JP3475582B2 - Non-contact high-frequency signal transmission device - Google Patents

Non-contact high-frequency signal transmission device

Info

Publication number
JP3475582B2
JP3475582B2 JP16338695A JP16338695A JP3475582B2 JP 3475582 B2 JP3475582 B2 JP 3475582B2 JP 16338695 A JP16338695 A JP 16338695A JP 16338695 A JP16338695 A JP 16338695A JP 3475582 B2 JP3475582 B2 JP 3475582B2
Authority
JP
Japan
Prior art keywords
frequency signal
signal transmission
transmission device
substrate
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16338695A
Other languages
Japanese (ja)
Other versions
JPH0918393A (en
Inventor
博司 畑野
充 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP16338695A priority Critical patent/JP3475582B2/en
Publication of JPH0918393A publication Critical patent/JPH0918393A/en
Application granted granted Critical
Publication of JP3475582B2 publication Critical patent/JP3475582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、回転体と固定体間にお
いて非接触にて高周波信号を伝送するための非接触型高
周波信号伝送装置に関するものである。 【0002】 【従来の技術】図3は、従来例に係る非接触型高周波信
号伝送装置の全体構成図である。誘電体基板1の一方の
面(基板表面)に円形の金属箔2を形成し、給電点3に
より、他方の面(基板裏面)にある同軸ケーブル4の芯
線5に接続している。また、給電点3は、基板裏面にお
いて、インピーダンスの整合を行うためのインピーダン
ス素子としてのスタブ7を介して、同軸ケーブル4の外
被導体6に接続して接地されている。 【0003】図3(A),(B)に示すような基板を2
つ、図3(C)に示すように、僅かな隙間をあけて上下
に重ね合わせ、一方の基板を固定し、他方の基板を回転
自在にして構成し、カップリングさせて回転側と固定側
との間で高周波信号を伝送させるようにしたものが非接
触型高周波信号伝送装置である。 【0004】図4は、非接触型高周波信号伝送装置の基
本原理を示す模式図である。一般に、図4(B),
(C)に示す等価回路のように、低周波領域では誘導成
分に、高周波領域では容量成分として作用するように、
スタブ7の幅と長さを調整することにより、その伝送特
性は、図4(D)に示すように、バンドパスフィルター
のような必要な周波数帯域だけ伝送することが可能とな
る。 【0005】ここで、衛星放送IF帯の伝送に用いる場
合には、図4(A)に示す構成において、2つの円形の
金属箔2間の容量成分によってカップリングしている。 【0006】 【発明が解決しようとする課題】ところが、上述のよう
な構成の非接触型高周波信号伝送装置においては、構造
的に、回転中心に物を通したい場合(例えば、モーター
軸やケーブル等)、回転中心に金属箔2があるため、物
を通すことができなかった。 【0007】図5は、非接触型高周波信号伝送装置の回
転中心に物を通した場合を示す模式図である。金属箔2
の中心部分には、物を通すための穴8が設けられるた
め、金属箔2は、図5(B)に示すように、リング状に
なり、給電点3は、金属箔2の中心からずれることにな
り、一方の基板が回転することにより、互いに対向して
配置された基板の給電点3の位置関係が同一方向になっ
たり、反対方向になったりする。このため、互いに対向
して配置された基板の給電点3の位置関係によって、伝
送状態が大きく異なってくるという問題があった。 【0008】例えば、図5(C)に示すように、互いに
対向して配置された基板の給電点3の位置が反対方向に
あれば、リング状の金属箔2は、ほぼ均等にカップリン
グするが、図5(D)に示すように、互いに対向して配
置された基板の給電点3の位置が同一方向にあれば、リ
ング状の金属箔2の給電点3の付近だけが強くカップリ
ングするので、伝送特性が異なってくるのである。図5
(E)は、互いに対向して配置された基板の給電点3の
位置が反対方向(実線)にある状態から同一方向(破
線)になったとき、伝送特性がどのように変化するかを
示している。 【0009】このように、従来例においては、伝送コイ
ルの回転中心に物を通し、かつ、安定した伝送特性を得
ることは困難であった。 【0010】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、給電点の位置関係に
関わらず、ほぼ一定した伝送特性を得ることのできる非
接触型高周波信号伝送装置を提供することにある。 【0011】 【課題を解決するための手段】請求項1記載の発明は、
一方の面にリング状の導体を形成し、他方の面に、該リ
ング状の導体に高周波電流を供給する給電点を設け、該
給電点に同軸ケーブルにより高周波電流を供給し、前記
給電点が設けられた面に、インピーダンス素子を設け、
該インピーダンス素子を介して、前記給電点と前記同軸
ケーブルの外被導体とを接続して接地するような基板を
形成し、該基板を2つ用いて、一方の基板を固定し、他
方の基板を回転自在にし、かつ、前記リング状の導体が
非接触にて互いに対向するように配置した非接触型高周
波信号伝送装置において、前記リング状の導体の外周部
分で、かつ、前記給電点の近傍の位置に、導体から成る
突起部を設けたことを特徴とするものである。 【0012】 【作用】請求項1記載の発明は、一方の面にリング状の
導体を形成し、他方の面に、該リング状の導体に高周波
電流を供給する給電点を設け、該給電点に同軸ケーブル
により高周波電流を供給し、前記給電点が設けられた面
に、インピーダンス素子を設け、該インピーダンス素子
を介して、前記給電点と前記同軸ケーブルの外被導体と
を接続して接地するような基板を形成し、該基板を2つ
用いて、一方の基板を固定し、他方の基板を回転自在に
し、かつ、前記リング状の導体が非接触にて互いに対向
するように配置した非接触型高周波信号伝送装置におい
て、前記リング状の導体の外周部分で、かつ、前記給電
点の近傍の位置に、導体から成る突起部を設けており、
基板の中央部分に物を通すための穴を開けても、ほぼ一
定した伝送特性を得ることができる。 【0013】 【実施例】以下、本発明の一実施例について図面に基づ
き説明する。図1は、本発明の一実施例に係る非接触型
高周波信号伝送装置を示す模式図である。なお、本実施
例に係る非接触型高周波信号伝送装置の基本的構成は、
従来例として図5(A)に示した構成と同じであるの
で、ここでは説明を省略する。本実施例においては、誘
電体基板1の一方の面に形成する金属箔2の中央部分に
穴8が形成され、金属箔2の外周部分で、かつ、給電点
3の近傍の位置に、図1(A)に示すように、導体から
成る末広状の突起部9を設けたり、図1(B)に示すよ
うに、放物線状の突起部9を設けたり、図1(C)に示
すように、複数の突起部9を設けた構成である。このよ
うに、突起部9の形状や個数は、限定される必要はな
い。 【0014】本実施例では、互いに対向して配置された
基板の給電点3の位置が反対方向にあるとき、図1
(D)に示すように、突起部9はカップリングにほとん
ど寄与せず、互いに対向して配置された基板の給電点3
の位置が同一方向にあるときには、図1(E)に示すよ
うに、突起部9により、金属箔2の中心に対する給電点
3の外側方向に向かってカップリング面積が確保されて
いるので、突起部9がカップリングに寄与し、互いに対
向して配置された基板の給電点3の位置関係に関わら
ず、伝送特性をほぼ一定とすることができる。つまり、
対向して配置された基板の内の一方が回転しても、ほぼ
一定の伝送特性を得ることができる。 【0015】図2は、図4(A)に示す突起部9の形状
を用いた非接触型高周波信号伝送装置の衛星放送IF帯
の伝送に適応した場合の伝送特性図である。なお、衛星
放送IF帯は、1〜1.3GHzである。ここで、図中
の実線は、互いに対向して配置された基板の給電点3の
位置が反対方向にある場合の伝送特性を表し、破線は、
互いに対向して配置された基板の給電点3の位置が同一
方向にある場合の伝送特性を表している。実線と破線と
の伝送ロスの差は、最大約1.5dB程度であり、全周
波数帯域での伝送ロスも3〜5dB程度であり、実用上
問題ないレベルであった。 【0016】従って、本実施例においては、金属箔2の
外周部分の給電点3の近傍に突起部9を形成することに
より、給電点の位置に関係なく、一定した伝送特性を得
ることができた。 【0017】なお、互いに対向して配置されたそれぞれ
の基板の突起部9の形状は、同一である必要はなく、例
えば、図1(A)〜(C)に示す突起部9の形状を組み
合わせて用いても良く、その場合には、スタブ7の幅と
長さを調整することにより、一定した伝送特性を得るこ
とができる。 【0018】 【発明の効果】請求項1記載の発明は、一方の面にリン
グ状の導体を形成し、他方の面に、リング状の導体に高
周波電流を供給する給電点を設け、給電点に同軸ケーブ
ルにより高周波電流を供給し、給電点が設けられた面
に、インピーダンス素子を設け、インピーダンス素子を
介して、給電点と同軸ケーブルの外被導体とを接続して
接地するような基板を形成し、基板を2つ用いて、一方
の基板を固定し、他方の基板を回転自在にし、かつ、リ
ング状の導体が非接触にて互いに対向するように配置し
た非接触型高周波信号伝送装置において、リング状の導
体の外周部分で、かつ、給電点の近傍の位置に、導体か
ら成る突起部を設けているので、基板の中央部分に物を
通すための穴を開けても、ほぼ一定した伝送特性を得る
ことができ、給電点の位置関係に関わらず、ほぼ一定し
た伝送特性を得ることのできる非接触型高周波信号伝送
装置を提供することができた。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type high-frequency signal transmission apparatus for transmitting a high-frequency signal between a rotating body and a fixed body in a non-contact manner. . 2. Description of the Related Art FIG. 3 is an overall configuration diagram of a conventional non-contact type high-frequency signal transmission device. A circular metal foil 2 is formed on one surface (substrate surface) of a dielectric substrate 1, and is connected to a core wire 5 of a coaxial cable 4 on the other surface (substrate back surface) by a feeding point 3. The feed point 3 is connected to the outer conductor 6 of the coaxial cable 4 and grounded via a stub 7 as an impedance element for impedance matching on the back surface of the substrate. [0003] A substrate as shown in FIGS.
First, as shown in FIG. 3 (C), one substrate is fixed and the other substrate is rotatable, with a slight gap therebetween, and the other substrate is rotatable. A non-contact type high-frequency signal transmission device is configured to transmit a high-frequency signal between the non-contact type high-frequency signal transmission device. FIG. 4 is a schematic diagram showing a basic principle of a non-contact type high-frequency signal transmission device. Generally, FIG.
As shown in the equivalent circuit shown in (C), the inductive component acts in the low-frequency region and the capacitive component acts in the high-frequency region.
By adjusting the width and length of the stub 7, the transmission characteristics can be transmitted only in a necessary frequency band such as a band-pass filter as shown in FIG. [0005] Here, when used for transmission in the satellite broadcast IF band, in the configuration shown in FIG. 4A, coupling is performed by a capacitance component between two circular metal foils 2. However, in the non-contact type high-frequency signal transmission device having the above-described configuration, it is structurally necessary to pass an object through the center of rotation (for example, a motor shaft, a cable, or the like). ), The object could not be passed because the metal foil 2 was at the center of rotation. FIG. 5 is a schematic diagram showing a case where an object passes through the center of rotation of the non-contact type high-frequency signal transmission device. Metal foil 2
5 is provided with a hole 8 for passing an object in the center portion of the metal foil 2, the metal foil 2 has a ring shape as shown in FIG. 5B, and the feeding point 3 is shifted from the center of the metal foil 2. That is, as one of the substrates rotates, the positional relationship between the power supply points 3 of the substrates arranged opposite to each other may be the same direction or the opposite direction. For this reason, there has been a problem that the transmission state greatly differs depending on the positional relationship between the feeding points 3 of the substrates arranged opposite to each other. For example, as shown in FIG. 5 (C), if the positions of the power supply points 3 of the substrates arranged opposite to each other are in opposite directions, the ring-shaped metal foils 2 are almost uniformly coupled. However, as shown in FIG. 5 (D), if the positions of the power supply points 3 on the substrates arranged opposite to each other are in the same direction, only the vicinity of the power supply point 3 of the ring-shaped metal foil 2 is strongly coupled. Therefore, the transmission characteristics differ. FIG.
(E) shows how the transmission characteristic changes when the position of the feeding point 3 of the substrates arranged opposite to each other changes from the state in the opposite direction (solid line) to the same direction (dashed line). ing. As described above, in the conventional example, it is difficult to pass an object through the rotation center of the transmission coil and obtain stable transmission characteristics. The present invention has been made in view of the above points, and an object of the present invention is to provide a non-contact high-frequency device capable of obtaining substantially constant transmission characteristics irrespective of the positional relationship between feeding points. A signal transmission device is provided. [0011] The invention as set forth in claim 1 is as follows.
A ring-shaped conductor is formed on one surface, and a feeding point for supplying a high-frequency current to the ring-shaped conductor is provided on the other surface, and a high-frequency current is supplied to the feeding point by a coaxial cable. Provide an impedance element on the provided surface,
A substrate is formed such that the power feeding point and the outer conductor of the coaxial cable are connected and grounded through the impedance element, and one of the substrates is fixed using the two substrates, and the other substrate is fixed. In a non-contact type high-frequency signal transmission device in which the ring-shaped conductors are arranged so as to face each other in a non-contact manner, at an outer peripheral portion of the ring-shaped conductor, and near the feeding point. Is provided with a projection made of a conductor at the position (1). According to the first aspect of the present invention, a ring-shaped conductor is formed on one surface, and a feeding point for supplying a high-frequency current to the ring-shaped conductor is provided on the other surface. A high-frequency current is supplied by a coaxial cable, and an impedance element is provided on the surface provided with the feed point, and the feed point and the jacket conductor of the coaxial cable are connected to ground via the impedance element. Such a substrate is formed, two substrates are used, one substrate is fixed, the other substrate is rotatable, and the ring-shaped conductors are arranged so as to face each other in a non-contact manner. In the contact-type high-frequency signal transmission device, at the outer peripheral portion of the ring-shaped conductor, and at a position near the feeding point, provided with a protrusion made of a conductor,
Almost constant transmission characteristics can be obtained even if a hole for passing an object is made in the center of the substrate. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a non-contact high-frequency signal transmission device according to one embodiment of the present invention. The basic configuration of the non-contact type high-frequency signal transmission device according to the present embodiment is as follows.
Since the configuration is the same as that shown in FIG. 5A as a conventional example, the description is omitted here. In the present embodiment, a hole 8 is formed in the central portion of the metal foil 2 formed on one surface of the dielectric substrate 1, and the hole 8 is formed in the outer peripheral portion of the metal foil 2 and at a position near the feeding point 3. As shown in FIG. 1A, a divergent projection 9 made of a conductor is provided, as shown in FIG. 1B, a parabolic projection 9 is provided, or as shown in FIG. In this configuration, a plurality of protrusions 9 are provided. Thus, the shape and the number of the protrusions 9 need not be limited. In the present embodiment, when the position of the feeding point 3 of the substrates arranged opposite to each other is in the opposite direction, FIG.
As shown in (D), the projection 9 hardly contributes to the coupling, and the feeding point 3 of the substrate arranged opposite to each other.
When the positions are in the same direction, as shown in FIG. 1 (E), the projection 9 secures a coupling area toward the outside of the feeding point 3 with respect to the center of the metal foil 2, so that the projection is formed. The portion 9 contributes to the coupling, and the transmission characteristics can be made substantially constant irrespective of the positional relationship between the feeding points 3 of the substrates arranged opposite to each other. That is,
Even if one of the substrates arranged oppositely rotates, substantially constant transmission characteristics can be obtained. FIG. 2 is a transmission characteristic diagram of a non-contact type high-frequency signal transmission device using the shape of the protrusion 9 shown in FIG. The satellite broadcast IF band is 1 to 1.3 GHz. Here, the solid line in the figure represents the transmission characteristics when the position of the feeding point 3 of the substrates arranged opposite to each other is in the opposite direction, and the broken line is
It shows the transmission characteristics in the case where the positions of the feeding points 3 of the substrates arranged opposite to each other are in the same direction. The difference in transmission loss between the solid line and the dashed line was about 1.5 dB at the maximum, and the transmission loss in the entire frequency band was about 3 to 5 dB, which was a practically acceptable level. Therefore, in the present embodiment, by forming the projection 9 near the feeding point 3 on the outer peripheral portion of the metal foil 2, constant transmission characteristics can be obtained regardless of the position of the feeding point. Was. The shapes of the protrusions 9 of the respective substrates arranged opposite to each other need not be the same, and for example, the shapes of the protrusions 9 shown in FIGS. In this case, a constant transmission characteristic can be obtained by adjusting the width and length of the stub 7. According to the first aspect of the present invention, a ring-shaped conductor is formed on one surface, and a feeding point for supplying a high-frequency current to the ring-shaped conductor is provided on the other surface. A high-frequency current is supplied by a coaxial cable to the substrate on which the feed point is provided, and an impedance element is provided on the surface where the feed point is connected to the jacket conductor of the coaxial cable via the impedance element. A non-contact type high-frequency signal transmission device in which two substrates are formed, one of the substrates is fixed, the other substrate is rotatable, and the ring-shaped conductors are arranged so as to face each other in a non-contact manner. In the above, since the protrusion made of the conductor is provided at the outer peripheral portion of the ring-shaped conductor and at a position near the feeding point, even if a hole for passing an object through the center portion of the substrate is made, it is almost constant. Transmission characteristics Thus, a non-contact type high-frequency signal transmission device capable of obtaining substantially constant transmission characteristics irrespective of the positional relationship of the feeding points can be provided.

【図面の簡単な説明】 【図1】本発明の一実施例に係る非接触型高周波信号伝
送装置を示す模式図である。 【図2】上図の(A)に示す突起部の形状を用いた非接
触型高周波信号伝送装置の衛星放送IF帯の伝送に適応
した場合の伝送特性図である。 【図3】従来例に係る非接触型高周波信号伝送装置の全
体構成図である。 【図4】非接触型高周波信号伝送装置の基本原理を示す
模式図である。 【図5】従来例に係る非接触型高周波信号伝送装置の回
転中心に物を通した場合を示す模式図である。 【符号の説明】 1 誘電体基板 2 金属箔 3 給電点 4 同軸ケーブル 5 芯線 6 外被導体 7 スタブ 8 穴 9 突起部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a non-contact high-frequency signal transmission device according to one embodiment of the present invention. FIG. 2 is a transmission characteristic diagram of a non-contact type high-frequency signal transmission device using the shape of the protrusion shown in FIG. FIG. 3 is an overall configuration diagram of a non-contact type high-frequency signal transmission device according to a conventional example. FIG. 4 is a schematic diagram illustrating a basic principle of a non-contact type high-frequency signal transmission device. FIG. 5 is a schematic diagram showing a case where an object passes through the center of rotation of a non-contact type high-frequency signal transmission device according to a conventional example. [Description of Signs] 1 Dielectric substrate 2 Metal foil 3 Feeding point 4 Coaxial cable 5 Core wire 6 Outer conductor 7 Stub 8 Hole 9 Projection

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 5/00 - 5/02 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H04B 5/00-5/02 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 一方の面にリング状の導体を形成し、他
方の面に、該リング状の導体に高周波電流を供給する給
電点を設け、該給電点に同軸ケーブルにより高周波電流
を供給し、前記給電点が設けられた面に、インピーダン
ス素子を設け、該インピーダンス素子を介して、前記給
電点と前記同軸ケーブルの外被導体とを接続して接地す
るような基板を形成し、該基板を2つ用いて、一方の基
板を固定し、他方の基板を回転自在にし、かつ、前記リ
ング状の導体が非接触にて互いに対向するように配置し
た非接触型高周波信号伝送装置において、前記リング状
の導体の外周部分で、かつ、前記給電点の近傍の位置
に、導体から成る突起部を設けたことを特徴とする非接
触型高周波信号伝送装置。
(57) [Claim 1] A ring-shaped conductor is formed on one surface, and a feeding point for supplying a high-frequency current to the ring-shaped conductor is provided on the other surface. A high-frequency current is supplied by a coaxial cable, and an impedance element is provided on the surface provided with the feed point, and the feed point and the jacket conductor of the coaxial cable are connected to ground via the impedance element. Such a substrate is formed, two substrates are used, one substrate is fixed, the other substrate is rotatable, and the ring-shaped conductors are arranged so as to face each other in a non-contact manner. A contact-type high-frequency signal transmission device, wherein a protrusion made of a conductor is provided at an outer peripheral portion of the ring-shaped conductor and at a position near the power supply point.
JP16338695A 1995-06-29 1995-06-29 Non-contact high-frequency signal transmission device Expired - Lifetime JP3475582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16338695A JP3475582B2 (en) 1995-06-29 1995-06-29 Non-contact high-frequency signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16338695A JP3475582B2 (en) 1995-06-29 1995-06-29 Non-contact high-frequency signal transmission device

Publications (2)

Publication Number Publication Date
JPH0918393A JPH0918393A (en) 1997-01-17
JP3475582B2 true JP3475582B2 (en) 2003-12-08

Family

ID=15772909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16338695A Expired - Lifetime JP3475582B2 (en) 1995-06-29 1995-06-29 Non-contact high-frequency signal transmission device

Country Status (1)

Country Link
JP (1) JP3475582B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345850B2 (en) 2006-09-11 2009-10-14 ソニー株式会社 Communication system and communication apparatus
JP4345851B2 (en) 2006-09-11 2009-10-14 ソニー株式会社 Communication system and communication apparatus
JP4893483B2 (en) 2006-09-11 2012-03-07 ソニー株式会社 Communications system
EP1926223B1 (en) 2006-11-21 2018-02-28 Sony Corporation Communication system and communication apparatus
JP4923975B2 (en) 2006-11-21 2012-04-25 ソニー株式会社 Communication system and communication apparatus
JP4983418B2 (en) * 2007-06-13 2012-07-25 ソニー株式会社 Communication device
JP4403431B2 (en) 2007-06-14 2010-01-27 ソニー株式会社 Communication system and communication apparatus
JP4983425B2 (en) * 2007-06-18 2012-07-25 ソニー株式会社 Communication device
JP5083122B2 (en) * 2008-08-26 2012-11-28 ソニー株式会社 High frequency coupler and electric field signal radiating element
JP5981202B2 (en) * 2012-04-13 2016-08-31 古河電気工業株式会社 Power transmission system
JP5981203B2 (en) * 2012-04-16 2016-08-31 古河電気工業株式会社 Power transmission system

Also Published As

Publication number Publication date
JPH0918393A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
JP3114582B2 (en) Surface mount antenna and communication device using the same
EP0521511B1 (en) Back fire helical antenna
US4516097A (en) Apparatus and method for coupling r.f. energy through a mechanically rotatable joint
JP2653277B2 (en) Portable wireless communication device
JP3431045B2 (en) Circularly polarized loop antenna
JP3475582B2 (en) Non-contact high-frequency signal transmission device
EP0825672A3 (en) A dual frequency antenna
JPH0758858B2 (en) Helical antenna and method of manufacturing the same
JPH11511614A (en) Low internal modulation electromagnetic feed antenna for mobile phone
KR20000029757A (en) Bent-segment helical antenna
WO2006001180A1 (en) Circularly polarized loop antenna
JP3951488B2 (en) Distributed variable phase shifter
JP2002501705A (en) Filter tuning device and tuning plate using the same
JP4202393B2 (en) antenna
JP4346964B2 (en) Multifrequency T-shaped antenna
JP2830743B2 (en) Shield loop antenna
US6307508B1 (en) Flat antenna
JP4012414B2 (en) Dual frequency shared sleeve antenna
JPH0467363B2 (en)
JP2507935Y2 (en) Circularly polarized loop antenna
JP3434219B2 (en) antenna
JPH0652850B2 (en) Microstrip antenna
JPH0380603A (en) Microstrip antenna
JP3201696B2 (en) Non-contact rotary joint
JP3460031B2 (en) Spiral antenna

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 9