JP3476246B2 - Resistance spot welding method for Al and Al alloy - Google Patents

Resistance spot welding method for Al and Al alloy

Info

Publication number
JP3476246B2
JP3476246B2 JP13540094A JP13540094A JP3476246B2 JP 3476246 B2 JP3476246 B2 JP 3476246B2 JP 13540094 A JP13540094 A JP 13540094A JP 13540094 A JP13540094 A JP 13540094A JP 3476246 B2 JP3476246 B2 JP 3476246B2
Authority
JP
Japan
Prior art keywords
oxide film
electrode
plate
spot welding
resistance spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13540094A
Other languages
Japanese (ja)
Other versions
JPH081347A (en
Inventor
恭広 寒川
誠二 笹部
Original Assignee
神鋼アルコア輸送機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼アルコア輸送機材株式会社 filed Critical 神鋼アルコア輸送機材株式会社
Priority to JP13540094A priority Critical patent/JP3476246B2/en
Publication of JPH081347A publication Critical patent/JPH081347A/en
Application granted granted Critical
Publication of JP3476246B2 publication Critical patent/JP3476246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の輸送機関係
分野で使用される抵抗スポット溶接方法に関し、さらに
詳しくは、ナゲット生成の正常化、電極の長寿命化に優
れたAlおよびAl合金の抵抗スポット溶接方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance spot welding method used in fields related to transportation equipment such as automobiles, and more specifically to Al and Al alloys excellent in normalization of nugget formation and long life of electrodes. Of the resistance spot welding method.

【0002】[0002]

【従来の技術】近年、AlおよびAl合金は優れた耐食性と
美観(意匠性)を有しており、かつ軽量であることから
家庭電気製品の外板や、建築部材等の幅広い分野に利用
されている。また、最近ではAl合金の上記特性を生かし
て自動車等の分野においても利用されるようになり、抵
抗スポット溶接を施して利用する機会が増えている。
2. Description of the Related Art In recent years, Al and Al alloys have excellent corrosion resistance and aesthetics (design), and because of their light weight, they have been used in a wide range of fields such as outer panels of household electric appliances and building materials. ing. Further, recently, it has come to be used also in the field of automobiles and the like by taking advantage of the above characteristics of Al alloys, and there are increasing opportunities to use resistance spot welding for use.

【0003】しかし、AlおよびAl合金は鉄に比べ、熱伝
導率、電気伝導率が約3倍あり、局部発熱を利用する抵
抗スポット溶接の場合、高電流および短時間の溶接が必
要となり、その溶接範囲は非常に限定され細心の注意が
必要である。図1に抵抗スポット溶接方法の模式図を示
すが、AlおよびAl合金は図1に示すように熱処理等によ
って抵抗が著しく高い酸化皮膜t1 、t2 が表面に成長
しやすく、この酸化皮膜は電極直下部での抵抗発熱およ
びそれに起因する電極損耗による電極寿命の短命化や強
度劣化を発生させる。また、このような抵抗発熱により
電極材料のAlおよびAl合金板への脱落や粒界内への侵入
により耐食性の悪化なども来す。
However, Al and Al alloys have about three times as high thermal conductivity and electric conductivity as iron, and resistance spot welding utilizing local heat generation requires high current and short time welding. The welding range is very limited and requires careful attention. Fig. 1 shows a schematic diagram of the resistance spot welding method. As shown in Fig. 1, oxide films t 1 and t 2 having extremely high resistance are likely to grow on the surface of Al and Al alloys by heat treatment or the like. This causes resistance heat generation immediately below the electrodes and wear of the electrodes resulting in shortening of the electrode life and deterioration of strength. In addition, such resistance heating causes the electrode material to drop into the Al and Al alloy plates and penetrate into the grain boundaries, resulting in deterioration of corrosion resistance.

【0004】また、板厚が異なる場合等においては、接
合部の溶融は同板厚の場合と同様、板の接触界面におい
て初期状態で起こるが、その後、薄板側には十分な溶け
込みが得られないといった問題が発生する。これにより
薄板側で十分な強度を発揮するような溶接部が得られに
くく、強度劣化およびばらつきといったような溶接品質
低下の原因となる。また、ナゲットが片側による現象
は、異材(熱伝導率等の異なる)間の接合、インバータ
溶接機等の対向する電極の極性が一定である抵抗スポッ
ト溶接においても確認されており、溶接品質のみならず
過大溶け込みによる電極劣化等に悪影響を及ぼす。
Further, when the plate thicknesses are different, melting of the joint portion occurs in the initial state at the contact interface of the plates as in the case of the same plate thickness, but thereafter, sufficient penetration is obtained on the thin plate side. There is a problem such as not. As a result, it is difficult to obtain a welded portion that exhibits sufficient strength on the thin plate side, which causes deterioration of welding quality such as strength deterioration and dispersion. Also, the phenomenon that the nugget is caused by one side has been confirmed in joining between dissimilar materials (different in thermal conductivity etc.) and in resistance spot welding where the polarity of the opposing electrodes is constant such as in an inverter welder. Without adversely affecting the electrode deterioration due to excessive melting.

【0005】そこで、上記のような抵抗スポット溶接特
有の品質劣化の問題解決のために現在までに、電極チッ
プの改善、表面酸化皮膜の除去(特開平4-358094参
照)、電極側や板側への金属のめっき皮膜の挿入(特開
平4-344877参照)等による改善策が講じられている。し
かし、ナゲットの片寄りによる、溶接品質や電極損耗等
については、現在までに有効な改善策は提案されていな
い。
Therefore, in order to solve the problem of the quality deterioration peculiar to the resistance spot welding described above, the electrode tip has been improved, the surface oxide film has been removed (see Japanese Patent Laid-Open No. 4-358094), the electrode side and the plate side. Improvement measures have been taken by inserting a metal plating film into the metal (see Japanese Patent Laid-Open No. 4-344877). However, regarding the welding quality, electrode wear, etc. due to the deviation of the nugget, no effective improvement measures have been proposed so far.

【0006】[0006]

【発明が解決しようとする課題】酸化皮膜の除去が電極
の長寿命化に寄与するところは非常に大きいが、以下の
点において若干の問題点がある。
The removal of the oxide film greatly contributes to prolonging the life of the electrode, but there are some problems in the following points.

【0007】電極接触面の酸化皮膜をブラッシングなど
の機械的手段で完全に除去すると、電極−板間で抵抗発
熱が全く起こらず、ナゲット生成に必要な溶融熱が電極
側に拡散されてしまう。そのため電極方向にナゲットが
溶融されず、正常な接合部が得られにくい。また完全に
酸化皮膜が除去された表面は活性化されていることか
ら、溶接時に電極−板間の拡散接合による溶着等が生じ
る。
If the oxide film on the electrode contact surface is completely removed by mechanical means such as brushing, resistance heat generation does not occur between the electrode and the plate, and the heat of fusion necessary for nugget formation is diffused to the electrode side. Therefore, the nugget is not melted in the electrode direction, and it is difficult to obtain a normal joint. Since the surface from which the oxide film has been completely removed is activated, welding or the like due to diffusion bonding between the electrode and the plate occurs during welding.

【0008】また、板同士の接触面における酸化皮膜の
除去は、I2R (I: 電流、R:抵抗) の発熱エネルギーによ
り溶接部を形成する抵抗スポット溶接において、要求強
度を満足させるためには高入熱化せざるを得ないといっ
たようなコスト面での問題がある。また、板間への介在
物(金属のめっき皮膜等)の挿入に関しては、コストお
よび作業効率面から非常に実用化が困難であるうえ、ま
た電極チップに関しては寿命を飛躍的に向上させるもの
はいまだ開発されていない。
Further, the removal of the oxide film on the contact surface between the plates is carried out in order to satisfy the required strength in resistance spot welding in which a weld is formed by the heat energy of I 2 R (I: current, R: resistance). Has a problem in terms of cost such as high heat input. Also, regarding the insertion of inclusions (metal plating film, etc.) between the plates, it is extremely difficult to put them into practical use in terms of cost and work efficiency, and regarding electrode chips, there is no one that dramatically improves the service life. Not yet developed.

【0009】本発明は、上記の問題点を解決するために
なされたもので、板厚、熱伝導率の異なる板の抵抗スポ
ット溶接において、電極の長寿命化およびナゲット形状
の正常化による溶接品質の改善、省エネルギー化等を可
能にするAlおよびAl合金の抵抗スポット溶接方法を提供
することを目的とする。
The present invention has been made to solve the above problems, and in resistance spot welding of plates having different plate thicknesses and thermal conductivities, welding quality is improved by extending the service life of electrodes and normalizing the nugget shape. It is an object of the present invention to provide a resistance spot welding method for Al and Al alloys, which enables improvement of heat resistance and energy saving.

【0010】[0010]

【課題を解決するための手段】本発明者らは、抵抗スポ
ット溶接に際し、電極に接触する側の板表面の酸化皮膜
厚を、板の厚さ、板の熱伝導率および電極の極性に応じ
て管理することにより電極の長寿命化およびナゲット形
状の正常化が可能であるという知見を得て本発明に至っ
たものである。
Means for Solving the Problems The inventors of the present invention, in resistance spot welding, determine the thickness of the oxide film on the surface of the plate that contacts the electrode according to the plate thickness, the thermal conductivity of the plate and the polarity of the electrode. The present invention has been made based on the finding that it is possible to prolong the service life of the electrode and normalize the shape of the nugget by controlling it by controlling it.

【0011】その要旨は、板厚がT1 とT2 である二枚
のAlまたはAl合金板を抵抗スポット溶接するに際し、板
厚がT1 である板の電極に接触する側の酸化皮膜厚t1
と板厚がT2 である板の電極に接触する側の酸化皮膜厚
2 との比 (t1 /t2)が、(1) T1 ≧T2 の場合、
(1.5×T1 /T2 −0.5)-1≦t1 /t2 ≦T2 /T1
で、(2) T1 ≦T2 の場合、T2 /T1 ≦t1 /t2
1.5 ×T2 /T1 −0.5 で、かつ前記酸化皮膜厚t1
2 を 2.5nm〜7.0nm の範囲に制御して抵抗スポット溶
接を行うAlおよびAl合金の抵抗スポット溶接方法であ
る。
The gist of the invention is that, when resistance spot welding of two Al or Al alloy plates having a thickness of T 1 and T 2 is performed, the thickness of the oxide film on the side of the plate having a thickness of T 1 that comes into contact with the electrodes. t 1
And the ratio (t 1 / t 2 ) of the oxide film thickness t 2 on the side of the plate whose thickness is T 2 to the electrode is (1) T 1 ≧ T 2 ,
(1.5 × T 1 / T 2 −0.5) −1 ≦ t 1 / t 2 ≦ T 2 / T 1
And (2) if T 1 ≤T 2 , then T 2 / T 1 ≤t 1 / t 2
This is a resistance spot welding method for Al and Al alloys in which the resistance spot welding is performed at 1.5 × T 2 / T 1 -0.5 and the oxide film thicknesses t 1 and t 2 are controlled in the range of 2.5 nm to 7.0 nm.

【0012】熱伝導率がK1 とK2 である二枚のAlまた
はAl合金板を抵抗スポット溶接するに際し、熱伝導率が
1 である板の電極に接触する側の酸化皮膜厚t1 と熱
伝導率がK2 である板の電極に接触する側の酸化皮膜厚
2 との比 (t1 /t2)が、(1) K1 ≧K2 の場合、K
1 /K2 ≦t1 /t2 ≦1.6 ×K1 /K2 −0.6 で、
(2) K1 ≦K2 の場合、(1.6×K2 /K1 −0.6)-1≦t
1 /t2 ≦K1 /K2 で、かつ前記酸化皮膜厚t1 とt
2 を 2.5nm〜7.0nm の範囲に制御して抵抗スポット溶接
を行うAlおよびAl合金の抵抗スポット溶接方法である。
In resistance spot welding of two Al or Al alloy plates having thermal conductivity of K 1 and K 2 , the oxide film thickness t 1 on the side of the plate having thermal conductivity of K 1 in contact with the electrode. If the ratio (t 1 / t 2 ) between the oxide film thickness t 2 on the side of the plate having a thermal conductivity of K 2 and contacting the electrode is (1) K 1 ≧ K 2 , then K
1 / K 2 ≦ t 1 / t 2 ≦ 1.6 × K 1 / K 2 −0.6,
(2) In the case of K 1 ≦ K 2 , (1.6 × K 2 / K 1 −0.6) −1 ≦ t
1 / t 2 ≦ K 1 / K 2 and the oxide film thicknesses t 1 and t
This is a resistance spot welding method for Al and Al alloys in which resistance spot welding is performed by controlling 2 in the range of 2.5 nm to 7.0 nm.

【0013】対向する電極の極性が不変である整流式溶
接機を使用して二枚のAlまたはAl合金板を抵抗スポ
ット溶接するに際し、板の+側電極に接する側の酸化皮
膜厚tと板の−側電極に接する側の酸化皮膜厚t
の比(t/t)が、0.7≦t/t≦1.0
(但し、t1/t2が1.0の場合を除く)で、かつ前
記酸化皮膜厚tとtを2.5nm〜7.0nmの範
囲に制御して抵抗スポット溶接を行うAlおよびAl合
金の抵抗スポット溶接方法である。
When performing resistance spot welding of two Al or Al alloy plates using a rectifying type welding machine in which the polarities of the opposing electrodes are unchanged, the oxide film thickness t 1 on the side contacting the + side electrode of the plates and The ratio (t 1 / t 2 ) of the plate to the oxide film thickness t 2 on the side in contact with the negative electrode is 0.7 ≦ t 1 / t 2 ≦ 1.0.
(However, except when t1 / t2 is 1.0) , and Al and Al alloys which perform resistance spot welding by controlling the oxide film thicknesses t 1 and t 2 in the range of 2.5 nm to 7.0 nm. Resistance spot welding method.

【0014】対向する電極の極性が不変である整流式溶
接機を使用して二枚のAlまたはAl合金板を抵抗スポット
溶接するに際し、板厚がT1 、熱伝導率がK1 である板
の+側電極に接する側の酸化皮膜厚t1 と、板厚が
2 、熱伝導率がK2 である板の−側電極に接触する側
の酸化皮膜厚t2 との比 (t1 /t2)が、(1) T1 ≧T
2 、K1 ≧K2 の場合、0.7×(1.5×T1 /T2 −0.5)
-1×K1 /K2 ≦t1 /t2 ≦T2 /T1 ×(1.6×K1
/K2 −0.6)で、(2) T1 ≧T2 、K1 ≦K2 の場合、
0.7×(1.5×T1 /T2 −0.5)-1×(1.6×K2 /K1
0.6)-1≦t1 /t2 ≦T2 /T1 ×K1 /K2 で、(3)
1 ≦T2 、K1 ≧K2 の場合、0.7×T2 /T1 ×K
1 /K2 ≦t1 /t2 ≦(1.5×T2 /T1 −0.5)×(1.6
×K1 /K2 −0.6)で、(4) T1 ≦T2 、K1 ≦K2
場合、0.7×T2 /T1 ×(1.6×K2 /K1 −0.6)-1
1 /t2 ≦(1.5×T2 /T1 −0.5)×K1 /K2 で、
かつ前記酸化皮膜厚t1 とt2 を 2.5nm〜7.0nm の範囲
に制御して抵抗スポット溶接を行うAlおよびAl合金の抵
抗スポット溶接方法である。
When resistance spot welding two Al or Al alloy plates using a rectifying type welding machine in which the polarities of opposing electrodes are unchanged, a plate having a thickness of T 1 and a thermal conductivity of K 1 is used. Of the oxide film thickness t 1 on the side in contact with the + side electrode of the plate and the oxide film thickness t 2 on the side in contact with the − side electrode of the plate having a plate thickness T 2 and a thermal conductivity of K 2 (t 1 / T 2 ) is (1) T 1 ≧ T
2 , when K 1 ≧ K 2 , 0.7 × (1.5 × T 1 / T 2 −0.5)
-1 × K 1 / K 2 ≤t 1 / t 2 ≤T 2 / T 1 × (1.6 × K 1
/ K 2 −0.6) and (2) T 1 ≧ T 2 and K 1 ≦ K 2 ,
0.7 × (1.5 × T 1 / T 2 -0.5) -1 × (1.6 × K 2 / K 1 -
0.6) −1 ≦ t 1 / t 2 ≦ T 2 / T 1 × K 1 / K 2 , and (3)
When T 1 ≦ T 2 and K 1 ≧ K 2 , 0.7 × T 2 / T 1 × K
1 / K 2 ≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × (1.6
× K 1 / K 2 −0.6), and (4) T 1 ≦ T 2 and K 1 ≦ K 2 , 0.7 × T 2 / T 1 × (1.6 × K 2 / K 1 −0.6) −1
t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × K 1 / K 2 ,
Further, it is a resistance spot welding method for Al and Al alloys in which resistance spot welding is performed by controlling the oxide film thicknesses t 1 and t 2 in the range of 2.5 nm to 7.0 nm.

【0015】対向する電極の極性が変動する交流式溶接
機を使用して二枚のAlまたはAl合金板を抵抗スポット溶
接するに際し、板厚がT1 、熱伝導率がK1 である板の
電極に接する側の酸化皮膜厚t1 と、板厚がT2 、熱伝
導率がK2 である板の電極に接触する側の酸化皮膜厚t
2 との比 (t1 /t2)が、(1) T1 ≧T2 、K1 ≧K2
の場合、(1.5×T1 /T2 −0.5)-1×K1 /K2 ≦t1
/t2 ≦T2 /T1 ×(1.6×K1 /K2 −0.6)で、(2)
1 ≧T2 、K1 ≦K2 の場合、(1.5×T1 /T2 −0.
5)-1×(1.6×K2 /K1 −0.6)-1≦t1 /t2 ≦T2
1 ×K1 /K2 で、(3) T1 ≦T2 、K1 ≧K2 の場
合、T2 /T1 ×K1 /K2 ≦t1 /t2 ≦(1.5×T2
/T1 −0.5)×(1.6×K1 /K2 −0.6)で、(4) T1
2 、K1 ≦K2 の場合、T2 /T1 ×(1.6×K2 /K
1 −0.6)-1≦t1 /t2 ≦(1.5×T2 /T1 −0.5)×K
1 /K2 で、かつ前記酸化皮膜厚t1 とt2 を 2.5nm〜
7.0nm の範囲に制御して抵抗スポット溶接を行うAlおよ
びAl合金の抵抗スポット溶接方法である。
In resistance spot welding of two Al or Al alloy plates using an AC welding machine in which the polarities of the electrodes facing each other are varied, a plate having a thickness of T 1 and a thermal conductivity of K 1 is used. The oxide film thickness t 1 on the side in contact with the electrode and the oxide film thickness t on the side in contact with the electrode of the plate whose plate thickness is T 2 and thermal conductivity is K 2.
The ratio of 2 (t 1 / t 2) is, (1) T 1 ≧ T 2, K 1 ≧ K 2
In the case of, (1.5 × T 1 / T 2 −0.5) −1 × K 1 / K 2 ≦ t 1
/ T 2 ≦ T 2 / T 1 × (1.6 × K 1 / K 2 −0.6), (2)
When T 1 ≧ T 2 and K 1 ≦ K 2 , (1.5 × T 1 / T 2 −0.
5) -1 × (1.6 × K 2 / K 1 -0.6) -1 ≤t 1 / t 2 ≤T 2 /
If T 1 × K 1 / K 2 and (3) T 1 ≦ T 2 and K 1 ≧ K 2 , then T 2 / T 1 × K 1 / K 2 ≦ t 1 / t 2 ≦ (1.5 × T 2
/ T 1 −0.5) × (1.6 × K 1 / K 2 −0.6), (4) T 1
If T 2 and K 1 ≦ K 2 , then T 2 / T 1 × (1.6 × K 2 / K
1 −0.6) −1 ≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × K
1 / K 2 and the oxide film thicknesses t 1 and t 2 are 2.5 nm
This is a resistance spot welding method for Al and Al alloys in which resistance spot welding is performed in the range of 7.0 nm.

【0016】[0016]

【作用】本発明において、規定するのはAlおよびAl合金
板の電極に接触する側の酸化皮膜厚のみで、接合界面す
なわち電極に接触する反対側の酸化皮膜厚については特
に規定しない。また、酸化皮膜厚の制御は、化学的方法
を推奨する。具体的には、エッチングタイプのアルカリ
洗浄剤(リン酸ソーダ、苛性ソーダ等)や酸(硝酸、硫
酸等)等によって効果的に酸化皮膜厚を低減制御でき
る。
In the present invention, it is only the thickness of the oxide film on the side of the Al and Al alloy plate that comes into contact with the electrode that is specified, and the thickness of the oxide film on the opposite side that comes into contact with the bonding interface, that is, the electrode is not particularly specified. A chemical method is recommended for controlling the oxide film thickness. Specifically, the oxide film thickness can be effectively reduced and controlled by an etching type alkaline cleaner (sodium phosphate, caustic soda, etc.), acid (nitric acid, sulfuric acid, etc.) and the like.

【0017】以下に、酸化皮膜厚の限定理由について述
べる。本発明者の研究により、電極−板間の抵抗発熱に
よる電極損耗を防止する効果が発揮される酸化皮膜厚は
7.0nm以下であることが判明した。前述のように、Alお
よびAl合金板における電極寿命は電極に接触する側の酸
化皮膜厚により大きく左右され、この酸化皮膜厚が 7.0
nmを超えると連続打点時において電極先端部での抵抗発
熱量が電極損耗を促進させる域に達する。したがって、
電極に接触する側の酸化皮膜厚は 7.0nm以下に限定す
る。
The reasons for limiting the thickness of the oxide film will be described below. According to the research conducted by the present inventor, the thickness of the oxide film that exhibits the effect of preventing electrode wear due to resistance heating between the electrode and the plate is
It was found to be 7.0 nm or less. As mentioned above, the electrode life of Al and Al alloy plates is greatly affected by the thickness of the oxide film on the side in contact with the electrode.
When the thickness exceeds nm, the resistance heating value at the electrode tip reaches a region where electrode wear is promoted at the time of continuous hitting. Therefore,
The thickness of the oxide film on the side that contacts the electrode is limited to 7.0 nm or less.

【0018】また、電極に接触する側の酸化皮膜厚が
2.5nm未満になると、電極先端部では抵抗発熱による電
極損耗は解消されるが、逆に電極の冷却作用により接合
部から電極方向への溶融熱の熱伝導損失が顕著になり、
強度を発揮する板厚方向への溶融部の溶け込みが不十分
となり強度劣化の原因となる。また、通常より急速冷却
されるため、内部での凝固割れも発生しやすくなる。し
たがって、電極に接触する側の酸化皮膜厚は 2.5nm以上
に限定する。
The thickness of the oxide film on the side contacting the electrode is
If it is less than 2.5 nm, the electrode wear due to resistance heating is eliminated at the electrode tip, but conversely the heat conduction loss of the fusion heat from the joint to the electrode becomes remarkable due to the cooling action of the electrode,
The penetration of the melted portion in the plate thickness direction, where strength is exerted, becomes insufficient, causing strength deterioration. Further, since it is cooled more rapidly than usual, solidification cracking inside is also likely to occur. Therefore, the thickness of the oxide film on the side that contacts the electrode is limited to 2.5 nm or more.

【0019】次に、板間の差異に基づく酸化皮膜厚の限
定理由について述べる。板厚が異なる場合、薄板側への
溶融部への溶け込み不足の原因として、接合界面が電極
に近い薄板側では、厚板側より冷却によって熱伝導損失
による溶融熱の損失が顕著であるため電極側への溶け込
みが不足する。また、通電初期においては両板間の抵抗
発熱によって溶融部が形成されるが、その後フリンジン
グ現象などによる両電極間の中心部での体積抵抗による
発熱に移行するため薄板側の溶け込みが不足する。とい
った二つの原因が考えられる。
Next, the reason for limiting the thickness of the oxide film based on the difference between the plates will be described. When the plate thickness is different, the cause of insufficient melting into the fusion zone on the thin plate side is that on the thin plate side where the bonding interface is close to the electrode, the loss of melting heat due to heat conduction loss due to cooling is more pronounced on the thin plate side Insufficient blending into the side. Also, in the initial stage of energization, resistance heat generation between both plates forms a fusion zone, but after that, heat transfer due to volume resistance at the central part between both electrodes due to fringing phenomenon etc., and melting on the thin plate side is insufficient. . There are two possible causes.

【0020】上記の現象による薄板側の溶け込み不足に
起因して溶接部の強度劣化が起こるが、電極に接触する
側の酸化皮膜厚を制御することにより強度劣化を軽減す
ることができる。すなわち、電極と板の表面発熱は、電
極損耗の原因ではあるが、同時に溶融部から電極方向へ
の熱損失の防止に効果を発揮する。したがって、板厚比
に対する酸化皮膜厚比 (t1 /t2)を下記式の範囲内に
制御することにより、薄板表面を発熱させ溶融熱の損失
を減少させ、溶け込みを確保することが可能となる。
Although the strength of the welded portion deteriorates due to insufficient penetration on the thin plate side due to the above phenomenon, the strength deterioration can be reduced by controlling the thickness of the oxide film on the side in contact with the electrode. That is, the surface heat generation of the electrode and the plate is a cause of electrode wear, but at the same time, it exerts an effect of preventing heat loss from the fusion zone toward the electrode. Therefore, by controlling the oxide film thickness ratio (t 1 / t 2 ) with respect to the plate thickness ratio within the range of the following formula, it is possible to heat the thin plate surface and reduce the loss of the heat of fusion to secure the penetration. Become.

【0021】T1 ≧T2 の場合、(1.5×T1 /T2 −0.
5)-1≦t1 /t2 ≦T2 /T1 、T1 ≦T2 の場合、T
2 /T1 ≦t1 /t2 ≦1.5 ×T2 /T1 −0.5 、ただ
し、T1 、T2 :板厚、t1 :板厚T1 の電極に接触す
る側の酸化皮膜厚、t2 :板厚T2 の電極に接触する側
の酸化皮膜厚。
When T 1 ≧ T 2 , (1.5 × T 1 / T 2 −0.
5) In the case of -1 ≤t 1 / t 2 ≤T 2 / T 1 and T 1 ≤T 2 , T
2 / T 1 ≦ t 1 / t 2 ≦ 1.5 × T 2 / T 1 −0.5, where T 1 and T 2 are the plate thickness, t 1 is the thickness of the oxide film on the side in contact with the electrode of the plate thickness T 1 , t 2 : Thickness of the oxide film on the side of the plate thickness T 2 that contacts the electrode.

【0022】ここで、t1 /t2 の範囲をそれぞれ上記
のように限定する理由は、t1 /t 2 が左辺未満である
と上記の効果は発揮されず、右辺を超えると逆に厚板側
の溶け込み深さが不足するからである。
Where t1/ T2The above ranges respectively
The reason for limiting like1/ T 2Is less than the left side
And the above effect is not exhibited, and if the right side is exceeded, conversely the thick plate side
This is because the penetration depth of is insufficient.

【0023】異材同士の接合の場合、異材間で溶け込み
不良の原因となるのが両材料間の熱伝導率、または電気
伝導率の差である。本発明はこの熱伝導率の差による溶
け込み不良の改善策である。
In the case of joining dissimilar materials, it is the difference in the thermal conductivity or the electrical conductivity between the dissimilar materials that causes the defective fusion between the dissimilar materials. The present invention is a measure for improving defective penetration due to the difference in thermal conductivity.

【0024】熱伝導率の異なる材料については、熱伝導
率の高いものが電極側からの冷却による熱損失を受ける
ため、熱伝導率の高いものは酸化皮膜を厚くする必要が
ある。すなわち、熱伝導率比に対する酸化皮膜厚比 (t
1 /t2)を下記式の範囲内に制御することにより、熱伝
導率の高い材料表面を発熱させ溶融熱の損失を減少さ
せ、溶け込みを確保することが可能となる。
Regarding materials having different thermal conductivities, those having a high thermal conductivity receive heat loss due to cooling from the electrode side, and therefore, those having a high thermal conductivity need to have a thick oxide film. That is, the oxide film thickness ratio (t
By controlling 1 / t 2 ) within the range of the following formula, it is possible to generate heat on the surface of the material having high thermal conductivity, reduce the loss of the heat of fusion, and secure the penetration.

【0025】K1 ≧K2 の場合、K1 /K2 ≦t1 /t
2 ≦1.6 ×K1 /K2 −0.6 、K1 ≦K2 の場合、(1.6
×K2 /K1 −0.6)-1≦t1 /t2 ≦K1 /K2 、ただ
し、K1 、K2 :熱伝導率、t1 :熱伝導率K1 の材料
の電極に接触する側の酸化皮膜厚、t2 :熱伝導率K2
の材料の電極に接触する側の酸化皮膜厚。
When K 1 ≧ K 2 , K 1 / K 2 ≦ t 1 / t
If 2 ≤ 1.6 × K 1 / K 2 -0.6, K 1 ≤ K 2 , then (1.6
× K 2 / K 1 −0.6) −1 ≦ t 1 / t 2 ≦ K 1 / K 2 , where K 1 and K 2 are thermal conductivity, and t 1 is contact with an electrode made of a material having thermal conductivity K 1. Thickness of the oxide film on the side to be heated, t 2 : Thermal conductivity K 2
Thickness of the oxide film on the side of the material that contacts the electrode.

【0026】ここで、t1 /t2 の範囲をそれぞれ上記
のように限定する理由は、t1 /t 2 が左辺未満である
と上記の効果は発揮されず、右辺を超えると逆に熱伝導
率の低い材料の溶け込み深さが不足するからである。
Where t1/ T2The above ranges respectively
The reason for limiting like1/ T 2Is less than the left side
And the above effect is not exhibited, and if the right side is exceeded, heat conduction will be reversed.
This is because the penetration depth of the low-rate material is insufficient.

【0027】極性を有した(電極の極性が不変である)
溶接機を使用して抵抗スポット溶接をする場合、インバ
ータ溶接機等のような整流式の溶接機は極性が一定であ
り、その極性効果として+側にナゲットが片寄る傾向が
ある。また、その結果として連続打点時において+側電
極がより損耗する。したがって、この場合は−側の電極
に接触する側の酸化皮膜厚を+側より厚くさせることに
より、極性効果を軽減することが可能となる。
Polarized (polarity of the electrode is unchanged)
When resistance spot welding is performed using a welding machine, a rectifying type welding machine such as an inverter welding machine has a constant polarity, and the nugget tends to deviate to the + side due to the polarity effect. Further, as a result, the + side electrode is more worn at the time of continuous hitting. Therefore, in this case, the polarity effect can be reduced by making the thickness of the oxide film on the side in contact with the negative electrode larger than that on the positive side.

【0028】すなわち、+側の電極に接触する側の酸化
皮膜厚t1 と−側の電極に接触する側の酸化皮膜厚t2
との比 (t1 /t2)を下記式の範囲内に制御することに
より、極性効果を軽減し、溶け込みを確保することが可
能となる。
That is, the oxide film thickness t 1 on the side contacting the + side electrode and the oxide film thickness t 2 on the side contacting the − side electrode.
By controlling the ratio (t 1 / t 2 ) with the ratio within the range of the following formula, it becomes possible to reduce the polarity effect and secure the penetration.

【0029】0.7≦(t/t)≦1.0(但し、
t1/t2が1.0の場合を除く)、ここで、左辺の係
数を0.7、右辺の係数を1.0とする理由は、右辺の
係数が1.0を超えると上記の効果は発揮されず、左辺
の係数が0.7未満になると逆に+側の溶け込み深さが
不足するからである。
0.7 ≦ (t 1 / t 2 ) ≦ 1.0 (however,
(Except when t1 / t2 is 1.0) Here, the reason why the coefficient on the left side is 0.7 and the coefficient on the right side is 1.0 is that the above effect is obtained when the coefficient on the right side exceeds 1.0. This is because if it is not exhibited and the coefficient on the left side is less than 0.7, the penetration depth on the + side is insufficient.

【0030】さらに、板厚と熱伝導率の異なる材料を電
極の極性が不変である溶接機を使用して抵抗スポット溶
接する場合、+側の電極に接触する側の酸化皮膜厚t1
と−側の電極に接触する側の酸化皮膜厚t2 との比 (t
1 /t2)を上記各式の右辺の積と左辺の積の範囲内に制
御することにより、極性効果を軽減し、溶け込みを確保
することが可能となる。すなわち、酸化皮膜厚t1 とt
2 との比 (t1 /t2)を下記式の範囲内に制御する。
Furthermore, when resistance spot welding is performed on materials having different plate thicknesses and different thermal conductivities using a welding machine in which the polarities of the electrodes do not change, the oxide film thickness t 1 on the side in contact with the + side electrode
The ratio of the oxide film thickness t 2 on the side in contact with the negative electrode to the negative electrode (t
By controlling 1 / t 2 ) within the range of the product of the right side and the product of the left side of each of the above equations, it is possible to reduce the polarity effect and secure the melt. That is, the oxide film thicknesses t 1 and t
The ratio of 2 (t 1 / t 2) is controlled within the range of the following formula.

【0031】T1 ≧T2 、K1 ≧K2 の場合、0.7×(1.
5×T1 /T2 −0.5)-1×K1 /K2 ≦t1 /t2 ≦T
2 /T1 ×(1.6×K1 /K2 −0.6)、T1 ≧T2 、K1
≦K2 の場合、0.7×(1.5×T1 /T2 −0.5)-1×(1.6
×K2 /K1 −0.6)-1≦t1 /t2 ≦T2 /T1 ×K1
/K2 、T1 ≦T2 、K1 ≧K2 の場合、0.7×T2
1 ×K1 /K2 ≦t1 /t2 ≦(1.5×T2 /T1 −0.
5)×(1.6×K1 /K2 −0.6)、T1 ≦T2 、K1 ≦K2
の場合、0.7×T2 /T1 ×(1.6×K2 /K1 −0.6)-1
≦t1 /t2 ≦(1.5×T2 /T1 −0.5)×K1 /K2
When T 1 ≧ T 2 and K 1 ≧ K 2 , 0.7 × (1.
5 × T 1 / T 2 −0.5) −1 × K 1 / K 2 ≦ t 1 / t 2 ≦ T
2 / T 1 × (1.6 × K 1 / K 2 −0.6), T 1 ≧ T 2 , K 1
If ≤ K 2 , 0.7 x (1.5 x T 1 / T 2 -0.5) -1 x (1.6
× K 2 / K 1 −0.6) −1 ≦ t 1 / t 2 ≦ T 2 / T 1 × K 1
/ K 2 , T 1 ≦ T 2 , K 1 ≧ K 2 , 0.7 × T 2 /
T 1 × K 1 / K 2 ≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.
5) × (1.6 × K 1 / K 2 −0.6), T 1 ≦ T 2 , K 1 ≦ K 2
In the case of, 0.7 × T 2 / T 1 × (1.6 × K 2 / K 1 −0.6) −1
≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × K 1 / K 2 ,

【0032】板厚と熱伝導率の異なる材料を極性が変動
する交流式溶接機を使用して抵抗スポット溶接する場
合、極性効果を考慮する必要はなく、酸化皮膜厚t1
2 との比 (t1 /t2)を上記の板厚が異なる場合と熱
伝導率が異なる場合の各式の右辺の積と左辺の積の範囲
内に制御することにより、溶け込みを確保することが可
能となる。すなわち、酸化皮膜厚t1 とt2 との比 (t
1 /t2)を下記式の範囲内に制御する。
When resistance spot welding is performed on materials having different plate thicknesses and different thermal conductivities by using an AC welding machine whose polarity varies, it is not necessary to consider the polarity effect, and the oxide film thicknesses t 1 and t 2 It is possible to secure the penetration by controlling the ratio (t 1 / t 2 ) within the range of the product of the right side and the product of the left side of each equation when the plate thickness is different and the thermal conductivity is different. Becomes That is, the ratio of the oxide film thickness t 1 to t 2 (t
1 / t 2 ) is controlled within the range of the following formula.

【0033】T1 ≧T2 、K1 ≧K2 の場合、(1.5×T
1 /T2 −0.5)-1×K1 /K2 ≦t1 /t2 ≦T2 /T
1 ×(1.6×K1 /K2 −0.6)、T1 ≧T2 、K1 ≦K2
の場合、(1.5×T1 /T2 −0.5)-1×(1.6×K2 /K1
−0.6)-1≦t1 /t2 ≦T2 /T1 ×K1 /K2 、T1
≦T2 、K1 ≧K2 の場合、T2 /T1 ×K1 /K2
1 /t2 ≦(1.5×T2 /T1 −0.5)×(1.6×K1 /K
2 −0.6)、T1 ≦T2 、K1 ≦K2 の場合、T2 /T1
×(1.6×K2 /K1 −0.6)-1≦t1 /t2 ≦(1.5×T2
/T1 −0.5)×K1 /K2
When T 1 ≧ T 2 and K 1 ≧ K 2 , (1.5 × T
1 / T 2 −0.5) −1 × K 1 / K 2 ≦ t 1 / t 2 ≦ T 2 / T
1 × (1.6 × K 1 / K 2 -0.6), T 1 ≧ T 2, K 1 ≦ K 2
In the case of, (1.5 × T 1 / T 2 −0.5) −1 × (1.6 × K 2 / K 1
−0.6) −1 ≦ t 1 / t 2 ≦ T 2 / T 1 × K 1 / K 2 , T 1
When ≦ T 2 and K 1 ≧ K 2 , T 2 / T 1 × K 1 / K 2
t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × (1.6 × K 1 / K
2 -0.6), if the T 1 ≦ T 2, K 1 ≦ K 2, T 2 / T 1
× (1.6 × K 2 / K 1 −0.6) −1 ≦ t 1 / t 2 ≦ (1.5 × T 2
/ T 1 −0.5) × K 1 / K 2 ,

【0034】上記のすべてについて、電極損耗への影響
を考慮して前述のように電極に接触する側の酸化皮膜厚
は 2.5nm〜7.0nm の範囲に調整する。
In all of the above, the thickness of the oxide film on the side in contact with the electrode is adjusted in the range of 2.5 nm to 7.0 nm in consideration of the effect on electrode wear.

【0035】[0035]

【実施例】以下に実施例を挙げて本発明を説明する。実
施例に使用した材料を表1に示す。これらの材料を表2
に示す抵抗スポット溶接条件で溶接し、各溶接継手につ
いて評価を行った。表3には本発明の要点である酸化皮
膜厚比と板厚および熱伝導率との関係を前記式の左辺、
右辺の値で示す。評価方法は(1) 継手強度のばらつき、
(2) 連続打点性、(3) ナゲットの溶け込み深さ、(4) 電
極損耗拡大率の四つの項目によるもので、最終的に総合
評価で判断した。その結果を表4に示す。各評価基準は
以下のとおりである。
EXAMPLES The present invention will be described below with reference to examples. The materials used in the examples are shown in Table 1. These materials are listed in Table 2.
Welding was performed under the resistance spot welding conditions shown in, and each welded joint was evaluated. Table 3 shows the relationship between the oxide film thickness ratio, the plate thickness, and the thermal conductivity, which are the main points of the present invention, on the left side of the above equation.
The value on the right side is shown. The evaluation method is (1) variation in joint strength,
It was based on four items: (2) continuous hitting property, (3) penetration depth of the nugget, and (4) electrode wear expansion rate, which was finally judged by comprehensive evaluation. The results are shown in Table 4. The evaluation criteria are as follows.

【0036】(1) 継手強度のばらつき 連続 100打点の全引張強度の標準偏差により評価 ◎:80N 以下、○:80〜130N、△: 130〜180N、×:18
0N以上
(1) Variation in joint strength Evaluated by standard deviation of total tensile strength at 100 continuous spots ◎: 80N or less, ○: 80 to 130N, △: 130 to 180N, ×: 18
0N or more

【0037】(2) 連続打点性 JIS A 級の最小値を割った打点数により評価 ◎:3000点以上、○:3000〜1500点、△:1500〜1000
点、×:1000点未満
(2) Continuous Dotting Property Evaluated by the number of dotting points divided by the minimum value of JIS A class ◎: 3000 points or more, ○: 3000 to 1500 points, △: 1500 to 1000
Points, ×: less than 1000 points

【0038】(3) ナゲットの溶け込み深さ 図2のt/Tにより評価 ◎: 0.9以上、○: 0.9〜0.7 、△: 0.7〜0.5 、×:
0.5未満
(3) Penetration depth of nugget Evaluated by t / T in FIG. 2 ◎: 0.9 or more, ○: 0.9 to 0.7, △: 0.7 to 0.5, ×:
Less than 0.5

【0039】(4) 電極損耗拡大率 連続打点時に感圧紙により電極先端部と板との感圧径を
測定し、初期感圧径と1000打点時の感圧径との比により
評価 ◎: 1.2以下、○: 1.2〜1.4 、△: 1.4〜1.8 、×:
1.8以上
(4) Electrode wear expansion rate The pressure-sensitive diameter between the electrode tip and the plate was measured by pressure-sensitive paper at the time of continuous hitting, and evaluated by the ratio of the initial pressure-sensitive diameter and the pressure-sensitive diameter at 1000 hitting ◎: 1.2 Below, ○: 1.2 to 1.4, △: 1.4 to 1.8, ×:
1.8 or more

【0040】総合評価 上記 (1)〜(4) までの結果で評価 ◎:すべての評価で◎、○○:(1) 、(2) が◎、あと全
て○以上、○:全て○以上、△:全て△以上、×:(1)
〜(4) の評価に×がある、××:(1) 〜(4) の評価に○
以上がなく全て×と△である
Comprehensive evaluation Evaluation is made by the results of the above (1) to (4) ◎: ◎ in all evaluations, ○○: (1) and (2) are ◎, all more than ○, ○: all more than ○, △: All above △, ×: (1)
There is × in the evaluation of ~ (4), × ×: ○ in the evaluation of (1) to (4)
There is no above and all are x and △

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】表3および表4から明らかなように、本発
明法の試験No.1〜3 は酸化皮膜厚を本発明の限定範囲で
ある 2.5nm〜7.0nm の範囲に調整しているため、良好な
継手特性が得られるとともに電極損耗も少ない。試験N
o.4〜6 は板厚が異なる場合の例で、酸化皮膜厚比が本
発明の板厚からきまる限定範囲内であるため、良好な評
価が得られている。試験No.7、8 は熱伝導率が異なる場
合の例で、酸化皮膜厚比が本発明の熱伝導率からきまる
限定範囲内であるため、良好な評価が得られている。試
験No.11 は板厚と熱伝導率が異なる場合の例で、酸化皮
膜厚比が本発明の限定範囲であるため、良好な評価が得
られている。
As is apparent from Tables 3 and 4, in Test Nos. 1 to 3 of the method of the present invention, the oxide film thickness was adjusted to the range of 2.5 nm to 7.0 nm which is the limited range of the present invention. Good joint characteristics are obtained and electrode wear is small. Exam N
o.4 to 6 are examples in which the plate thicknesses are different, and the oxide film thickness ratio is within the limited range determined by the plate thickness of the present invention, and thus good evaluation is obtained. Test Nos. 7 and 8 are examples in which the thermal conductivity is different, and the oxide film thickness ratio is within the limited range determined by the thermal conductivity of the present invention, and thus good evaluation is obtained. Test No. 11 is an example in which the plate thickness and the thermal conductivity are different, and the oxide film thickness ratio is within the limited range of the present invention, and thus a good evaluation is obtained.

【0046】試験No.9、10は極性を有した溶接機を使用
した場合の例で、酸化皮膜厚比が0.78〜0.79で本発明の
限定範囲である 0.7〜1.0 の範囲内であるため、良好な
評価が得られている。試験No.12 は極性を有した溶接機
を使用し、板厚と熱伝導率が異なる場合の例で、酸化皮
膜厚比が本発明の板厚と熱伝導率とからきまる限定範囲
内であるため、良好な評価が得られている。
Test Nos. 9 and 10 are examples in which a welding machine having polarity is used. Since the oxide film thickness ratio is 0.78 to 0.79 and is within the range of 0.7 to 1.0 which is the limited range of the present invention, Good evaluation has been obtained. Test No. 12 is an example in which a welding machine having polarity is used and the plate thickness and the thermal conductivity are different, and the oxide film thickness ratio is within the limited range determined by the plate thickness and the thermal conductivity of the present invention. Therefore, a good evaluation is obtained.

【0047】一方、比較例の試験No.13 、14は酸化皮膜
厚がそれぞれ 1.0nmと9.0nm で、本発明の限定範囲であ
る 2.5nm〜7.0nm の範囲外であるため、良好な評価が得
られていない。試験No.15 、16は板厚が異なる場合の例
で、酸化皮膜厚比が本発明の板厚からきまる限定範囲外
であるため、良好な評価が得られていない。また、試験
No.16 は一方の酸化皮膜厚が7.0nm 以上である。試験N
o.17 、18は熱伝導率が異なる場合の例で、酸化皮膜厚
比が本発明の熱伝導率からきまる限定範囲外であるた
め、良好な評価が得られていない。また、両試験とも一
方の酸化皮膜厚が 7.0nm以上である。
On the other hand, in Test Nos. 13 and 14 of the comparative example, the oxide film thicknesses were 1.0 nm and 9.0 nm, respectively, which were outside the range of 2.5 nm to 7.0 nm, which is the limited range of the present invention, and therefore were evaluated as good. Not obtained. Test Nos. 15 and 16 are examples in which the plate thicknesses are different, and the oxide film thickness ratio is out of the limited range determined by the plate thickness of the present invention, and therefore a good evaluation has not been obtained. Also, test
No. 16 has one oxide film thickness of 7.0 nm or more. Exam N
o.17 and 18 are examples in which the thermal conductivity is different, and the oxide film thickness ratio is out of the limited range determined by the thermal conductivity of the present invention, and therefore a good evaluation has not been obtained. In both tests, the thickness of one oxide film is 7.0 nm or more.

【0048】試験No.19 、20は極性を有した溶接機を使
用した場合の例で、酸化皮膜厚比が本発明の限定範囲で
ある 0.7〜1.0 の範囲外であるため、良好な評価が得ら
れていない。また、試験No.20 は一方の酸化皮膜厚が7.
0nm 以上である。
Test Nos. 19 and 20 are examples of using a welding machine having polarity. Since the oxide film thickness ratio is outside the range of 0.7 to 1.0 which is the limit range of the present invention, good evaluation is obtained. Not obtained. Test No. 20 has one oxide film thickness of 7.
It is 0 nm or more.

【0049】[0049]

【発明の効果】以上述べたところから明らかなように本
発明によれば、厚さ、熱伝導率の異なるAlおよびAl合金
材料の抵抗スポット溶接において、電極の長寿命化およ
びナゲット形状の正常化による溶接品質の改善、省エネ
ルギー化が可能となり、したがって、本発明に係わる抵
抗スポット溶接方法は自動車等の輸送機関係分野でのAl
およびAl合金材料の使用を拡大させることができる。
As is clear from the above description, according to the present invention, in resistance spot welding of Al and Al alloy materials having different thicknesses and thermal conductivities, the electrode life is extended and the nugget shape is normalized. Therefore, it is possible to improve welding quality and save energy. Therefore, the resistance spot welding method according to the present invention can be used in the field of transportation equipment such as automobiles.
And the use of Al alloy materials can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】抵抗スポット溶接方法の模式図である。FIG. 1 is a schematic diagram of a resistance spot welding method.

【図2】実施例におけるナゲットの溶け込み深さの評価
方法の説明図である。
FIG. 2 is an explanatory diagram of a method for evaluating a penetration depth of a nugget in an example.

【符号の説明】[Explanation of symbols]

1…電極チップ、2…電極チップ、3…酸化皮膜、4…
酸化皮膜、5…AlまたはAl合金、6…AlまたはAl合金、
7…ナゲット。
1 ... Electrode tip, 2 ... Electrode tip, 3 ... Oxide film, 4 ...
Oxide film, 5 ... Al or Al alloy, 6 ... Al or Al alloy,
7 ... Nugget.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 板厚がTとTである二枚のAlまた
はAl合金板を抵抗スポット溶接するに際し、板厚がT
である板の電極に接触する側の酸化皮膜厚tと板厚
がTである板の電極に接触する側の酸化皮膜厚t
の比(t/t)が、 (1)T≧Tの場合、 (1.5×T/T−0.5)―1≦t/t≦T
/Tで、 (2)T≦Tの場合、 T/T≦t/t≦1.5×T/T−0.5
で、 かつ前記酸化皮膜厚tとtを2.5nm〜7.0n
mの範囲に制御して抵抗スポット溶接を行うことを特徴
とするAlおよびAl合金の抵抗スポット溶接方法。
1. When resistance spot welding two Al or Al alloy plates having plate thicknesses of T 1 and T 2 , the plate thickness is T 1.
The ratio of the oxide film thickness t 2 of the side 1 a is oxide film thickness t 1 and the thickness of the side in contact with the electrode plate is in contact with the electrode plate is T 2 (t 1 / t 2) is, ( 1) In the case of T 1 ≧ T 2 , (1.5 × T 1 / T 2 −0.5) −1 ≦ t 1 / t 2 ≦ T
2 / T 1 and (2) when T 1 ≦ T 2 , T 2 / T 1 ≦ t 1 / t 2 ≦ 1.5 × T 2 / T 1 −0.5
And the oxide film thicknesses t 1 and t 2 are 2.5 nm to 7.0 n.
A resistance spot welding method for Al and Al alloys, characterized in that the resistance spot welding is performed in a range of m.
【請求項2】 熱伝導率がKとKである二枚のAl
またはAl合金板を抵抗スポット溶接するに際し、熱伝
導率がKである板の電極に接触する側の酸化皮膜厚t
と熱伝導率がKである板の電極に接触する側の酸化
皮膜厚tとの比(t/t)が、 (1)K≧Kの場合、 K/K≦t/t≦1.6×K/K−0.6
で、 (2)K≦Kの場合、 (1.6×K/K−0.6)―1≦t/t≦K
/Kで、 かつ前記酸化皮膜厚tとtを2.5nm〜7.0n
mの範囲に制御して抵抗スポット溶接を行うことを特徴
とするAlおよびAl合金の抵抗スポット溶接方法。
2. Two pieces of Al having thermal conductivities K 1 and K 2.
Alternatively, in resistance spot welding of an Al alloy plate, the oxide film thickness t on the side in contact with the electrode of the plate having a thermal conductivity of K 1
If the ratio (t 1 / t 2 ) between 1 and the oxide film thickness t 2 on the side of the plate having a thermal conductivity of K 2 that contacts the electrode is (1) K 1 ≧ K 2 , then K 1 / K 2 ≦ t 1 / t 2 ≦ 1.6 × K 1 / K 2 −0.6
(2) In the case of K 1 ≦ K 2 , (1.6 × K 2 / K 1 −0.6) −1 ≦ t 1 / t 2 ≦ K
1 / K 2 and the oxide film thicknesses t 1 and t 2 are 2.5 nm to 7.0 n.
A resistance spot welding method for Al and Al alloys, characterized in that the resistance spot welding is performed in a range of m.
【請求項3】対向する電極の極性が不変である整流式溶
接機を使用して二枚のAlまたはAl合金板を抵抗スポ
ット溶接するに際し、板の+側電極に接する側の酸化皮
膜厚tと板の−側電極に接する側の酸化皮膜厚t
の比(t/t)が、 0.7≦t/t≦1.0(但し、t1/t2が1.
0の場合を除く)で、 かつ前記酸化皮膜厚tとtを2.5nm〜7.0n
mの範囲に制御して抵抗スポット溶接を行うことを特徴
とするAlおよびAl合金の抵抗スポット溶接方法。
3. When performing resistance spot welding of two Al or Al alloy plates using a rectifying type welding machine in which the polarities of opposing electrodes are unchanged, the oxide film thickness t on the side contacting the + side electrode of the plates 1 and the oxide film thickness t 2 on the side in contact with the negative electrode of the plate (t 1 / t 2 ) is 0.7 ≦ t 1 / t 2 ≦ 1.0 (where t1 / t2 is 1.
(Excluding the case of 0) , and the oxide film thicknesses t 1 and t 2 are 2.5 nm to 7.0 n.
A resistance spot welding method for Al and Al alloys, characterized in that the resistance spot welding is performed in a range of m.
【請求項4】対向する電極の極性が不変である整流式溶
接機を使用して二枚のAlまたはAl合金板を抵抗スポ
ット溶接するに際し、板厚がT、熱伝導率がKであ
る板の+側電極に接する側の酸化皮膜厚tと、板厚が
、熱伝導率がKである板の−側電極に接触する側
の酸化皮膜厚tとの比(t/t)が、 (1)T≧T、K≧Kの場合、 0.7×(1.5×T/T−0.5)―1×K
≦t/t≦ T/T×(1.6×K/K−0.6)で、 (2)T≧T、K≦Kの場合、 0.7×(1.5×T/T−0.5)―1×(1.
6×K/K−0.6)―1≦ t/t≦T/T×K/Kで、 (3)T≦T、K≧Kの場合、 0.7×T/T×K/K≦t/t≦ (1.5×T/T−0.5)×(1.6×K/K
−0.6)で、 (4)T≦T、K≦Kの場合、 0.7×T/T×(1.6×K/K−0.6)
―1≦t/t≦ (1.5×T/T−0.5)×K/Kで、 かつ前記酸化皮膜厚tとtを2.5nm〜7.0n
mの範囲に制御して抵抗スポット溶接を行うことを特徴
とするAlおよびAl合金の抵抗スポット溶接方法。
4. When performing resistance spot welding of two Al or Al alloy plates using a rectifying type welding machine in which the polarities of the opposing electrodes are unchanged, the plate thickness is T 1 and the thermal conductivity is K 1 . and oxide film thickness t 1 of the side in contact with the + side electrode of a plate, the plate thickness T 2, the thermal conductivity of the plate is K 2 - the ratio of the oxide film thickness t 2 of the side in contact with the side electrode ( When t 1 / t 2 ) is (1) T 1 ≧ T 2 and K 1 ≧ K 2 , 0.7 × (1.5 × T 1 / T 2 −0.5) −1 × K 1 /
K 2 ≦ t 1 / t 2 ≦ T 2 / T 1 × (1.6 × K 1 / K 2 −0.6), and (2) 0 if T 1 ≧ T 2 and K 1 ≦ K 2 0.7 × (1.5 × T 1 / T 2 −0.5) −1 × (1.
6 × K 2 / K 1 −0.6) −1 ≦ t 1 / t 2 ≦ T 2 / T 1 × K 1 / K 2 , and (3) when T 1 ≦ T 2 and K 1 ≧ K 2 , 0.7 × T 2 / T 1 × K 1 / K 2 ≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × (1.6 × K 1 / K
In 2 -0.6), (4) T 1 ≦ T 2, if the K 1 ≦ K 2, 0.7 × T 2 / T 1 × (1.6 × K 2 / K 1 -0.6)
−1 ≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × K 1 / K 2 , and the oxide film thicknesses t 1 and t 2 are 2.5 nm to 7.0 n.
A resistance spot welding method for Al and Al alloys, characterized in that the resistance spot welding is performed in a range of m.
【請求項5】対向する電極の極性が変動する交流式溶接
機を使用して二枚のAlまたはAl合金板を抵抗スポッ
ト溶接するに際し、板厚がT、熱伝導率がKである
板の電極に接する側の酸化皮膜厚tと、板厚がT
熱伝導率がKである板の電極に接触する側の酸化皮膜
厚tとの比(t/t)が、 (1)T≧T、K≧Kの場合、 (1.5×T/T−0.5)―1×K/K≦t
/t≦ T/T×(1.6×K/K−0.6)で、 (2)T≧T、K≦Kの場合、 (1.5×T/T−0.5)―1×(1.6×K
/K−0.6)―1≦ t/t≦T/T×K/Kで、 (3)T≦T、K≧Kの場合、 T/T×K/K≦t/t≦ (1.5×T/T−0.5)×(1.6×K/K
−0.6)で、 (4)T≦T、K≦Kの場合、 T/T×(1.6×K/K−0.6)―1≦t
/t≦ (1.5×T/T−0.5)×K/Kで、 かつ前記酸化皮膜厚tとtを2.5nm〜7.0n
mの範囲に制御して抵抗スポット溶接を行うことを特徴
とするAlおよびAl合金の抵抗スポット溶接方法。
5. When performing resistance spot welding of two Al or Al alloy plates using an AC welding machine in which the polarities of opposing electrodes are changed, the plate thickness is T 1 and the thermal conductivity is K 1 . The oxide film thickness t 1 on the side of the plate that contacts the electrode, and the plate thickness T 2 ,
When the ratio (t 1 / t 2 ) to the oxide film thickness t 2 on the side of the plate having the thermal conductivity of K 2 that contacts the electrode is (1) T 1 ≧ T 2 and K 1 ≧ K 2 , (1.5 × T 1 / T 2 -0.5) -1 × K 1 / K 2 ≦ t
1 / t 2 ≦ T 2 / T 1 × (1.6 × K 1 / K 2 −0.6), (2) In the case of T 1 ≧ T 2 and K 1 ≦ K 2 , (1.5 × T 1 / T 2 -0.5) -1 × (1.6 × K 2
/ K 1 −0.6) −1 ≦ t 1 / t 2 ≦ T 2 / T 1 × K 1 / K 2 , and (3) In the case of T 1 ≦ T 2 and K 1 ≧ K 2 , T 2 / T 1 × K 1 / K 2 ≦ t 1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × (1.6 × K 1 / K
2 -0.6), (4) T 1 ≦ T 2, if the K 1 ≦ K 2, T 2 / T 1 × (1.6 × K 2 / K 1 -0.6) -1 ≦ t
1 / t 2 ≦ (1.5 × T 2 / T 1 −0.5) × K 1 / K 2 , and the oxide film thicknesses t 1 and t 2 are 2.5 nm to 7.0 n.
A resistance spot welding method for Al and Al alloys, characterized in that the resistance spot welding is performed in a range of m.
JP13540094A 1994-06-17 1994-06-17 Resistance spot welding method for Al and Al alloy Expired - Fee Related JP3476246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13540094A JP3476246B2 (en) 1994-06-17 1994-06-17 Resistance spot welding method for Al and Al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13540094A JP3476246B2 (en) 1994-06-17 1994-06-17 Resistance spot welding method for Al and Al alloy

Publications (2)

Publication Number Publication Date
JPH081347A JPH081347A (en) 1996-01-09
JP3476246B2 true JP3476246B2 (en) 2003-12-10

Family

ID=15150839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13540094A Expired - Fee Related JP3476246B2 (en) 1994-06-17 1994-06-17 Resistance spot welding method for Al and Al alloy

Country Status (1)

Country Link
JP (1) JP3476246B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891210B (en) * 2016-05-04 2019-01-15 中车株洲电力机车有限公司 The detection method of resistance spot weld fatigue life
JP7482686B2 (en) * 2020-05-25 2024-05-14 日本車輌製造株式会社 Measurement device and measurement program

Also Published As

Publication number Publication date
JPH081347A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
US5599467A (en) Aluminum weldment and method of welding aluminum workpieces
US6596413B2 (en) Brazing product having a low melting point
CA2428119C (en) Brazing product having a low melting point
JP6104008B2 (en) Stainless steel sheet molded product joined by resistance heat
KR100443803B1 (en) Method for the projection welding of high-carbon steels and high-tension low-alloy
JP3476246B2 (en) Resistance spot welding method for Al and Al alloy
TWI460905B (en) Copper alloy strips for charging the battery marking material
JPH05111776A (en) Resistance spot welding method for steel sheet and aluminum alloy sheet
CN109317801A (en) Micro spot welding process for nickel-plated copper wire harness and copper plate
CN118574694A (en) Single-sided submerged arc welding method, welded joint and manufacturing method thereof
KR101500042B1 (en) Welding structure
JPH11238491A (en) Battery container
US5391854A (en) Method of spot welding aluminum alloys
JPH0240427B2 (en)
JPH044984A (en) Electrode for resistance welding and its manufacture
US11772186B2 (en) Spot welding method
TW202423582A (en) Stainless steel/copper joint and method for producing same, and method for joining stainless steel and copper
JP2024117570A (en) Resistance spot welded joint, resistance spot welding method, and method for inspecting resistance spot welded joint
EP1507624B1 (en) Method of welding aluminium alloy strip products
JPH04197597A (en) Resistance welding electrode material
JP2024059021A (en) Method for resistance spot welding of aluminum material
JP2024049389A (en) Resistance Spot Welding Method
JP2017060995A (en) Resistance spot weld joint, resistance spot welding method, and manufacturing method for resistance spot weld joint
JPH04356373A (en) Resistance spot welding method for aluminum materials
JP2011025266A (en) Capacitor discharge stud welding method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030909

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070926

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees