シリカ
複合体を、イオン性の被担持物又は被担持物前駆体を含
む水溶液に接触させる。接触方法としては、シリカ複合
体を水溶液に浸漬する方法や水溶液をシリカ複合体に塗
布する方法等がある。接触処理された被担持物又は被担
持物前駆体は、両親媒性物質のイオン交換作用によって
シリカ複合体の表面及び内部に導入され、担持固定化さ
れる。被担持物前駆体を導入した場合には、両親媒性物
質の共存下に化学的処理又は熱的処理を施すことによ
り、被担持物前駆体を目的の被担持物に変換する。ま
た、必要に応じて溶媒抽出等によって両親媒性物質を除
去し、シリカ担持物を得る。
In order to achieve the object, the present invention utilizes the template effect and the ion exchange property of the molecular assembly formed by the amphipathic substance. The silica-supported material is manufactured through the following steps. First,
A silica composite containing an amphipathic substance obtained by removing a solvent by evaporation from a mixed dispersion liquid containing an amphipathic substance having a polar group and a hydrophobic group respectively added to both ends of a molecule and a silica-forming substance such as alkoxysilane. Prepare the body. Then, the silica composite is brought into contact with an aqueous solution containing an ionic supported substance or a supported substance precursor. Examples of the contact method include a method of immersing the silica composite in an aqueous solution and a method of applying the aqueous solution to the silica composite. The supported material or the precursor of the supported material that has been subjected to the contact treatment is introduced into the surface and the inside of the silica composite by the ion exchange action of the amphipathic substance, and supported and immobilized. When the supported substance precursor is introduced, the supported substance precursor is converted into the target supported substance by performing chemical treatment or thermal treatment in the presence of an amphipathic substance. If necessary, the amphipathic substance is removed by solvent extraction or the like to obtain a silica-supported material.

【0008】シリカ複合体の調製等には、特願平1−1
21478号,特願平2−414138号等で紹介した
方法を採用することができる。たとえば、両親媒性物質
とシリカ形成物質の混合分散液には、メタロキサン結合
M−O−Siを生成するSi以外のTiやAl等の金属
Mの金属アルコキシ物質等をアルコキシシラン物質等と
反応可能な化合物として更に含ませることができる。ま
た、先願で紹介したように、残留しているSiORやS
iOH等の加水分解重縮合反応を促進させるため、混合
分散液から溶媒を除去したシリカ複合体に対して化学的
処理又は熱的処理を施しても良い。化学的処理又は熱的
処理は、被担持物又は被担持物前駆体を含む溶液に接触
させる前のシリカ複合体に対して行っても良いが、接触
処理後のシリカ複合体に施すことがより効果的である。
使用する両親媒性物質は、得られたシリカ多孔体の細孔
特性や被担持物の分散性等を考慮したとき、二分子膜形
成能をもつ化合物である方が効果的である。
For the preparation of the silica composite, etc., Japanese Patent Application No.
The method introduced in No. 21478, Japanese Patent Application No. 2-414138, etc. can be adopted. For example, in a mixed dispersion liquid of an amphipathic substance and a silica-forming substance, a metal alkoxy substance of a metal M such as Ti or Al other than Si that produces a metalloxane bond M-O-Si can be reacted with an alkoxysilane substance or the like. Can be further included as a compound. In addition, as introduced in the previous application, residual SiOR and S
In order to accelerate the hydrolysis polycondensation reaction of iOH or the like, the silica composite obtained by removing the solvent from the mixed dispersion liquid may be subjected to a chemical treatment or a thermal treatment. The chemical treatment or the thermal treatment may be performed on the silica composite before being brought into contact with the supported material or the solution containing the supported material precursor, but it is more preferable to perform the treatment on the silica composite after the contact processing. It is effective.
It is more effective that the amphipathic substance to be used is a compound capable of forming a bilayer film in consideration of the pore characteristics of the obtained porous silica material and the dispersibility of the supported material.

【0009】[0009]

【作用】分子の両末端に極性基及び疎水性基が付加され
た両親媒性物質は、水溶液等の媒体に溶解又は分散され
ると、媒体中で自発的に分子組織体を形成する。形成さ
れた分子組織体は、分子レベルでの高規則性を示す安定
な構造をもつ。この分子組織体を鋳型としてゾル−ゲル
法を適用すると、両親媒性物質とアルコキシシラン物質
等の混合分散液から細孔構造が制御された有機シリカ,
シリカ薄膜,シリカ多孔体等(以下、これをシリカ多孔
体で総称する)が製造される。得られたシリカ多孔体の
特異な細孔構造を被担持物の分散固定化や分散担持固定
化に利用するとき、高い担体効果が得られるものと推察
し、担持方法等につき鋭意研究を進めた結果、本発明を
完成するに至った。
The amphipathic substance in which a polar group and a hydrophobic group are added to both ends of the molecule, when dissolved or dispersed in a medium such as an aqueous solution, spontaneously forms a molecular assembly in the medium. The formed molecular assembly has a stable structure showing high regularity at the molecular level. When the sol-gel method is applied using this molecular assembly as a template, organosilica whose pore structure is controlled from a mixed dispersion liquid of an amphipathic substance and an alkoxysilane substance,
A silica thin film, a silica porous body, etc. (hereinafter, referred to as a silica porous body) are manufactured. It was speculated that a high carrier effect would be obtained when the unique pore structure of the obtained silica porous material is used for the dispersion immobilization or dispersion-support immobilization of the supported material, and thus earnest research was conducted on the loading method and the like. As a result, the present invention has been completed.

【0010】シリカ多孔体は、特願平1−131478
号,特願平2−414138号等で紹介した方法に従っ
て調製される。シリカ多孔体に担持される被担持物は、
両親媒性物質とのイオン交換反応性をもっている限り、
特に制約を受けるものではなく、金属,金属酸化物や金
属硫化物等の無機化合物、色素化合物や金属錯体等の機
能性有機化合物等、種々の物質がある。また、目的被担
持物を直接担持することが困難な場合、被担持物を形成
する前駆体化合物を先ず担持させ、担持後に目的被担持
物に変換する化学的処理又は熱的処理を施すことが好ま
しい。この化学的処理又は熱的処理は、本発明を拘束す
るものではなく、被担持物前駆体に応じて適宜選択され
る。両親媒性物質の分子集合体は、固有の分子組織性を
保持した状態でイオン交換作用を呈する。たとえば、二
分子膜形成能が高い両親媒性物質の分散液を基板上に展
開し、次いで分散液から溶媒を蒸発して得られる薄膜
は、自己支持性があり、二分子膜が二次元平面状に成長
して積層した多層二分子膜構造をもっている。この多層
二分子膜薄膜をイオン含有水溶液に接触させると、両親
媒性物質の親水基がイオン対型の場合、多層二分子膜構
造を維持した状態でイオン交換反応が進行し、解離イオ
ン種の荷電に対応するイオンがほぼ化学量論的に多層二
分子膜薄膜の内部に取り込まれる。
A porous silica material is disclosed in Japanese Patent Application No. 1-131478.
It is prepared according to the method introduced in Japanese Patent Application No. 2-414138. The supported object supported on the silica porous material is
As long as it has ion exchange reactivity with amphiphiles,
There is no particular limitation, and there are various substances such as inorganic compounds such as metals, metal oxides and metal sulfides, and functional organic compounds such as pigment compounds and metal complexes. Further, when it is difficult to directly support the target supported material, a precursor compound that forms the supported material may be first supported, and then a chemical treatment or a thermal treatment for converting the precursor compound into the target supported material may be performed. preferable. This chemical treatment or thermal treatment does not restrict the present invention and is appropriately selected according to the supported material precursor. The molecular assembly of the amphipathic substance exhibits an ion exchange action while maintaining its inherent molecular organization. For example, a thin film obtained by spreading a dispersion liquid of an amphipathic substance having a high ability to form a bilayer on a substrate and then evaporating the solvent from the dispersion has a self-supporting property, and the bilayer film has a two-dimensional plane. It has a multi-layered bilayer film structure that grows and is laminated. When this multilayer bilayer membrane is brought into contact with an ion-containing aqueous solution, if the hydrophilic group of the amphipathic substance is an ion pair type, the ion exchange reaction proceeds while maintaining the multilayer bilayer structure, and the dissociated ionic species Ions corresponding to the charges are taken into the inside of the multilayer bilayer thin film in a substantially stoichiometric manner.

【0011】このイオン交換性を利用してシリケートを
イオン交換反応によって多層二分子膜薄膜内に取り込ん
で固定化すると、多層膜状の多孔質シリカ薄膜が製造さ
れる(特願平2−310734号参照)。また、イオン
性のポルフィリン等の有機色素を両親媒性物質の多層二
分子膜薄膜内に導入すると、多層二分子膜薄膜の分子組
織性を反映した形態で異方性の高い磁気異方性薄膜や光
機能性薄膜等が製造される(特願平4−87982号,
特願平4−101822号等参照)。本発明において
は、同様に両親媒性物質のイオン交換反応性を利用し、
両親媒性物質の分子組織性を保持しつつ他のイオン種を
シリカ複合体中に導入する。本発明で使用する両親媒性
物質は、担持工程上の必要性から、特願平1−1314
78号及び特願平2−414138号で紹介した両親媒
性物質のうち、極性基がイオン対型又はイオン解離性で
あることが望まれる。疎水性基は、特に制約を受けるも
のではない。
Utilizing this ion-exchange property, a silicate is taken in and fixed in a multilayer bilayer membrane by an ion-exchange reaction to produce a multilayer porous silica thin film (Japanese Patent Application No. 2-310734). reference). In addition, when an organic dye such as ionic porphyrin is introduced into the multilayer bilayer thin film of an amphipathic substance, a magnetic anisotropic thin film with high anisotropy in a form reflecting the molecular organization of the multilayer bilayer thin film. And optical functional thin films are manufactured (Japanese Patent Application No. 4-87982,
See Japanese Patent Application No. 4-101822). In the present invention, similarly utilizing the ion exchange reactivity of amphiphiles,
Other ionic species are introduced into the silica composite while maintaining the molecular organization of the amphipathic substance. The amphipathic substance used in the present invention is disclosed in Japanese Patent Application No. 1-1314 because of the necessity in the supporting process.
Of the amphipathic substances introduced in Japanese Patent Application No. 78 and Japanese Patent Application No. 2-414138, it is desired that the polar group be ion pair type or ion dissociative. The hydrophobic group is not particularly limited.

【0012】極性基がイオン対型又はイオン解離性の両
親媒性物質は、分子集合体においてもイオン交換性をも
っている。イオン交換性能は、両親媒性物質の分子組織
性の他に被イオン交換物質の荷電状態や分子構造によっ
て異なる。しかし、ミセルを形成する界面活性剤に比較
して、二分子膜形成能の高い両親媒性物質が一般に効果
的である。これは、二分子膜組織体が組織構造的に生体
膜と類似した安定なものであり、他の物質を取り込む特
性、すなわちホスト−ゲスト性に優れているためであ
る。二分子膜組織体の構造的特性は、シリカ多孔体等を
製造するときにも現れており、細孔形態の多様性,細孔
分布の制御性,比表面積の大きさ等において、ミセルを
形成する界面活性剤に比較して優れている。したがっ
て、シリカ多孔体の製造における両親媒性物質の分子組
織性の作用と併せ、シリカ担持物の製造に二分子膜形成
能を有する両親媒性物質が特に効果的である。
An amphipathic substance whose polar group is an ion pair type or an ion dissociative type also has an ion exchange property even in a molecular assembly. The ion exchange performance differs depending on the chargeability and molecular structure of the substance to be ion-exchanged, in addition to the molecular organization of the amphipathic substance. However, an amphipathic substance having a high ability to form a bilayer membrane is generally more effective than a surfactant forming a micelle. This is because the bilayer membrane structure is stable in terms of tissue structure similar to that of a biological membrane and is excellent in the property of incorporating other substances, that is, the host-guest property. The structural characteristics of the bilayer membrane structure also appear when manufacturing porous silica, etc., and form micelles due to the variety of pore morphology, controllability of pore distribution, size of specific surface area, etc. It is superior to other surfactants. Therefore, an amphipathic substance having a bilayer film-forming ability is particularly effective for the production of a silica-supported material, in addition to the action of the molecular organization of the amphipathic substance in the production of a porous silica material.

【0013】被担持物や被担持物前駆体についても、同
様にイオン対型又はイオン解離性の化合物であることが
望まれる。被担持物や被担持物前駆体は、両親媒性物質
とのイオン交換反応性を考慮して選定される。たとえ
ば、両親媒性物質のイオン残基とイオン対を形成するた
め、被担持物や被担持物前駆体は、両親媒性物質のイオ
ン残基に対し逆の電荷をもつことが必要である。しか
し、被担持物や被担持物前駆体に対する制約からイオン
荷電の選択に余地がない場合には、シリカ多孔体の細孔
特性を考慮し、両親媒性物質を適宜選択し、シリカ多孔
体を調製する必要がある。両親媒性物質を含むシリカ複
合体に被担持物や被担持物前駆体を接触処理するとき、
有機溶媒に対する両親媒性物質の溶解性を考慮すると、
水溶性の被担持物や被担持物前駆体が好ましい。イオン
対型又はイオン解離性の被担持物や被担持物前駆体は、
水溶液系として使用されるとき、接触処理を容易に行う
ことができる。
Similarly, it is desired that the supported material and the supported material precursor be an ion pair type or ion dissociative compound. The supported substance or the supported substance precursor is selected in consideration of the ion exchange reactivity with the amphipathic substance. For example, in order to form an ion pair with an ionic residue of an amphipathic substance, the supported substance or the supported substance precursor needs to have a charge opposite to that of the ionic residue of the amphiphilic substance. However, when there is no room for selection of the ionic charge due to the restrictions on the supported material or the supported material precursor, the amphiphilic substance is appropriately selected in consideration of the pore characteristics of the silica porous material, and the silica porous material is selected. Need to be prepared. When contacting a supported material or a supported material precursor to a silica composite containing an amphipathic substance,
Considering the solubility of amphiphiles in organic solvents,
Water-soluble supported substances and supported substance precursors are preferable. Ion pair type or ion dissociative supported materials and supported material precursors are
When used as an aqueous system, the contact treatment can be easily performed.

【0014】接触処理法としては、シリカ複合体上に被
担持物や被担持物前駆体を含む溶液を滴下する方法等も
可能であるが、操作性を考慮して被担持物や被担持物前
駆体を含む溶液にシリカ複合体を浸漬する方法が簡便で
ある。両親媒性物質と被担持物や被担持物前駆体とのイ
オン交換反応は、常温でも分子レベルで容易に進行す
る。接触処理の操作条件は、被担持物や被担持物前駆体
の溶液濃度,処理温度等において特段の制約を受けるも
のではない。シリカ多孔体に担持される被担持物の量
は、シリカ複合体と被担持物や被担持物前駆体の溶液と
の接触処理操作による導入量で決定される。そのため、
たとえば浸漬法においては、被接触溶液中の被担持物や
被担持物前駆体の濃度や温度,接触時間等の条件を適宜
選択する。また、シリカ複合体と被担持物や被担持物前
駆体との接触処理を複数回繰り返すことにより導入量を
調整できる。
As the contact treatment method, a method of dropping a supported material or a solution containing a supported material precursor on the silica composite is also possible, but the supported material or the supported material is considered in consideration of operability. The method of immersing the silica composite in the solution containing the precursor is convenient. The ion exchange reaction between the amphipathic substance and the supported substance or the supported substance precursor easily proceeds at the molecular level even at room temperature. The operating conditions of the contact treatment are not particularly limited in terms of the solution concentration of the supported material or the precursor of the supported material, the processing temperature, and the like. The amount of the supported material supported on the porous silica material is determined by the amount introduced by the contact treatment operation between the silica composite and the solution of the supported material or the precursor of the supported material. for that reason,
For example, in the dipping method, the conditions such as the concentration and temperature of the supported substance or the supported substance precursor in the contacted solution, the contact time and the like are appropriately selected. Further, the introduction amount can be adjusted by repeating the contact treatment between the silica composite and the supported material or the supported material precursor a plurality of times.

【0015】被担持物前駆体を担持させたとき、担持後
に目的とする物質形態に変換する化学的処理又は熱的処
理を行い、被担持物を得る。化学的処理又は熱的処理
は、被担持物前駆体に応じて適宜選択される。前駆体担
持物を処理液に浸漬する液相系の固液接触処理も有効で
あるが、前駆体担持物のイオン交換反応性を考慮すると
き、蒸気やガス状の処理剤を使用した気液接触系が好ま
しい。化学的処理又は熱的処理は、両親媒性物質の共存
下、被担持物前駆体の担持状態を反映する形で施される
ことが有効である。因みに、前駆体を処理する前に両親
媒性物質を除去すると、シリカ複合体から前駆体が脱落
したり、得られた担持物の分散状態が不良になる。
When the precursor of the material to be supported is supported, a chemical treatment or a thermal treatment for converting it into a desired substance form is carried out to obtain the material to be supported. The chemical treatment or thermal treatment is appropriately selected according to the supported material precursor. Liquid-phase solid-liquid contact treatment in which the precursor-supported material is immersed in the treatment liquid is also effective, but when considering the ion exchange reactivity of the precursor-supported material, vapor-liquid treatment using a vapor or gaseous treatment agent is considered. Contact systems are preferred. It is effective that the chemical treatment or the thermal treatment is performed in the coexistence of an amphipathic substance in a form that reflects the supported state of the supported material precursor. Incidentally, if the amphipathic substance is removed before treating the precursor, the precursor may fall off from the silica composite or the dispersion state of the obtained carrier may become poor.

【0016】残留しているSiORやSiOH等をシロ
キサン網目結合させる化学的処理又は熱的処理は、被担
持物や被担持物前駆体をシリカ複合体に担持させた後で
行うことにより、シロキサン又はシリカの担体網目中に
被担持物又は被担持物前駆体が取り込まれる。その結
果、高い固定化効果が発現する。化学的処理又は熱的処
理としては、両親媒性物質のイオン交換性を考慮すると
き、アンモニアや塩酸等の蒸気を接触させる方法が好ま
しい。
The chemical treatment or thermal treatment for residual SiOR, SiOH or the like to form a siloxane network bond is carried out after the supported material or the precursor of the supported material is supported on the silica composite to obtain siloxane or The supported substance or the supported substance precursor is incorporated into the carrier network of silica. As a result, a high immobilization effect is exhibited. As the chemical treatment or the thermal treatment, when considering the ion-exchange property of the amphipathic substance, a method of contacting with vapor such as ammonia or hydrochloric acid is preferable.

【0017】このとき、シリカ複合体と被担持物や被担
持物前駆体の溶液との接触処理において、イオン交換の
反応速度等がシロキサン網目結合によって抑制されるこ
とがある。したがって、化学的処理又は熱的処理は、被
担持物や被担持物前駆体を含む溶液に接触処理する前の
シリカ多孔体に施すこともできるが、接触処理後に行っ
た方が効果的である。このようにして作製されたシリカ
担持物は、両親媒性物質の種類に応じて選択された抽出
剤を使用した抽出処理,酸化性雰囲気下で300℃以上
に加熱する焼却処理等によって、必要に応じて両親媒性
物質が除去される。なお、抽出処理,焼却処理等は、必
ずしも必要な工程ではなく、シリカ担持物の用途や使用
条件に応じて適宜選択される。
At this time, in the contact treatment of the silica composite with the solution of the supported material or the supported material precursor, the reaction rate of ion exchange may be suppressed by the siloxane network bond. Therefore, the chemical treatment or the thermal treatment can be applied to the silica porous material before the contact treatment with the supported material or the solution containing the supported material precursor, but it is more effective to perform it after the contact treatment. . The silica-supported material produced in this way is required to be subjected to an extraction treatment using an extractant selected according to the type of the amphipathic substance, an incineration treatment heated to 300 ° C. or higher in an oxidizing atmosphere, and the like. The amphiphile is correspondingly removed. The extraction process, the incineration process, etc. are not necessarily required steps, and are appropriately selected depending on the application and use conditions of the silica-supported material.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。本実施例においては、シリカ担体をアルコキシシラ
ンから調製し、被担持物と接触させる両親媒性物質を含
んだシリカ複合体を次の手順に従って調製した。両親媒
性物質として、図1に示した化合物1〜5を使用した。
化合物1〜3は、極性基がアンモニウム塩型のカチオン
残基を有する。化合物4及び5は、燐酸基となっており
アニオン残基を有する。このうち、化合物1及び4は通
常の界面活性剤であり、化合物2,3及び5は二分子膜
形成能をもった両親媒性物質である。各種両親媒性物質
50mM相当量及びアルコキシシラン物質としてCH3
Si− (OCH3)3 2.04g(両親媒性物質の50倍
モル相当量)を超音波照射しながら6mlの純水に分散
溶解し、複数種の混合分散液を調製した。各混合分散液
を開栓したガラス容器に入れ、温度25℃及び相対湿度
60%の恒温恒湿槽内で3日間放置した。その結果、水
分の蒸発によって白色の固化物、すなわち両親媒性物質
を含んだシリカ複合体が得られた。
EXAMPLES The present invention will be specifically described below with reference to examples. In this example, a silica carrier was prepared from an alkoxysilane, and a silica composite containing an amphipathic substance to be brought into contact with an object to be supported was prepared according to the following procedure. Compounds 1 to 5 shown in FIG. 1 were used as amphipathic substances.
Compounds 1 to 3 have a cationic group whose polar group is an ammonium salt type. The compounds 4 and 5 are phosphoric acid groups and have an anion residue. Of these, compounds 1 and 4 are ordinary surfactants, and compounds 2, 3 and 5 are amphipathic substances capable of forming a bilayer film. CH 3 as various silane amphipathic substances equivalent to 50 mM and alkoxysilane substances
Si- (OCH 3) 3 2.04g ( 50 -fold molar equivalent amount of amphiphile) was dispersed and dissolved in pure water ultrasonic irradiation while 6 ml, to prepare a mixed dispersion of a plurality of types. Each of the mixed dispersions was placed in a glass container with an open stopper, and allowed to stand in a constant temperature and humidity chamber at a temperature of 25 ° C. and a relative humidity of 60% for 3 days. As a result, a white solidified product, that is, a silica composite containing an amphipathic substance was obtained by evaporation of water.

【0019】−実施例1− 不均一系触媒として各種の反応に使用されている白金シ
リカ担持物の製造例を示す。シリカ複合体上に白金金属
を分散担持させるため、先ず前駆体化合物の水溶液にシ
リカ複合体を浸漬により接触させた。白金金属の前駆体
化合物としては、極性基がカチオン残基である化合物1
〜3を両親媒性物質として使用したシリカ複合体では塩
化白金酸(IV)カリウムを、アニオン残基を有する化
合物4,5から調製されたシリカ複合体ではトリス(エ
チレンジアミン)白金(IV)塩酸塩を使用した。白金
金属の前駆体化合物を、20mMの水溶液に調製した。
水溶液100mlにシリカ複合体を浸漬し、約25℃の
室温で一昼夜放置した。その後、橙色や黄色に着色され
たシリカ複合体を濾別回収し、水洗・乾燥した。塩化白
金酸カリウム又はトリス(エチレンジアミン)白金塩酸
塩を含むシリカ複合体をガラス管に充填し、管状電気炉
に挿入した。そして、水素気流下で150℃に3時間保
持し、塩化白金酸カリウム又はトリス(エチレンジアミ
ン)白金塩酸塩を白金金属に還元処理した。
-Example 1- An example of the production of a platinum-silica-supported material used in various reactions as a heterogeneous catalyst is shown. In order to disperse and support platinum metal on the silica composite, the silica composite was first brought into contact with the aqueous solution of the precursor compound by immersion. As the platinum metal precursor compound, a compound 1 in which the polar group is a cation residue
~ 3 as an amphiphile, silica (IV) potassium chloroplatinate (IV), and silica composites prepared from compounds 4 and 5 having an anion residue, tris (ethylenediamine) platinum (IV) hydrochloride. It was used. A platinum metal precursor compound was prepared in a 20 mM aqueous solution.
The silica composite was immersed in 100 ml of an aqueous solution and left at room temperature of about 25 ° C. for one day. Then, the silica complex colored in orange or yellow was collected by filtration, washed with water and dried. A silica composite containing potassium chloroplatinate or tris (ethylenediamine) platinum hydrochloride was filled in a glass tube and inserted into a tubular electric furnace. And it hold | maintained at 150 degreeC under hydrogen stream for 3 hours, and potassium chloroplatinate or tris (ethylenediamine) platinum hydrochloride reduced the platinum metal.

【0020】得られた灰色の白金シリカ担持物を、アン
モニア水を張った密閉ガラス容器に封入し、約25℃の
室温で一週間放置した。これにより、残留しているSi
ORやSiOH等のシロキサン結合への反応が促進され
た。一週間放置した白金シリカ担持物をガラス容器から
取り出し、再びガラス管に充填して管状電気炉に挿入し
た。そして、空気気流下で300℃に5時間保持し、両
親媒性物質等を焼却除去した。最終的に得られた白金シ
リカ担持物の白金担持量を、蛍光X線分析によって測定
した。また、担持物の室温(約25℃)における水素吸
着量から白金比表面積を算出し、担持白金を球状粒子と
仮定して担持白金の平均粒子径を求めた。測定結果を、
表1に示す。
The thus obtained gray platinum-silica supported material was enclosed in a sealed glass container filled with aqueous ammonia and left at room temperature of about 25 ° C. for one week. As a result, the remaining Si
The reaction to siloxane bonds such as OR and SiOH was promoted. The platinum-silica-supported material that had been allowed to stand for one week was taken out of the glass container, filled again in the glass tube, and inserted into the tubular electric furnace. Then, the mixture was kept at 300 ° C. for 5 hours under an air stream to incinerate and remove the amphipathic substance and the like. The amount of platinum supported on the finally obtained platinum-silica supported material was measured by fluorescent X-ray analysis. Further, the platinum specific surface area was calculated from the amount of hydrogen adsorbed on the supported material at room temperature (about 25 ° C.), and the average particle diameter of the supported platinum was determined assuming that the supported platinum was spherical particles. The measurement result
It shows in Table 1.

【表1】 [Table 1]

【0021】表1の実験番号6は、シリカ複合体のイオ
ン交換反応性に対してシロキサン結合や架橋の成長が与
える影響を調べるために行った実験である。実験番号6
においては、塩化白金酸カリウムの水溶液への浸漬に先
立って、アンモニア水を張った密閉ガラス容器にシリカ
複合体を封入し、約25℃の室温に一週間放置した。次
いで、実験番号1〜5と同様に、塩化白金酸カリウムの
水溶液に浸漬し、還元処理によって白金シリカ担持物を
製造した。実験番号7は、両親媒性物質を添加せずに白
金シリカ担持物を調製した比較例である。この場合、ア
ルコキシシラン物質としてCH3 Si (OCH3)3 2.
04g及び塩化白金酸カリウムの20mM水溶液2.5
5ml(白金担持量として1重量%相当)を純水3.4
4mlに加え、超音波照射しながら分散溶解させ、均一
な混合分散液を調製した。白金前駆体化合物の溶液に浸
漬する処理操作を省いた他は、実験番号1〜5と同様に
して白金シリカ担持物を調製した。
Experiment No. 6 in Table 1 is an experiment conducted to examine the influence of the growth of siloxane bonds and crosslinks on the ion exchange reactivity of the silica composite. Experiment number 6
In the above, prior to the dipping of potassium chloroplatinate in the aqueous solution, the silica composite was sealed in a sealed glass container filled with aqueous ammonia and left at room temperature of about 25 ° C. for one week. Then, similarly to Experiment Nos. 1 to 5, the material was immersed in an aqueous solution of potassium chloroplatinate and subjected to a reduction treatment to produce a platinum silica-supported material. Experiment No. 7 is a comparative example in which a platinum-silica supported material was prepared without adding an amphipathic substance. In this case, CH 3 Si (OCH 3 ) 3 is used as the alkoxysilane substance.
04 g and 20 mM aqueous solution of potassium chloroplatinate 2.5
5 ml (corresponding to 1% by weight of platinum carried) of pure water 3.4
To 4 ml, the solution was dispersed and dissolved while being irradiated with ultrasonic waves to prepare a uniform mixed dispersion. Platinum silica-supported materials were prepared in the same manner as in Experiment Nos. 1 to 5 except that the treatment operation of immersing in the platinum precursor compound solution was omitted.

【0022】表1から明らかなように、両親媒性物質を
使用して調製した実験番号1〜6の白金シリカ担持物
は、両親媒性物質を使用せずに調製した実験番号7に比
較して、何れの場合も担持白金粒子径が小さくなってお
り、高分散化していることが判る。また、二分子膜形成
能をもった両親媒性物質を使用した実験番号2,3及び
5では、界面活性剤を使用した実験番号1及び4に比較
して、白金担持量が高く、二分子膜形成能をもった両親
媒性物質の高いイオン交換性が示されている。実験番号
2及び実験番号6で得られた白金シリカ担持物を比較す
ると、白金粒子径に差がみられないが、実験番号2の白
金担持量が少なくなっている。このことから、シロキサ
ン架橋が高いと、イオン交換の反応速度が抑制されるこ
とが窺われる。
As is clear from Table 1, the platinum-silica-supported materials of Experiment Nos. 1 to 6 prepared using the amphiphile were compared with Experiment No. 7 prepared without using the amphiphile. In each case, it can be seen that the supported platinum particle size is small and highly dispersed. In addition, in Experiment Nos. 2, 3 and 5 in which amphipathic substances capable of forming a bilayer film were used, the amount of supported platinum was higher than that in Experiments 1 and 4 in which a surfactant was used, and It has been shown that the amphipathic substance capable of forming a film has a high ion exchange property. Comparing the platinum-silica supported materials obtained in Experiment No. 2 and Experiment No. 6, there is no difference in the platinum particle size, but the amount of platinum supported in Experiment No. 2 is small. From this, it can be seen that when the siloxane crosslinkage is high, the reaction rate of ion exchange is suppressed.

【0023】−実施例2− 有機色素化合物の固定化担持物の製造例として、高機能
性の光学材料であるポルフィリン化合物のシリカ担持物
を製造した。ポルフィリン化合物としては、図2に構造
を示したアニオン性の化合物6を使用した。化合物6に
対応して、カチオン残基をもつ化合物1〜3の両親媒性
物質から調製されたシリカ複合体を使用した。化合物6
の0.2mM水溶液にシリカ複合体を浸漬し、約20℃
の室温に一昼夜放置する担持処理を行ったところ、シリ
カ複合体は均一な赤紫色に着色した。このシリカ複合体
を取り出し、純水で十分洗浄した後、風乾した。
Example 2-A silica-supported material of a porphyrin compound, which is a highly functional optical material, was manufactured as an example of the preparation of an immobilized support material of an organic dye compound. As the porphyrin compound, the anionic compound 6 whose structure is shown in FIG. 2 was used. Corresponding to compound 6, a silica composite prepared from the amphiphiles of compounds 1 to 3 with cation residues was used. Compound 6
The silica complex is immersed in a 0.2 mM aqueous solution of
When the supporting treatment was carried out by leaving it at room temperature for 24 hours, the silica composite was colored uniformly reddish purple. The silica composite was taken out, thoroughly washed with pure water, and then air dried.

【0024】次いで、ポルフィリン化合物を担持したシ
リカ複合体を、アンモニア水を張った密閉ガラス容器に
封入し、約25℃の室温に一週間放置した。そして、ガ
ラス容器から取り出し、真空脱気した。得られたポルフ
ィリン担持物の100mgを錠剤成型器によって直径1
0mmのディスク状に成形し、その蛍光スペクトルを励
起波長425nmで測定した。蛍光強度は、測定した試
料の中で最も強いものを1として相対評価した。超過結
果を表2に示す。また、被担持物の固定化安定性を調べ
るため、調製したポルフィリン担持物の0.5gを純水
100mlに投入し、一昼夜放置した後、水の着色状態
を目視観察した。着色が検出されない場合を固定化安定
性が良好なものと判定し、表2では○で表した。他方、
着色が検出されたものでは、固定化安定性不良×と判定
した。
Then, the silica composite supporting the porphyrin compound was enclosed in a closed glass container filled with aqueous ammonia and left at room temperature of about 25 ° C. for one week. Then, it was taken out from the glass container and vacuum deaerated. 100 mg of the obtained porphyrin-supported material was used in a tablet press to obtain a diameter of 1
It was molded into a disk shape of 0 mm, and its fluorescence spectrum was measured at an excitation wavelength of 425 nm. The fluorescence intensity was relatively evaluated with 1 being the strongest of the measured samples. The excess results are shown in Table 2. Further, in order to examine the immobilization stability of the supported material, 0.5 g of the prepared porphyrin-supported material was put into 100 ml of pure water and left standing overnight, and then the coloring state of water was visually observed. When no coloring was detected, it was determined that the immobilization stability was good, and in Table 2, it was represented by ◯. On the other hand,
When the coloring was detected, the immobilization stability was determined to be poor.

【表2】 [Table 2]

【0025】表2の実験番号11及び12は、比較のた
めの実験である。実験番号11では、両親媒性物質及び
アルコキシシラン物質の混合分散液にポルフィリン化合
物を直接添加し、実験番号8〜10と同様の条件下で固
化物を得た。実験番号12では、両親媒性物質を含まな
い系で、アルコキシシラン物質とポルフィリン化合物の
混合分散液を同様に調製して固化物を得た。実験番号1
1及び12共に、実験番号9におけるポルフィリン担持
量の1/100(mol−ポルフィリン化合物/mol
−両親媒性物質)に相当する量を添加し、シロキサン架
橋反応を促進するためのアンモニア蒸気処理を施した。
Experiment numbers 11 and 12 in Table 2 are experiments for comparison. In Experiment No. 11, the porphyrin compound was directly added to the mixed dispersion liquid of the amphipathic substance and the alkoxysilane substance to obtain a solidified product under the same conditions as in Experiment Nos. 8 to 10. In Experiment No. 12, a mixed dispersion liquid of an alkoxysilane substance and a porphyrin compound was similarly prepared in a system containing no amphipathic substance to obtain a solidified product. Experiment number 1
Both 1 and 12 are 1/100 (mol-porphyrin compound / mol of the porphyrin loading amount in the experiment number 9.
-Amphiphile) was added and subjected to ammonia vapor treatment to accelerate the siloxane crosslinking reaction.

【0026】蛍光強度にはシリカ担体中におけるポルフ
ィリンの分散状態が反映するものと推察される。すなわ
ち、イオン交換反応を利用することなくポルフィリン化
合物を直接導入した実験番号11及び両親媒性物質を添
加せずにシリカ複合体を調製した実験番号12にみられ
るように、ポルフィリン化合物の会合によって蛍光強度
が急激に低下している。これに対し、両親媒性物質を使
用しイオン交換反応を利用してポルフィリン化合物を導
入した系、すなわち実験番号8〜10においては、実験
番号11及び12に比較し、相当に大きな蛍光強度が得
られ、ポルフィリン化合物がシリカ担体中に分子レベル
で高分散していることが推察される。
It is assumed that the fluorescence intensity reflects the dispersion state of porphyrin in the silica carrier. That is, as seen in Experiment No. 11 in which a porphyrin compound was directly introduced without utilizing an ion exchange reaction and Experiment No. 12 in which a silica complex was prepared without adding an amphipathic substance, fluorescence was caused by association of the porphyrin compound. The strength has dropped sharply. On the other hand, in the system in which the porphyrin compound was introduced by utilizing the ion exchange reaction using the amphipathic substance, that is, in Experiment Nos. 8 to 10, a considerably large fluorescence intensity was obtained as compared with Experiments 11 and 12. It is speculated that the porphyrin compound is highly dispersed at the molecular level in the silica carrier.

【0027】実験番号8は、界面活性剤を使用してシリ
カ複合体を調製した例であり、二分子膜形成能をもった
両親媒性物質を使用した実験番号9及び10に比較して
蛍光強度が低くなっている。これは、両親媒性物質によ
るイオン交換反応性の差に起因しているものであり、二
分子膜形成能をもった両親媒性物質は、通常の界面活性
剤に比較してイオン交換容量等に優れ、ポルフィリンの
多量導入を可能にする。また、両親媒性物質を使用した
何れの実験例においても、両親媒性物質を使用しない場
合に比較して、被担持物であるポルフィリンの溶出がな
く、担持したポルフィリンの固定化効果も優れているこ
とが判る。
Experiment No. 8 is an example of preparing a silica composite using a surfactant, and compared with Experiment Nos. 9 and 10 in which an amphipathic substance capable of forming a bilayer film was used, fluorescence was increased. The strength is low. This is due to the difference in ion exchange reactivity due to amphiphiles, and amphiphiles with the ability to form bilayer membranes have a higher ion exchange capacity than ordinary surfactants. It is excellent and enables a large amount of porphyrin to be introduced. Further, in any of the experimental examples using the amphiphile, compared to the case where the amphiphile is not used, there is no elution of the porphyrin as the supported material, and the immobilization effect of the supported porphyrin is excellent. It is understood that there is.

【0028】[0028]

【発明の効果】以上に説明したように、本発明において
は、両親媒性物質或いは両親媒性物質の分子集合体がも
つイオン交換性を有効に利用することにより、被担持物
をシリカ多孔体中に高度に分散化させ、しかも安定的に
固定化する。被担持物をシリカ担体に微粒子状に又は分
子単位に広げて高分散化することにより、被担持物の機
能や性能が高められる。たとえば、担持触媒の場合、触
媒活性成分を微粒子状に広げることによって触媒成分の
表面露出量,すなわち表面積をふやし、単位重量当りの
反応活性が図られる。ポルフィリン等の色素の場合も、
会合状態が機能性に大きく関係しており、分子分散する
ことによって蛍光特性が飛躍的に増大し、各種の光機能
性材料や電子材料への展開及び応用が期待される。その
他にも、硫化カドミウム等の半導体や金属では、量子サ
イズ効果による非線形光学材料が得られる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, by effectively utilizing the ion exchange property of the amphipathic substance or the molecular assembly of the amphipathic substance, the supported material is a porous silica material. It is highly dispersed in the inside and fixed stably. The function and performance of the supported material can be enhanced by spreading the supported material in the form of fine particles or in a molecular unit on the silica carrier for high dispersion. For example, in the case of a supported catalyst, by spreading the catalytically active component in the form of fine particles, the surface exposure amount of the catalytic component, that is, the surface area is increased, and the reaction activity per unit weight is achieved. In the case of dyes such as porphyrin,
The association state is greatly related to the functionality, and the fluorescent property is dramatically increased by the molecular dispersion, and it is expected to be applied to various optical functional materials and electronic materials. In addition, with semiconductors and metals such as cadmium sulfide, non-linear optical materials can be obtained by the quantum size effect.

【0029】一般に、担体上に高分散化された被担持物
は微粒子の場合は表面張力により、ポルフィリン等の場
合には会合による安定化エネルギーによって再凝集や再
会合する性質が高く、使用に際し被担持物の分散度が経
時的に低下して、性能の劣化や低下を来すことがある。
そのため、被担持物を分散化するばかりでなく、それら
高分散体を安定化する作用も担体に要求される。この点
においても、本発明によるシリカ担持物は、両親媒性物
質の効果によって、被担持物の固定安定化作用も高く、
これら問題に対しても効果的である。更に、両親媒性物
質の分子鋳型効果を併用することにより、被担持物の分
散状態ばかりでなく、担体シリカの細孔構造を制御した
高性能のシリカ担持物が製造される。これは、触媒やセ
ンサー類等の流体接触を行わせる用途では特に有効であ
る。得られたシリカ担持物は、その多孔質構造を利用し
た担持触媒,光学材料等を対象とした微粒子分散体,色
素や酵素等の各種の機能性有機化合物の分子分散固定化
体として広範な分野で使用される。
In general, a support material highly dispersed on a carrier has a high property of reaggregation or reassociation by surface tension in the case of fine particles and by stabilization energy due to association in the case of porphyrin and the like. The dispersity of the supported material may decrease with time, leading to deterioration or deterioration in performance.
Therefore, the carrier is required not only to disperse the supported material but also to stabilize the highly dispersed material. Also in this respect, the silica-supported material according to the present invention has a high effect of fixing and stabilizing the supported material due to the effect of the amphipathic substance,
It is also effective against these problems. Furthermore, by using the molecular template effect of the amphipathic substance together, not only the dispersed state of the supported material but also the high-performance silica-supported material in which the pore structure of the carrier silica is controlled can be produced. This is particularly effective in applications in which fluid contact such as catalysts and sensors is performed. The obtained silica-supported material has a wide range of fields as a supported catalyst utilizing its porous structure, a fine particle dispersion for optical materials, and a molecular dispersion / immobilized body of various functional organic compounds such as dyes and enzymes. Used in.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明実施例で使用した両親媒性物質の構造
FIG. 1 is a structural formula of an amphipathic substance used in Examples of the present invention.

【図2】 実施例2でシリカ多孔体に担持させたポルフ
ィリン化合物
2 is a porphyrin compound supported on a porous silica material in Example 2. FIG.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分子の両末端に極性基及び疎水性基がそ
れぞれ付加された両親媒性物質とシリカ形成物質とを含
む混合分散液から溶媒を蒸発除去することによりシリカ
複合体を調製し、該シリカ複合体をイオン性の被担持物
又は被担持物前駆体を含む溶液に接触させ、前記両親媒
性物質の存在下で前記被担持物又は被担持物前駆体を前
記シリカ複合体に担持させることを特徴とするシリカ担
持物の製造方法。
1. A silica composite is prepared by evaporating and removing a solvent from a mixed dispersion liquid containing an amphipathic substance having a polar group and a hydrophobic group respectively added to both ends of a molecule and a silica-forming substance, the silica complex is contacted with a solution containing ions of the carried object or the supported precursor, the amphiphilic
A method for producing a silica-supported material , comprising supporting the supported material or a supported material precursor on the silica composite in the presence of a functional substance .
【請求項2】 請求項1記載のシリカ複合体をイオン性
の被担持物又は被担持物前駆体を含む溶液に接触させた
後、両親媒性物質の共存下の化学的処理又は熱的処理で
SiOR及びSiOHを重縮合反応させるシリカ担持物
の製造方法。
2. A chemical treatment or a thermal treatment in the coexistence of an amphipathic substance after the silica composite according to claim 1 is contacted with a solution containing an ionic supported substance or a supported substance precursor. so
A method for producing a silica-supported material, which comprises subjecting SiOR and SiOH to a polycondensation reaction .
【請求項3】 請求項1記載の両親媒性物質が二分子膜
形成能をもつものであるシリカ担持物の製造方法。
3. A method for producing a silica-supported material, wherein the amphipathic substance according to claim 1 is capable of forming a bilayer film.
JP08849993A 1993-04-15 1993-04-15 Method for producing silica carrier having excellent dispersibility Expired - Fee Related JP3476497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08849993A JP3476497B2 (en) 1993-04-15 1993-04-15 Method for producing silica carrier having excellent dispersibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08849993A JP3476497B2 (en) 1993-04-15 1993-04-15 Method for producing silica carrier having excellent dispersibility

Publications (2)

Publication Number Publication Date
JPH06298518A JPH06298518A (en) 1994-10-25
JP3476497B2 true JP3476497B2 (en) 2003-12-10

Family

ID=13944520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08849993A Expired - Fee Related JP3476497B2 (en) 1993-04-15 1993-04-15 Method for producing silica carrier having excellent dispersibility

Country Status (1)

Country Link
JP (1) JP3476497B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4159123B2 (en) * 1997-08-12 2008-10-01 福岡県 Metal oxide structure and manufacturing method thereof
CN102202788B (en) * 2008-08-04 2015-01-21 斯里赛科公司 Metal-containing organosilica catalyst, preparing method and usage

Also Published As

Publication number Publication date
JPH06298518A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
Sun et al. Ag@ C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly
Xiao et al. “Ship‐in‐a‐Bottle” Growth of Noble Metal Nanostructures
EP0547924B1 (en) Composition containing ceric oxide, its preparation and use
US20040247895A1 (en) System for releasing active substances and active agents
JPWO2003099941A1 (en) Coloring material and method for producing coloring material
Eremenko et al. Silver and gold nanoparticles in silica matrices: synthesis, properties, and application
JP4069999B2 (en) Nano-coated molecular material
CN113930232A (en) Solid carbon-point zeolite composite material fingerprint developing powder and preparation method thereof
US20070154639A1 (en) Coated articles and methods of manufacture thereof
JP4477052B2 (en) Method for producing metal nanoparticle inorganic composite and metal nanoparticle inorganic composite
JP3476497B2 (en) Method for producing silica carrier having excellent dispersibility
EP2043955B1 (en) Metal oxide hydrogels and hydrosols, their preparation and use
CN109399595B (en) Mesoporous molybdenum phosphonate material and preparation method and application thereof
Kim et al. Preparation of Functionalized Polysilsesquioxane and Polysilsesquioxane‐Metal Nanoparticle Composite Spheres
KR100488100B1 (en) Mesoporous transition metal oxide thin film and powder and preparation thereof
Martynov et al. New hybrid materials based on nanostructured aluminum oxyhydroxide and terbium (III) bis (tetra-15-crown-5-phthalocyaninate)
WO2011042620A1 (en) Formation of metal particles on a solid oxide substrate having two separate grafted chemical functions
US20040024076A1 (en) Polymerization of various silicic acids on biological templates
JP4461352B2 (en) High crystalline mesoporous silica thin film and method for producing the same, cluster inclusion thin film using the mesoporous silica thin film and method for producing the same
JP2002110260A (en) Light energy converting material and light energy converting method
KR100308818B1 (en) Hydrophilic coating glass coated with porous thin layer of TiO2
Matter et al. Colloidal Nanocrystals: A Toolbox for Materials Chemistry
JP3651200B2 (en) Production method of noble metal fine particle supported photocatalyst thin film
JP2004099386A (en) Metal particle-including thin film and its forming process
JPH04210227A (en) Porous structure-controlled organic silica porous body and production of silica porous body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees