JP3473812B2 - Hydrotreatment of hydrocarbon oils - Google Patents

Hydrotreatment of hydrocarbon oils

Info

Publication number
JP3473812B2
JP3473812B2 JP24123696A JP24123696A JP3473812B2 JP 3473812 B2 JP3473812 B2 JP 3473812B2 JP 24123696 A JP24123696 A JP 24123696A JP 24123696 A JP24123696 A JP 24123696A JP 3473812 B2 JP3473812 B2 JP 3473812B2
Authority
JP
Japan
Prior art keywords
oil
hydrotreating
sulfur content
feed
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24123696A
Other languages
Japanese (ja)
Other versions
JPH1060455A (en
Inventor
正巳 塚越
一夫 出井
行雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP24123696A priority Critical patent/JP3473812B2/en
Publication of JPH1060455A publication Critical patent/JPH1060455A/en
Application granted granted Critical
Publication of JP3473812B2 publication Critical patent/JP3473812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素油の水素
化処理方法に関し、更に詳細には、相互に性状の異なる
複数油種の炭化水素油を原料油とし、水素化処理触媒を
収容した反応器に、随時、原料油の油種を切り換えて通
油して、低い硫黄含有率の生成油を得る、炭化水素油の
水素化処理方法、及び、水素化処理条件を変更して同じ
炭化水素油を水素化処理する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating a hydrocarbon oil, and more specifically, a hydrotreating catalyst containing a plurality of hydrocarbon oils having different properties as a feedstock and containing a hydrotreating catalyst. Hydrocarbon oil hydrotreating method, in which the oil type of the feedstock oil is switched to pass through the reactor at any time to obtain a product oil having a low sulfur content, and the same carbonization is performed by changing the hydrotreating conditions. The present invention relates to a method for hydrotreating hydrogen oil.

【0002】[0002]

【従来の技術】ディーゼルエンジン用燃料等に使用され
る軽油は、原油の常圧蒸留により得られる特定の沸点範
囲の直留軽油留分、或いは重質油を分解して得られる分
解軽油留分等を水素化処理することにより、又は未水素
化処理軽油留分に水素化処理した軽油留分をブレンドす
ることにより製造されている。軽油留分を水素化処理す
る理由は、それにより、軽油留分の硫黄含有率を低下さ
せると共に併せてディーゼルエンジン用燃料等としての
性状、例えば色相、セタン価等を改善するためである。
2. Description of the Related Art Light oil used as fuel for diesel engines is a straight-run light oil fraction having a specific boiling range obtained by atmospheric distillation of crude oil, or a cracked light oil fraction obtained by decomposing heavy oil. And the like, or by blending an unhydrogenated gas oil fraction with a hydrotreated gas oil fraction. The reason for hydrotreating the gas oil fraction is that it reduces the sulfur content of the gas oil fraction and at the same time improves the properties as a fuel for diesel engines, such as hue and cetane number.

【0003】ところで、水素化処理装置に軽油留分を通
油して水素化処理する場合、長期間にわたり原料油とし
て同じ性状の軽油留分を水素化処理装置に通油すること
は、現実には難しい。それは、第1には、常圧蒸留装置
にて原油を分留して直留軽油留分を得る原油の常圧蒸留
工程において、常圧蒸留装置に導入する原油が、長期間
にわたり、必ずしも同じ油田から採油した原油とは限ら
ず、寧ろ、一般には、種々の油田から得た性状の異なる
原油を短期間づつ導入して運転するため、得た直留軽油
留分の性状が変動するからである。第2には、原料油と
して水素化処理装置に導入する軽油留分が必ずしも直留
軽油留分とは限らず、種々の軽油留分、例えば種々の性
状の重質油を分解して得た接触分解軽油、熱分解軽油等
であるからである。そこで、軽油留分の水素化処理で
は、一般には、このような相互に性状の異なる複数油種
の軽油留分を原料油とし、水素化処理触媒を収容した反
応器に、随時、原料油の油種を切り換えて通油して水素
化処理を行い、硫黄含有率の低い生成油を得ている。な
お、本明細書で、随時とは、「生産計画に応じて適宜
に、」とか「原料油の貯蔵量に必要に応じて適宜に、」
位の意味である。
[0003] By the way, when the gas oil fraction is passed through the hydrotreating apparatus for hydrotreatment, it is actually necessary to pass the gas oil fraction having the same properties as the feedstock oil to the hydrotreating apparatus for a long period of time. Is difficult First, in the atmospheric distillation step of crude oil to obtain a straight-run light oil fraction by fractionating crude oil in an atmospheric distillation apparatus, the crude oil introduced into the atmospheric distillation apparatus is always the same for a long period of time. This is not limited to the crude oil collected from the oil field, but in general, since the crude oil with different properties obtained from various oil fields is introduced and operated for a short period of time, the properties of the straight-run light oil fraction obtained vary. is there. Secondly, the gas oil fraction introduced into the hydrotreating apparatus as a feedstock is not necessarily a straight-run gas oil fraction, but was obtained by decomposing various gas oil fractions, for example, heavy oil of various properties. This is because it is a catalytically cracked gas oil, a thermally cracked gas oil or the like. Therefore, in the hydrotreating of a light oil fraction, generally, such a light oil fraction of a plurality of oil types having mutually different properties is used as a feedstock oil, and a reactor containing a hydrotreating catalyst is used to feed the feedstock oil at any time. The oil type is switched and the oil is passed through for hydrogenation to obtain a product oil with a low sulfur content. In the present specification, “as needed” means “appropriately according to the production plan” or “appropriately according to the storage amount of the feedstock,”
Is the meaning of rank.

【0004】軽油留分を水素化処理する際の水素化処理
条件は、原料油の性状によって、著しく異なる。例え
ば、反応温度を例にして説明すると、原料油の硫黄含有
率が高い場合、硫黄含有率の低い生成油を得るためには
反応温度を上げる必要がある。しかし、反応温度を上げ
過ぎると、生成油の色相が悪化し、ガス成分が増大して
軽油留分の収率が低下するという問題がある。逆に、原
料油の硫黄含有率が低い場合には反応温度を下げる必要
があるが、下げ過ぎると、生成油の硫黄含有率が高くな
る。更には、原料油の硫黄含有率及び生成油の硫黄含有
率が同じであっても、原料油の沸点範囲が高い方に広い
場合には、沸点範囲が低い方に広い場合より、反応温度
を上げる必要がある。一つの水素化処理装置に相互に異
なる種々の油種の原料油を切り換えて通油し、所定の硫
黄含有率の生成油を得るためには、その原料油の水素化
処理条件を最適な条件に設定することが必要である。さ
もないと、上述のように、却って、生成油の性状が悪く
なったり、また生成油の収率が低下したりするからであ
る。
The hydrotreating conditions for hydrotreating a gas oil fraction are significantly different depending on the properties of the feedstock. For example, taking the reaction temperature as an example, when the feedstock has a high sulfur content, it is necessary to raise the reaction temperature in order to obtain a product oil having a low sulfur content. However, if the reaction temperature is raised too high, the hue of the produced oil deteriorates, the gas component increases, and the yield of the light oil fraction decreases. Conversely, when the sulfur content of the feedstock is low, it is necessary to lower the reaction temperature, but if it is too low, the sulfur content of the produced oil will be high. Furthermore, even if the sulfur content of the feedstock and the sulfur content of the product oil are the same, when the boiling range of the feedstock is wide in the higher range, the reaction temperature is higher than that in the lower boiling range. Need to raise. In order to pass different feedstocks of different oil types to one hydrotreating equipment and pass through them to obtain a produced oil with a predetermined sulfur content, the hydrotreating conditions of the feedstocks should be optimized. It is necessary to set to. Otherwise, as described above, on the contrary, the properties of the produced oil will deteriorate, and the yield of the produced oil will decrease.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述のよう
に、水素化処理条件は原料油の性状によって著しく異な
るので、水素化処理条件を原料油に最適な条件に設定す
ることは、技術的に難しい作業であって、経験を必要と
している。更に言えば、原料油の油種に応じて水素化処
理条件を最適な値に演繹的にないしは論理的に設定する
手法が未だ確立されていないために、従来は、原料油の
切り換えに際し、水素化処理装置の担当技術者が、切り
換える原料油に対する水素化処理条件を徐々に変更し、
得られた生成油の性状を実測しながら設定を行ってい
た。そのために、原料油の切り換え時には、生成油の性
状が変動して、製品仕様を満足しない生成油が多量に流
出し、製品収率が低下するという問題があった。
However, as described above, since the hydrotreating conditions are remarkably different depending on the properties of the feedstock, it is technically difficult to set the hydrotreating conditions to the optimum conditions for the feedstock. It is a difficult task and requires experience. Furthermore, since there is no established method for deductively or logically setting the hydrotreating conditions to the optimum value according to the type of feedstock, conventionally, when switching the feedstock, the The engineer in charge of the chemical treatment equipment gradually changes the hydrotreatment conditions for the feedstock to be switched,
The setting was made while actually measuring the properties of the produced oil obtained. Therefore, when the raw material oil is switched, there is a problem that the properties of the produced oil fluctuate, a large amount of produced oil that does not satisfy the product specifications flows out, and the product yield decreases.

【0006】また、同じ軽油留分を水素化処理している
場合であっても、水素化処理条件の一部を変更すること
がしばしば必要になる。例えば、水素ガス源を変更した
ために水素分圧が多少変わったり、或いは軽油留分の導
入量を増減したりすることもある。更には、生成油の硫
黄含有率を変更する場合もある。水素化処理条件を変更
する際にも、他の水素化処理条件を最適な条件に設定す
る必要がある。しかし、従来は、原料油の切り換えの場
合と同様に、水素化処理装置の担当技術者が、切り換え
に際し、条件を徐々に変更し、得られた生成油の性状を
実測しながら水素化処理条件を設定していたために、原
料油の切り換えと同じ問題があった。
Even when the same gas oil fraction is hydrotreated, it is often necessary to change a part of the hydrotreatment conditions. For example, the hydrogen partial pressure may change slightly due to the change of the hydrogen gas source, or the introduction amount of the light oil fraction may increase or decrease. Furthermore, the sulfur content of the produced oil may be changed. When changing the hydrotreating conditions, it is necessary to set the other hydrotreating conditions to the optimum conditions. However, conventionally, as in the case of switching the feedstock oil, the engineer in charge of the hydrotreating device gradually changes the conditions during the switching and measures the hydroprocessing conditions while actually measuring the properties of the produced oil. Since it was set, there was the same problem as the switching of raw oil.

【0007】以上のような問題に照らして、本発明の目
的は、第1には、油種を切り換えて通油する炭化水素油
の水素化処理において、炭化水素油の油種を切り換える
際、最適な水素化処理条件で切り換えた炭化水素油を水
素化処理する方法を提供することであり、第2には同じ
油種の炭化水素油の水素化処理において、水素化処理条
件の一つを変更する際、他の水素化処理条件を最適な条
件に設定して水素化処理を行う方法を提供することであ
る。
In view of the above problems, the first object of the present invention is, firstly, when the oil type of the hydrocarbon oil is changed in the hydrotreating of the hydrocarbon oil which is changed and the oil is passed. A second object of the present invention is to provide a method for hydrotreating a hydrocarbon oil switched under optimum hydrotreatment conditions. Second, in hydrotreating hydrocarbon oils of the same oil type, one of the hydrotreatment conditions is It is an object of the present invention to provide a method of performing hydrotreatment by setting other hydrotreatment conditions to optimum conditions when changing.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、アレニウスの式、即ちk=A exp
〔−E/(RT)〕に基づいて運転データを整理するこ
とに着目し、研究と実験を重ねた結果、以下に上げる数
7から数9及び式(1)から式(4)に規定する実験式
を確立し、本発明を完成するに到った。なお、アレニウ
スの式において、kは反応速度定数、Aは頻度因子、E
は活性化エネルギー、Rは気体定数及びTは絶対温度を
言う。
In order to achieve the above-mentioned object, the present inventors have used the Arrhenius equation, that is, k = A exp.
Focusing on organizing driving data based on [-E / (RT)], as a result of repeated research and experiments, it is defined in the following Equations 7 to 9 and Equations (1) to (4). The empirical formula was established and the present invention was completed. In the Arrhenius equation, k is a reaction rate constant, A is a frequency factor, E
Is the activation energy, R is the gas constant and T is the absolute temperature.

【0009】以上の知見に基づき、上記目的を達成する
ために、本発明に係る炭化水素油の水素化脱硫処理方法
(以下、第1発明方法と言う)は、相互に性状の異なる
複数油種の炭化水素油を原料油とし、水素化処理触媒を
収容した反応器に、随時、原料油の油種を切り換えて通
油して、低い硫黄含有率の生成油を得る、炭化水素油の
水素化処理方法において、水素化処理条件として、反応
温度が300〜400℃の範囲、水素分圧が2.5〜1
0MPaの範囲、反応器の液空間速度が0.5〜5hr
-1の範囲、水素/原料油比(L/L)が100〜700
の範囲にあって、硫黄含有率及び式(2)又は式(3)
のいずれかにより算出したfFEEDが既知の任意の一の油
種の炭化水素油に切り換えるに際し、一の油種の炭化水
素油に適用する反応温度、水素分圧、液空間速度、水素
/原料油比、fH2S 、及び、生成油の硫黄含有率からな
る水素化処理条件のうちのいずれかを除いて他の全てを
設定するステップと、硫黄含有率及び式(2)又は式
(3)のいずれかにより算出したfFEEDが既知の基準原
料油に適用したそれぞれ既知の、反応温度、水素分圧、
液空間速度、水素/原料油比、fH2S 及び、生成油の硫
黄含有率の水素化処理条件に基づいて、以下の数7から
数9及び式(1)にそれぞれ規定する関係式に従い、一
の油種の炭化水素油に適用する上記除いた一の水素化処
理条件を算出するステップを有し、除いた一の水素化処
理条件を上記算出した値に設定して、一の油種の炭化水
素油の水素化処理を行うことを特徴としている。
Based on the above findings, in order to achieve the above object, the method for hydrodesulfurizing a hydrocarbon oil according to the present invention (hereinafter referred to as the first invention method) comprises a plurality of oil types having mutually different properties. The hydrocarbon oil is used as the feed oil, and the oil species of the feed oil is switched at any time to the reactor containing the hydrotreating catalyst to pass the oil to obtain a product oil having a low sulfur content. In the hydrogenation treatment method, as the hydrogenation treatment conditions, a reaction temperature is in the range of 300 to 400 ° C. and a hydrogen partial pressure is 2.5 to 1.
Range of 0 MPa, liquid hourly space velocity of the reactor is 0.5 to 5 hr
-1 range, hydrogen / feedstock ratio (L / L) is 100-700
And the sulfur content and the formula (2) or the formula (3)
When switching to a hydrocarbon oil of any one oil type of which f FEED calculated by any of the above is known, reaction temperature, hydrogen partial pressure, liquid hourly space velocity, hydrogen / raw material applied to the hydrocarbon oil of one oil type A step of setting all but one of the hydrotreating conditions consisting of the oil ratio, f H2S , and the sulfur content of the produced oil, and the sulfur content and the formula (2) or (3) F FEED calculated by any one of the known reaction temperature, hydrogen partial pressure applied to a known reference feedstock,
Based on the liquid space velocity, the hydrogen / feed oil ratio, f H2S, and the hydrotreating condition of the sulfur content of the produced oil, the following equations 7 to 9 and equations (1) The step of calculating the one hydroprocessing condition excluding the above applied to the hydrocarbon oil of the oil type of, and setting the hydroprocessing condition of the one excluding to the value calculated above, It is characterized in that a hydrocarbon oil is hydrotreated.

【数7】 [Equation 7]

【数8】 [Equation 8]

【数9】 ここで、数7から数9の式中、 T :温度(K) R :気体定数=8.313(J/mol/K) E :活性化エネルギー=125,000 (J/mol) k :反応速度定数 Sp :生成油硫黄含有率(質量%) Sf :原料油硫黄含有率(質量%) LHSV :液空間速度(h-1) PH2 :水素分圧(MPa) H2 /oil :水素/原料油比(L/L) fH2S :fH2S =1 /(1+0.06×C) 式(1) で規定されるガス中のH2 S濃度による係数 C はH2 S濃度(mol%)である。 fFEED :式(2)、又は式(3)で規定される原料油の性状による係数 Sf <1.1質量%において、 fFEED=exp(1.29−1.22×Sf ) 式(2) Sf ≧1.1質量%において、 fFEED=exp(7.11−0.18×Sf −0.023 ×D50) 式(3) 式(3)中、D50は原料油の50容量%留出温度(℃)である。 数7から数9の式中 添え字 0:基準原料油の既知の水素化処理条件 添え字 1:任意の一の油種の炭化水素油に適用する水素
化処理条件 をそれぞれ意味する。
[Equation 9] Here, T: temperature (K) R: gas constant = 8.313 (J / mol / K) E: activation energy = 125,000 (J / mol) k: reaction rate constant S p : Sulfur content rate of produced oil (mass%) S f : Sulfur content rate of feed oil (mass%) LHSV: Liquid hourly space velocity (h -1 ) PH 2 : Hydrogen partial pressure (MPa) H 2 / oil: Hydrogen / source oil Ratio (L / L) f H2S : f H2S = 1 / (1 + 0.06 × C) The coefficient C according to the H 2 S concentration in the gas defined by the formula (1) is the H 2 S concentration (mol%). . f FEED : Coefficient according to the properties of the feedstock oil defined by the formula (2) or the formula (3) S f <1.1% by mass, f FEED = exp (1.29-1.22 × S f ) Formula (2) S f ≧ At 1.1 mass%, f FEED = exp (7.11−0.18 × S f −0.023 × D 50 ) Formula (3) In Formula (3), D 50 is the 50 vol% distillation temperature (° C.) of the feedstock. Subscript 0 in the formulas of Equations 7 to 9: Known hydrotreating condition of reference feedstock Subscript 1: Means hydrotreating condition applied to hydrocarbon oil of any one oil type.

【0010】また、本発明に係る炭化水素油の別の水素
化脱硫処理方法(以下、第2発明方法と言う)は、第1
発明の炭化水素油の水素化処理方法において、式(2)
又は(3)に代えて、式(4)により基準原料油及び任
意の一の油種の炭化水素油のfFEEDを算出することを特
徴としている。ここで、fFEEDは、式(4)で規定され
る原料油の性状による係数であって、 fFEED=exp(2.1465−0.00226 ×D50−0.234 ×10-4×BT −0.336 ×10-4×DBT −1.65×10-4×C5-DBT −11.1×10-4×4-MDBT−3.94×10-4×4,6-DMDBT) 式(4) 式(4)中、 BT :原料油中のC2-DBT(DBTはシ゛ヘ゛ンソ゛チオフェン の略記、以下、同じ) 〜 C8-DBTに由来する硫黄含有率 DBT :原料油中のDBT〜C5-DBTに由来する硫黄含有率 (4-MDBT 、4,6-DMDBTは除く) C5-DBT :原料油中のC5-DBTより重質な硫黄化合物に由来する硫黄含有率 4-MDBT :原料油中の4-メチルシ゛ヘ゛ンソ゛チオフェンに由来する硫黄含有率 4,6-DMDBT :原料油中の4,6-シ゛メチルシ゛ヘ゛ンソ゛チオフェンに由来する硫黄含有率 であり、単位はそれぞれ質量ppmである。
Another method for hydrodesulfurization of hydrocarbon oil according to the present invention (hereinafter referred to as the second invention method) is the first method.
In the method for hydrotreating a hydrocarbon oil of the invention, the formula (2)
Alternatively, in place of (3), the formula (4) is used to calculate f FEED of the reference stock oil and the hydrocarbon oil of any one oil type. Here, f FEED is a coefficient according to the properties of the feedstock oil defined by the formula (4), and f FEED = exp (2.1465-0.00226 × D 50 -0.234 × 10 -4 × BT -0.336 × 10 -4 × DBT −1.65 × 10 -4 × C 5 -DBT −11.1 × 10 -4 × 4-MDBT−3.94 × 10 -4 × 4,6-DMDBT) Formula (4) In formula (4), BT: feedstock oil C 2 -DBT (DBT is abbreviated dibenzothiophene, hereinafter the same) ~ C 8 sulfur content from -DBT DBT in: sulfur content derived from DBT~C 5 -DBT in the feedstock (4- MDBT and 4,6-DMDBT are excluded) C 5 -DBT: Sulfur content derived from a heavier sulfur compound than C 5 -DBT in the feedstock 4-MDBT: Derived from 4-methylbenzenesothiophene in the feedstock Sulfur content of 4,6-DMDBT: Sulfur content derived from 4,6-dimethyldibenzobenzothiophene in the feed oil, and the unit is mass ppm.

【0011】更に、本発明に係る炭化水素油の別の水素
化脱硫処理方法(以下、第3発明方法と言う)は、水素
化処理触媒の存在下で水素化処理を施して、低い硫黄含
有率の生成油を得る炭化水素油の水素化処理方法におい
て、水素化処理条件として、反応温度が300〜400
℃の範囲、水素分圧が2.5〜10MPaの範囲、反応
器の液空間速度が0.5〜5hr-1の範囲、水素/原料
油比(L/L)が100〜700の範囲にあって、炭化
水素油の水素化処理条件のいずれか一つを上記範囲内で
変更するに際し、変更する一つの水素化処理条件以外の
反応温度、水素分圧、液空間速度、水素/原料油比、f
H2S 、及び、生成油の硫黄含有率からなる水素化処理条
件のうちのいずれかを除いて他の全てを設定するステッ
プと、変更前のそれぞれ既知の、反応温度、水素分圧、
液空間速度、水素/原料油比、fH2S 及び、生成油の硫
黄含有率の水素化処理条件に基づいて、以下の数10か
ら数12及び式(1)にそれぞれ規定する関係式に従
い、一の油種の炭化水素油に適用する上記除いた一の水
素化処理条件を算出するステップを有し、除いた一の水
素化処理条件を上記算出した値に設定して、一の油種の
炭化水素油の水素化処理を行うことを特徴としている。
Further, another method for hydrodesulfurization of hydrocarbon oil according to the present invention (hereinafter referred to as the third invention method) is a hydrotreating treatment in the presence of a hydrotreating catalyst to obtain a low sulfur content. In the method for hydrotreating a hydrocarbon oil, the reaction temperature is 300 to 400 as a hydrotreating condition.
In the range of ℃, hydrogen partial pressure of 2.5 to 10 MPa, reactor liquid hourly space velocity of 0.5 to 5 hr −1 , and hydrogen / feed oil ratio (L / L) of 100 to 700. Therefore, when any one of the hydrotreating conditions of the hydrocarbon oil is changed within the above range, the reaction temperature, hydrogen partial pressure, liquid space velocity, hydrogen / feed oil other than the one hydrotreating condition to be changed Ratio, f
H2S , and the step of setting all the other except any one of the hydrotreating conditions consisting of the sulfur content of the product oil, and each known reaction temperature before change, hydrogen partial pressure,
Based on the liquid space velocity, the hydrogen / feed oil ratio, f H2S, and the hydrotreating conditions of the sulfur content of the produced oil, the following equations 10 to 12 and equations (1) below The step of calculating the one hydroprocessing condition excluding the above applied to the hydrocarbon oil of the oil type of, and setting the hydroprocessing condition of the one excluding to the value calculated above, It is characterized in that a hydrocarbon oil is hydrotreated.

【数10】 [Equation 10]

【数11】 [Equation 11]

【数12】 ここで、数10から数12の式中、 T :温度(K) R :気体定数=8.313(J/mol/K) E :活性化エネルギー=125,000 (J/mol) k :反応速度定数 Sp :生成油硫黄含有率(質量%) Sf :原料油硫黄含有率(質量%) LHSV :液空間速度(h-1) PH2 :水素分圧(MPa) H2 /oil :水素/原料油比(L/L) fH2S :fH2S =1 /(1+0.06×C) 式(1) で規定されるガス中のH2 S濃度による係数 C :H2 S濃度(mol%) 数10から数12の式中 添え字 0:変更前の既知の水素化処理条件 添え字 1:変更する水素化処理条件 をそれぞれ意味する。[Equation 12] Here, in the equations 10 to 12, T: temperature (K) R: gas constant = 8.313 (J / mol / K) E: activation energy = 125,000 (J / mol) k: reaction rate constant S p : Sulfur content rate of produced oil (mass%) S f : Sulfur content rate of feed oil (mass%) LHSV: Liquid hourly space velocity (h -1 ) PH 2 : Hydrogen partial pressure (MPa) H 2 / oil: Hydrogen / source oil Ratio (L / L) f H2S : f H2S = 1 / (1 + 0.06 × C) Coefficient C by the H 2 S concentration in the gas defined by the formula (1) C: H 2 S concentration (mol%) Number 10 To the subscripts 0 to 12 in the formula, the known hydrotreating conditions before the change are added 1: The hydrotreating conditions to be changed are meant.

【0012】本発明で対象とする炭化水素油とは、沸点
範囲が160〜400℃で、原油を常圧蒸留して得た直
留軽油、重質油をそれぞれ接触分解、熱分解、水素化処
理、及び脱硫処理し、次いで分留して得た、接触分解軽
油、熱分解軽油、水素化処理軽油、脱硫処理軽油、更に
はそれらの混合物を包含するものである。また、本発明
で言う生成油とは、硫黄分0.2質量%以下の生成油を
指す。本発明方法の数1、数4、数7及び数10で使用
するR(活性化エネルギー)は、反応メカニズム及び反
応温度に依存する定数であって、軽油留分の水素化処理
の場合、20,000〜40,000cal /mol の範囲
にある。実用的には、30,000cal /mol 、即ち1
25,000J /molで良い。
The hydrocarbon oil which is the object of the present invention has a boiling point range of 160 to 400 ° C., and straight-run light oil and heavy oil obtained by atmospheric distillation of crude oil are subjected to catalytic cracking, thermal cracking and hydrogenation, respectively. It includes catalytically cracked gas oil, thermally cracked gas oil, hydrotreated gas oil, desulfurized gas oil, and mixtures thereof obtained by treatment, desulfurization, and fractional distillation. Further, the product oil referred to in the present invention refers to a product oil having a sulfur content of 0.2% by mass or less. R (activation energy) used in the number 1, number 4, number 7 and number 10 of the method of the present invention is a constant that depends on the reaction mechanism and the reaction temperature, and is 20 in the case of hydrotreatment of gas oil fraction. It is in the range of 1,000 to 40,000 cal / mol. Practically, 30,000 cal / mol, that is, 1
25,000 J / mol is sufficient.

【0013】式中の硫黄化合物組成の値は、原子吸光検
出器付きガスクロマトグラフ(Hewlett Packard 5921A
)により求めた。硫黄化合物のピークの帰属は、T.KAB
E、SEKIYU GAKKAISHI VOL.36(NO.6),467-471(1993) に
記載の方法により行った。また、D50は、50容量%留
出温度を表し、JIS K2254に準拠した方法によ
り求める。更に、原料油中には数十種類の硫黄化合物が
含まれるため、式(4)を適用してfFEEDを求める場合
には、次のように5種類に分類した。 BT ;C2 −ベンゾチオフェン〜C8 −ベンゾチオフェン DBT ;ジベンゾチオフェン〜C5 −ジベンゾチオフェン (4−MDBT、4,6−DMDBTは除く) C5 −DBT ;C5 −ベンゾチオフェンより重質の硫黄化合物 4−MDBT ;4−メチルジベンゾチオフェン 4,6−DMDBT;4,6−ジメチルジベンゾチオフェン
The value of the sulfur compound composition in the formula is determined by a gas chromatograph (Hewlett Packard 5921A) equipped with an atomic absorption detector.
). The sulfur compound peaks are assigned by T.KAB
E, SEKIYU GAKKAISHI VOL.36 (NO.6), 467-471 (1993). Further, D 50 represents a 50% by volume distillation temperature and is determined by a method according to JIS K2254. Further, since dozens of types of sulfur compounds are contained in the feedstock oil, when f FEED is obtained by applying the formula (4), it is classified into 5 types as follows. BT; C 2 - benzothiophene -C 8 - benzothiophene DBT; dibenzothiophene -C 5 - dibenzothiophene (4-MDBT, 4,6-DMDBT excluding) C 5 -DBT; C 5 - than benzothiophene heavy Sulfur compound 4-MDBT; 4-methyldibenzothiophene 4,6-DMDBT; 4,6-dimethyldibenzothiophene

【0014】本発明の水素化処理に用いる触媒は、特に
限定されるものではなく、通常の水素化処理触媒であれ
ば使用できる。触媒の担体として、種々のものが使用で
き、例えばシリカ、アルミナ、ボリア、マグネシア、チ
タニア、シリカ−アルミナ、シリカ−マグネシア、シリ
カ−ジルコニア、シリカ−トリア、シリカ−ベリリア、
シリカ−チタニア、シリカ−ボリア、アルミナ−ジルコ
ニア、アルミナ−チタニア、アルミナ−ボリア、アルミ
ナ−クロミア、チタニア−ジルコニア、シリカ−アルミ
ナ−トリア、シリカ−アルミナ−ジルコニア、シリカ−
アルミナ−マグネシア、シリカ−マグネシア−ジルコニ
アなど、又はこれらの2種以上の混合物が挙げられる。
これらの無機酸化物のうち、好ましいものとしては、ア
ルミナ、シリカ−アルミナ、アルミナ−チタニア、アル
ミナ−ボリア、アルミナ−ジルコニアが挙げられ、特に
好ましくは、アルミナが挙げられる。これらの無機酸化
物は、1種単体で用いてもよいし、2種以上を組み合わ
せて用いてもよい。
The catalyst used in the hydrotreating of the present invention is not particularly limited, and any ordinary hydrotreating catalyst can be used. As the catalyst carrier, various ones can be used, for example, silica, alumina, boria, magnesia, titania, silica-alumina, silica-magnesia, silica-zirconia, silica-tria, silica-berrillia,
Silica-titania, silica-boria, alumina-zirconia, alumina-titania, alumina-boria, alumina-chromia, titania-zirconia, silica-alumina-tria, silica-alumina-zirconia, silica-
Alumina-magnesia, silica-magnesia-zirconia, or the like, or a mixture of two or more thereof.
Among these inorganic oxides, preferred are alumina, silica-alumina, alumina-titania, alumina-boria, and alumina-zirconia, and particularly preferred is alumina. These inorganic oxides may be used alone or in combination of two or more.

【0015】上記担体に活性成分として含有させる金属
は、元素周期律表第6族金属及び第8族金属の中から選
ばれる少なくとも1種類以上の金属を含むもので、好ま
しくはモリブデン、タングステン、コバルト及びニッケ
ルの金属及びそれを含む化合物である。これらの金属成
分は、金属状態又は金属酸化物、金属硫化物の何れの形
態でも有効であり、また、イオン交換などにより金属成
分が触媒担体と結合した形態で存在してもよい。この金
属成分の含有量は、触媒基準かつ酸化物換算で、約10
〜25質量%の範囲内にあることが必要である。金属含
有量が10質量%より少ないと、活性点として働く金属
の絶対量が少ないために、脱硫活性を始めてとする水素
化処理活性(以下、簡単に水素化処理活性と言う)が発
現せず、逆に担持される金属の含有量が25質量%より
多すぎると、金属の凝集が起こり活性点の数が減少し、
その結果、水素化処理活性が却って低下するからであ
る。更に、必要に応じて、元素周期律表第6族金属及び
第8族金属からなる活性金属に加えて、リン、ホウ素、
亜鉛、ジルコニア等を含ませることができる。本発明方
法を適用するに当たり、触媒層の形態には制約はなく、
例えば固定床、移動床、流動床等の触媒層の反応器に適
用できる。
The metal to be contained in the carrier as an active ingredient contains at least one metal selected from Group 6 metals and Group 8 metals of the Periodic Table of Elements, preferably molybdenum, tungsten and cobalt. And a metal of nickel and a compound containing the same. These metal components are effective in any form of a metal state, a metal oxide, and a metal sulfide, and may be present in a form in which the metal component is bound to the catalyst carrier by ion exchange or the like. The content of this metal component is about 10 in terms of catalyst and in terms of oxide.
It is necessary to be within the range of 25 mass%. When the metal content is less than 10% by mass, the absolute amount of the metal acting as an active site is small, so that hydrotreating activity including desulfurization activity (hereinafter simply referred to as hydrotreating activity) is not expressed. On the contrary, if the content of the supported metal is more than 25% by mass, the aggregation of the metal occurs and the number of active sites decreases,
As a result, the hydrotreating activity is rather reduced. Further, if necessary, in addition to an active metal composed of a metal of Group 6 and a metal of Group 8 of the Periodic Table of Elements, phosphorus, boron,
Zinc, zirconia, etc. can be included. In applying the method of the present invention, there is no restriction on the form of the catalyst layer,
For example, it can be applied to a reactor having a catalyst bed such as a fixed bed, a moving bed or a fluidized bed.

【0016】本発明の水素化処理方法では、水素化処理
条件として、水素分圧が2.5〜10MPa、好ましく
は3〜7MPaの範囲であり、温度が300〜400
℃、好ましくは320〜380℃の範囲であり、液空間
速度が0.5〜5hr-1、好ましくは0.7〜2hr-1
の範囲であり、水素/原料油比が100〜700L/
L、好ましくは150〜400L/Lの範囲である。
In the hydrotreating method of the present invention, the hydrogenation conditions are a hydrogen partial pressure of 2.5 to 10 MPa, preferably 3 to 7 MPa, and a temperature of 300 to 400.
C., preferably in the range of 320 to 380.degree. C., and liquid hourly space velocity of 0.5 to 5 hr.sup.- 1 , preferably 0.7 to 2 hr.sup.- 1.
And the hydrogen / feed oil ratio is 100 to 700 L /
L, preferably in the range of 150 to 400 L / L.

【0017】水素分圧が2.5MPa未満であると、触
媒の水素化処理活性が低下すると共に生成油の色相も悪
化し、逆に10MPaを超えると、設備の耐圧が高くな
って、設備費が嵩み、また動力費も高くなって、不経済
になる。反応温度が300℃未満であると、触媒の脱硫
活性が低く、400℃を超えると、脱硫活性が飽和する
ために温度を上げても脱硫効果が向上しないばかりでな
く、生成油の色相が悪化し、しかも設備費と運転費が嵩
む。液空間速度が5hr-1を超えると、触媒と原料油の
接触時間が短くなりすぎ、脱硫反応が十分行われないた
めに生成油の残留硫黄分が多くなり、0.5hr-1未満
では必要以上に接触時間が長くなりすぎ、処理効率が低
下する。水素/原料油比が100L/L未満であると、
十分に脱硫反応が進まず、逆に700L/Lを超える
と、過剰の水素を消費することになるので、処理コスト
が増大し不経済である。
When the hydrogen partial pressure is less than 2.5 MPa, the hydrotreating activity of the catalyst is lowered and the hue of the produced oil is deteriorated. On the contrary, when it exceeds 10 MPa, the pressure resistance of the equipment becomes high and the equipment cost becomes low. Becomes expensive, and the power cost becomes high, which is uneconomical. If the reaction temperature is lower than 300 ° C, the desulfurization activity of the catalyst is low. If the reaction temperature is higher than 400 ° C, the desulfurization activity is saturated and the desulfurization effect is not improved even if the temperature is raised, and the hue of the produced oil is deteriorated. In addition, equipment costs and operating costs increase. When the liquid hourly space velocity exceeds 5 hr -1, the contact time of the catalyst and feedstock too short, the desulfurization reaction is much residual sulfur content of the product oil in order not sufficiently performed, required is less than 0.5 hr -1 As described above, the contact time becomes too long and the processing efficiency decreases. If the hydrogen / feed oil ratio is less than 100 L / L,
If the desulfurization reaction does not proceed sufficiently and conversely exceeds 700 L / L, an excessive amount of hydrogen will be consumed, resulting in increased processing cost and being uneconomical.

【0018】第1発明方法は、相互に性状の異なる複数
油種の炭化水素油を原料油とし、水素化処理触媒を収容
した反応器に、随時、原料油の油種を切り換えて通油し
て、低い硫黄含有率の生成油を得る、炭化水素油の水素
化処理において、任意の一の油種の炭化水素油に切り換
えるに際し、切り換えられる炭化水素油に最適の水素化
処理条件を特定した実験式により演繹的に算出する。基
準原料油及び任意の一の油種の炭化水素油のfFEEDを算
出する際に、式(2)は、原料油の硫黄含有率が1.1
質量%より低い場合に適用し、式(3)は原料油の硫黄
含有率が1.1質量%又はそれ以上の場合に適用する。
第2発明は、基準原料油及び任意の一の油種の炭化水素
油のfFEEDを算出する際に、第1発明で使用する式
(2)又は式(3)に代えて、原料油の硫黄含有率とは
無関係に、式(4)を使用する。第1及び第2発明方法
を適用することにより、水素化処理条件を演繹的に算出
できるので、原料油切替え時の不合格製品の量を低減し
て、経済的かつ効率的に低硫黄含有率で色相等の品質良
好な生成油を製造できる。
In the method of the first invention, a hydrocarbon oil of a plurality of oil types having different properties from each other is used as a feedstock oil, and the feedstock oil type is switched to pass through a reactor containing a hydrotreating catalyst at any time. Thus, in hydroprocessing of hydrocarbon oils to obtain a product oil having a low sulfur content, when switching to a hydrocarbon oil of any one oil type, the optimum hydroprocessing conditions for the switched hydrocarbon oils were specified. It is calculated a priori using an empirical formula. When calculating f FEED of the reference feedstock and the hydrocarbon oil of any one of the oil types, the formula (2) shows that the sulfur content of the feedstock is 1.1.
The formula (3) is applied when the sulfur content of the feedstock is 1.1% by mass or more, when it is lower than 1% by mass.
The second invention is to replace the formula (2) or the formula (3) used in the first invention when calculating f FEED of the reference feedstock and the hydrocarbon oil of any one oil type, and Equation (4) is used regardless of the sulfur content. By applying the first and second invention methods, the hydrotreating conditions can be calculated a priori, so that the amount of rejected products at the time of switching the feedstock oil can be reduced, and the sulfur content can be reduced economically and efficiently. Thus, it is possible to produce a produced oil having a good quality such as hue.

【0019】第3発明方法は、同じ油種の炭化水素油を
原料油として水素化処理している過程で水素化処理条件
を再設定する必要が生じた場合、例えば反応温度、水素
分圧、液空間速度、水素/原料油比、fH2S 、及び、生
成油の硫黄含有率からなる水素化処理条件のうちのいず
れかを特定の値に変更する必要が生じた場合、その水素
化処理条件をその値に変更し、かつ変更した水素化処理
条件以外の水素化処理の一つを除いて再設定し、例えば
変更前と同じ値に再設定し、除いた一つの水素化処理条
件を特定した実験式により演繹的に算出する。本発明方
法を適用することにより、除いた一つの水素化処理条件
を演繹的に算出できるので、水素化処理条件の変更時の
不合格製品の量を低減して、経済的かつ効率的に低硫黄
含有率で色相等の品質良好な生成油を製造できる。
In the method of the third invention, when it is necessary to reset the hydrotreating conditions in the course of hydrotreating the hydrocarbon oil of the same oil type as the feedstock, for example, reaction temperature, hydrogen partial pressure, When it becomes necessary to change any of the hydrotreating conditions consisting of liquid hourly space velocity, hydrogen / feed oil ratio, f H2S , and sulfur content of the produced oil to a specific value, the hydrotreating conditions To that value, and reset except one of the hydrotreating conditions other than the changed hydrotreating conditions, for example, reset to the same value as before the change, and specify one excluded hydrotreating condition. It is calculated a priori by the empirical formula. By applying the method of the present invention, one excluded hydrotreatment condition can be calculated a priori, so the amount of rejected products at the time of changing the hydrotreatment condition can be reduced, and the cost can be reduced economically and efficiently. With the sulfur content, it is possible to produce a product oil with good quality such as hue.

【0020】[0020]

【発明の実施の形態】以下に、実施例を挙げ、添付図面
を参照して、本発明の実施の形態を具体的かつ詳細に説
明する。本発明方法の実施装置の例 実施装置の例として、図1に模式的に示すような商業生
産用の既知の固定床方式高圧流通式反応装置10を挙げ
ることができる。反応装置10では、原料油の導入ライ
ンで原料油と水素含有ガスとを混合して混合流体を形成
し、熱交換器12で生成油と熱交換して混合流体を予熱
し、更に加熱装置14で混合流体を所定温度に加熱し
て、反応器16の上部に導入する。反応器16は、触媒
としてCo−Mo/Al2 3 (CoO:MoO3
5:20質量%)の既知の脱硫触媒を充填した固定床触
媒層を有する。反応器16内で原料油に水素化処理を施
し、反応器16の下部から生成油とガスとの混合生成物
を流出させ、熱交換器12で降温し、更に冷却器18で
冷却した後、気液分離器20で生成油とガスとに分離す
る。分離されたガスは圧縮器22で圧縮された後、補給
用の水素含有ガスと共に再び原料油に混合され、一方、
生成油は次の処理工程に送出される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Example of Implementing Device of the Method of the Present Invention As an example of the implementing device, there is a known fixed bed type high pressure flow reactor 10 for commercial production as schematically shown in FIG. In the reaction device 10, the raw material oil and the hydrogen-containing gas are mixed in the feed oil introduction line to form a mixed fluid, and the heat exchanger 12 exchanges heat with the produced oil to preheat the mixed fluid, and further the heating device 14 The mixed fluid is heated to a predetermined temperature and introduced into the upper part of the reactor 16. The reactor 16, Co-Mo / Al 2 O 3 as a catalyst (CoO: MoO 3 =
5: 20% by mass) of a known desulfurization catalyst. The feedstock oil is hydrotreated in the reactor 16, a mixed product of the produced oil and gas is allowed to flow out from the lower portion of the reactor 16, the temperature is lowered by the heat exchanger 12, and further cooled by the cooler 18, The gas-liquid separator 20 separates the produced oil and gas. The separated gas is compressed by the compressor 22, and then mixed with the feedstock oil again together with the supplementary hydrogen-containing gas.
The produced oil is sent to the next processing step.

【0021】実施例1 上述の実施装置10を使用し、以下のように、本発明方
法を実施して、その結果を解析し、本発明方法を評価し
た。実施に供した原料軽油は、常圧蒸留装置から得た直
留軽油であって、その性状は表1に示す通りである。ま
た、式(3)によりパラメータfFEEDを算出する際に使
用する原料油A〜Dの硫黄化合物の組成及び含有率(質
量ppm )は、表2に示す通りであった。
Example 1 The method of the present invention was carried out as follows using the above-described apparatus 10, and the results were analyzed to evaluate the method of the present invention. The feed gas oil used in the implementation was straight-run gas oil obtained from an atmospheric distillation apparatus, and its properties are shown in Table 1. Table 2 shows the composition and content (mass ppm) of the sulfur compounds of the feed oils A to D used when calculating the parameter f FEED by the formula (3).

【表1】 [Table 1]

【表2】 [Table 2]

【0022】実施例1は、第1発明方法及び第3発明方
法の実施例であって、実施例1の水素化処理条件を表3
のように設定した。実施例1では、先ず、基準原料油と
して原料油Cを選択し、反応装置10に導入し、反応器
16の反応温度をステップ昇温し、生成油の硫黄含有率
が0.1質量%になるように反応温度を調節した。その
結果、表4に示す実測温度、333.9℃で生成油の硫
黄含有率を0.1質量%にすることができた。
Example 1 is an example of the method of the first invention and the method of the third invention, and the hydrotreating conditions of Example 1 are shown in Table 3.
It was set like. In Example 1, first, the raw material oil C was selected as the reference raw material oil, introduced into the reaction apparatus 10, and the reaction temperature of the reactor 16 was stepwise increased to bring the sulfur content of the produced oil to 0.1% by mass. The reaction temperature was adjusted so that As a result, the sulfur content of the produced oil could be set to 0.1% by mass at the actual measurement temperature shown in Table 4 of 333.9 ° C.

【0023】 表3 水素化処理条件 圧力(水素分圧) :3.4MPa 液空間速度 :1.5hr-1 水素/原料油比 :170L/L ガス中の硫化水素濃度 :3mol% 触媒の前処理条件 圧力 :3.4MPa 雰囲気 :硫化水素/水素の混合ガス流通下 温度 :ステップ昇温 100℃にて2hr 250℃にて2hr 350℃にて2hr Table 3 Conditions for hydrotreatment (hydrogen partial pressure): 3.4 MPa Liquid space velocity: 1.5 hr -1 Hydrogen / feed oil ratio: 170 L / L Hydrogen sulfide concentration in gas: 3 mol% Pretreatment of catalyst Conditions Pressure: 3.4 MPa Atmosphere: Under mixed gas flow of hydrogen sulfide / hydrogen Temperature: Step temperature increase 2 hours at 100 ° C. 2 hours at 250 ° C. 2 hours at 350 ° C.

【0024】次いで、第1発明方法の実施例として、実
施番号1では、原料油の油種を原料油Aに切り換えた。
切り換えに当たっては、原料油Aの水素化処理条件のう
ち反応温度を除く水素化処理条件は、全て原料油Cの水
素化処理条件と同じ値に設定し、かつ表1の原料油硫黄
含有率及び50%留出温度から原料油CのfFEEDを式
(3)で算出した。そして、表3及び表4に示す原料油
Cの水素化処理条件と、表1の原料油硫黄含有率及び5
0%留出温度から算出したfFEEDとを基準原料油の水素
化処理条件とし、設定した原料油Aの水素化処理条件に
基づいて、前述した数7から数9並びに式(1)及び式
(3)の関係に従い、表4の予測温度の欄に示すよう
に、原料油Aに対する反応温度T1 を342.9℃と算
出した。そして、反応器16の温度を342.9℃に調
整した上で原料油Aの水素化処理を行った。得た生成油
の硫黄含有率が0.1質量%より僅かに小さかったの
で、次いで生成油の硫黄含有率が0.1質量%になるよ
うに反応器16での温度を調整した。その結果、33
9.0℃で生成油の硫黄含有率を0.1質量%にするこ
とができた。この温度は、表4で実測温度の欄に記載さ
れている。
Next, as an example of the method of the first invention, in Example No. 1, the feedstock oil type was switched to the feedstock oil A.
In switching, the hydrotreating conditions except the reaction temperature among the hydrotreating conditions of the feedstock A are all set to the same values as the hydrotreating conditions of the feedstock C, and the sulfur content of the feedstock in Table 1 and F FEED of the stock oil C was calculated from the 50% distillation temperature by the formula (3). Then, the hydrotreating conditions of the feedstock C shown in Tables 3 and 4, the feedstock sulfur content of Table 1 and 5
F FEED calculated from the 0% distillation temperature is used as the hydrotreating condition of the standard feedstock A, and based on the set hydrotreating conditions of the feedstock A, the above-mentioned formulas 7 to 9 and the formulas (1) and According to the relationship of (3), as shown in the column of the predicted temperature in Table 4, the reaction temperature T 1 with respect to the feedstock A was calculated to be 342.9 ° C. Then, the temperature of the reactor 16 was adjusted to 342.9 ° C., and then the feed oil A was hydrotreated. Since the sulfur content of the obtained product oil was slightly lower than 0.1% by mass, the temperature in the reactor 16 was adjusted so that the sulfur content of the product oil was 0.1% by mass. As a result, 33
The sulfur content of the produced oil could be 0.1% by mass at 9.0 ° C. This temperature is shown in Table 4 in the column of measured temperature.

【表4】 以下、同様にして、表4に示すように、実施番号2、次
いで3では、それぞれ原料油B、原料油Dを原料油と
し、反応温度以外は同じ条件で、数7から数9並びに式
(1)及び式(3)の関係に従い、予測温度を求めた。
次いで、求めた予測温度になるように反応温度を調整し
て通油し、更に生成油の硫黄含有率が0.1質量%にな
るような実測温度を求めた。
[Table 4] In the same manner, as shown in Table 4, in Example Nos. 2 and 3, raw material oil B and raw material oil D are used as the raw material oils, respectively. The predicted temperature was obtained according to the relationship of 1) and the equation (3).
Next, the reaction temperature was adjusted so as to reach the obtained predicted temperature, and the oil was passed through, and the measured temperature was determined so that the sulfur content of the produced oil was 0.1% by mass.

【0025】また、第3発明方法の実施例として、実施
番号4から6では、原料油Bを原料油とし、実施番号2
に比べて、水素分圧、液空間速度及び水素/原料油比
(L/L比)のいずれかを変更し、そして前述の数10
から数12に従って予測温度を求めた。次いで、求めた
予測温度になるように反応温度を調整して通油し、更に
生成油の硫黄含有率が0.1質量%になるような実測温
度を求めた。第3発明方法の実施例として、更に、実施
番号7及び8では、原料油Dを原料油とし、実施番号3
に比べて、水素分圧、液空間速度及び水素/原料油比
(L/L比)のいずれかを変更し、そして前述の数10
から数12に従って予測温度を求めた。次いで、求めた
予測温度になるように反応温度を調整して通油し、更に
生成油の硫黄含有率が0.1質量%になるような実測温
度を求めた。
As an embodiment of the third invention method, in Embodiment Nos. 4 to 6, the stock oil B is used as the stock oil and the Embodiment No. 2 is used.
Compared with the above, any one of the hydrogen partial pressure, the liquid hourly space velocity and the hydrogen / feed oil ratio (L / L ratio) was changed, and
Then, the predicted temperature was obtained according to Equation 12. Next, the reaction temperature was adjusted so as to reach the obtained predicted temperature, and the oil was passed through, and the measured temperature was determined so that the sulfur content of the produced oil was 0.1% by mass. As an example of the method of the third invention, in Example Nos. 7 and 8, the stock oil D was used as the stock oil, and Example No. 3
Compared with the above, any one of the hydrogen partial pressure, the liquid hourly space velocity and the hydrogen / feed oil ratio (L / L ratio) was changed, and
Then, the predicted temperature was obtained according to Equation 12. Next, the reaction temperature was adjusted so as to reach the obtained predicted temperature, and the oil was passed through, and the measured temperature was determined so that the sulfur content of the produced oil was 0.1% by mass.

【0026】実施例1で得た予測温度と実測温度の差
は、表4の最右欄に示すように、±10℃程度であっ
て、第1発明方法及び第2発明方法による予測温度が、
実際の反応温度と良く一致しており、第1発明方法及び
第3発明方法の効果が著しいことを実証している。
The difference between the predicted temperature obtained in Example 1 and the actually measured temperature is about ± 10 ° C. as shown in the rightmost column of Table 4, and the predicted temperatures obtained by the first and second invention methods are ,
It is in good agreement with the actual reaction temperature, demonstrating that the effects of the first and third invention methods are remarkable.

【0027】実施例2 実施例2は、第2発明方法及び第3発明方法の実施例で
ある。実施例2では、実施例1の式(3)に代えて式
(4)を使用してfFEEDを算出したことを除いて、実施
例1と同様の実施装置を使用し、実施例1と同様にて第
2発明及び第3発明を実施した。基準の実施番号及び1
から10の実施番号で設定した水素化処理条件と求めた
予測温度及び実測温度は、表5に記載の通りである。
尚、式(3)のfFEEDを求めるに当たり、原料油中の硫
黄化合物の組成及び含有率は、表2に基づいている。実
施に際しては、第2発明方法の実施例として、実施番号
1から3では、実施例1と同様に原料油Cの水素化処理
条件を基準反応条件とし、原料油の油種を変更して、実
測温度を求めた。
Embodiment 2 Embodiment 2 is an embodiment of the second invention method and the third invention method. In Example 2, the same apparatus as in Example 1 was used, except that f FEED was calculated using Equation (4) instead of Equation (3) in Example 1, and Similarly, the second and third inventions were carried out. Standard implementation number and 1
Table 5 shows the hydrotreating conditions set with the execution numbers of 10 to 10 and the predicted temperature and measured temperature obtained.
The composition and content of the sulfur compound in the feedstock are based on Table 2 when determining f FEED in the formula (3). In carrying out the present invention, as Examples of the second invention method, in Examples Nos. 1 to 3, the hydrotreating conditions of the feedstock C were used as the reference reaction conditions, and the oil type of the feedstock was changed as in Example 1. The measured temperature was determined.

【表5】 [Table 5]

【0028】次いで、実施番号4から6では、第3発明
方法の実施例として、原料油Bを原料油とし、実施番号
2に比べて、水素分圧、液空間速度及び水素/原料油比
(L/L比)のいずれかを変更して予測温度を求めて通
油し、次いで、それぞれの場合の実測温度を求めた。更
に、実施番号7及び8では、原料油Dを原料油とし、第
3発明方法の実施例として、実施番号3に比べて、水素
分圧、液空間速度及び水素/原料油比(L/L比)のい
ずれかを変更して予測温度を求めて通油し、次いで、そ
れぞれの場合の実測温度を求めた。
Next, in Examples Nos. 4 to 6, as an example of the method of the third invention, using the stock oil B as the stock oil, compared with Example No. 2, the hydrogen partial pressure, the liquid hourly space velocity and the hydrogen / stock oil ratio ( (L / L ratio) was changed to obtain the predicted temperature and oil was passed, and then the actually measured temperature in each case was obtained. Further, in Embodiment Nos. 7 and 8, the feedstock oil D was used as the feedstock oil, and as compared with Embodiment No. 3 as an example of the method of the third invention, the hydrogen partial pressure, the liquid hourly space velocity and the hydrogen / feedstock ratio (L / L Ratio) was changed to obtain a predicted temperature and oil was passed, and then an actually measured temperature in each case was calculated.

【0029】実施例2で得た予測温度と実測温度の差
が、表5の最右欄に示すように、±5℃程度であって、
数4から数6並びに式(3)の関係に従って求めた予測
温度が、実際の反応温度と良く一致していることを実証
している。
As shown in the rightmost column of Table 5, the difference between the predicted temperature and the actually measured temperature obtained in Example 2 was about ± 5 ° C.,
It has been proved that the predicted temperature obtained according to the relationships of the equations (4) to (6) and the equation (3) is in good agreement with the actual reaction temperature.

【0030】[0030]

【発明の効果】本発明方法の構成によれば、任意の一の
油種の炭化水素油に切り換えるに際し、切り換えられた
炭化水素油に最適な水素化処理条件を、特定した範囲内
で特定した関係式により、演繹的に算出し、その水素化
処理条件で水素化処理を行うことができる。本発明方法
を適用することにより、原料油切替え時の不合格製品の
量を低減して、経済的かつ効率的に低い硫黄含有率で色
相等の品質良好な軽油留分を製造することができる。ま
た、同じ油種の原料油の水素化処理条件を変更するに際
し、最適の水素化処理条件を、特定した範囲内で特定し
た関係式により、演繹的に算出することができる。
According to the constitution of the method of the present invention, when switching to a hydrocarbon oil of any one oil type, the optimum hydrotreatment conditions for the switched hydrocarbon oil are specified within the specified range. It can be calculated a priori by the relational expression, and the hydrotreatment can be performed under the hydrotreatment conditions. By applying the method of the present invention, it is possible to reduce the amount of rejected products at the time of switching the feedstock, and economically and efficiently produce a gas oil fraction having good quality such as hue with a low sulfur content. . Further, when changing the hydrotreating conditions of the feedstock of the same oil type, the optimum hydrotreating conditions can be calculated a priori by the relational expression specified within the specified range.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び実施例2の実施装置のフローシー
トである。
FIG. 1 is a flow sheet of an execution apparatus of Examples 1 and 2.

【符号の説明】[Explanation of symbols]

10 固定床方式高圧流通式反応装置 12 熱交換器 14 加熱装置 16 反応器 18 冷却器 20 気液分離器 22 圧縮器 10 Fixed bed type high pressure flow reactor 12 heat exchanger 14 Heating device 16 reactor 18 Cooler 20 gas-liquid separator 22 Compressor

フロントページの続き (72)発明者 柴田 行雄 埼玉県幸手市権現堂1134−2 株式会社 コスモ総合研究所 研究開発センター内 (56)参考文献 特開 昭61−245846(JP,A) 特開 平7−256110(JP,A) 特開 平8−48981(JP,A) 特開 平8−71426(JP,A) 特開 平5−311179(JP,A) 特開 平8−295889(JP,A) 特表 平10−500713(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 45/02 - 45/32 C10G 45/72 C10G 47/36 C10G 49/26 Front page continuation (72) Inventor Yukio Shibata 1134-2 Gongendo, Satte City, Saitama Cosmo Research Institute Co., Ltd. Research and Development Center (56) Reference JP-A-61-245846 (JP, A) JP-A-7 -256110 (JP, A) JP-A-8-48981 (JP, A) JP-A-8-71426 (JP, A) JP-A-5-311179 (JP, A) JP-A-8-295889 (JP, A) ) Tokutei 10-500713 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C10G 45/02-45/32 C10G 45/72 C10G 47/36 C10G 49/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 相互に性状の異なる複数油種の炭化水素
油を原料油とし、水素化処理触媒を収容した反応器に、
随時、原料油の油種を切り換えて通油して、低い硫黄含
有率の生成油を得る、炭化水素油の水素化処理方法にお
いて、 水素化処理条件として、反応温度が300〜400℃の
範囲、水素分圧が2.5〜10MPaの範囲、反応器の
液空間速度が0.5〜5hr-1の範囲、水素/原料油比
(L/L)が100〜700の範囲にあって、硫黄含有
率及び式(2)又は式(3)のいずれかにより算出した
FEEDが既知の任意の一の油種の炭化水素油に切り換え
るに際し、 一の油種の炭化水素油に適用する反応温度、水素分圧、
液空間速度、水素/原料油比、fH2S 、及び、生成油の
硫黄含有率からなる水素化処理条件のうちのいずれかを
除いて他の全てを設定するステップと、 硫黄含有率及び式(2)又は式(3)のいずれかにより
算出したfFEEDが既知の基準原料油に適用したそれぞれ
既知の、反応温度、水素分圧、液空間速度、水素/原料
油比、fH2S 及び、生成油の硫黄含有率の水素化処理条
件に基づいて、以下の数1から数3及び式(1)にそれ
ぞれ規定する関係式に従い、一の油種の炭化水素油に適
用する上記除いた一の水素化処理条件を算出するステッ
プとを有し、 除いた一の水素化処理条件を上記算出した値に設定し
て、一の油種の炭化水素油の水素化処理を行うことを特
徴とする炭化水素油の水素化処理方法。 【数1】 【数2】 【数3】 ここで、数1から数3の式中、 T :温度(K) R :気体定数=8.313(J/mol/K) E :活性化エネルギー=125,000 (J/mol) k :反応速度定数 Sp :生成油硫黄含有率(質量%) Sf :原料油硫黄含有率(質量%) LHSV :液空間速度(h-1) PH2 :水素分圧(MPa) H2 /oil :水素/原料油比(L/L) fH2S :fH2S =1 /(1+0.06×C) 式(1) で規定されるガス中のH2 S濃度による係数 C はH2 S濃度(mol%)である。 fFEED :式(2)、又は式(3)で規定される原料油の性状による係数 Sf <1.1質量%において、 fFEED=exp(1.29−1.22×Sf ) 式(2) Sf ≧1.1質量%において、 fFEED=exp(7.11−0.18×Sf −0.023 ×D50) 式(3) 式(3)中、D50は原料油の50容量%留出温度(℃)である。 数1から数3の式中 添え字 0:基準原料油の既知の水素化処理条件 添え字 1:任意の一の油種の炭化水素油に適用する水素
化処理条件 をそれぞれ意味する。
1. A reactor containing a hydrotreating catalyst, wherein hydrocarbon oils of a plurality of oil types having mutually different properties are used as feedstocks,
At any time, in the hydrotreating method of a hydrocarbon oil, in which the oil type of the raw material oil is switched and passed to obtain a produced oil having a low sulfur content, the reaction temperature is in the range of 300 to 400 ° C. as the hydrotreating condition. The hydrogen partial pressure is in the range of 2.5 to 10 MPa, the liquid hourly space velocity of the reactor is in the range of 0.5 to 5 hr −1 , and the hydrogen / feed oil ratio (L / L) is in the range of 100 to 700, Reaction applied to a hydrocarbon oil of one oil type when switching to a hydrocarbon oil of any one oil type of which sulfur content and f FEED calculated by either equation (2) or equation (3) are known Temperature, hydrogen partial pressure,
A step of setting all but one of the hydrotreating conditions consisting of liquid hourly space velocity, hydrogen / feed oil ratio, f H2S , and sulfur content of the produced oil, and the sulfur content and the formula ( The known reaction temperature, hydrogen partial pressure, liquid hourly space velocity, hydrogen / feed oil ratio, f H2S, and production applied to a known reference feed oil for which f FEED calculated by either 2) or equation (3) is known. Based on the hydrotreating conditions of the sulfur content of the oil, according to the relational expressions respectively defined in the following formulas 1 to 3 and the formula (1), one of the above-mentioned ones applied to the hydrocarbon oil of one oil type is excluded. And a step of calculating hydroprocessing conditions, wherein the one hydroprocessing condition that is excluded is set to the value calculated above, and the hydroprocessing of hydrocarbon oil of one oil type is performed. Hydroprocessing method for hydrocarbon oil. [Equation 1] [Equation 2] [Equation 3] Here, in the formulas of the formulas 1 to 3, T: temperature (K) R: gas constant = 8.313 (J / mol / K) E: activation energy = 125,000 (J / mol) k: reaction rate constant S p : Sulfur content rate of produced oil (mass%) S f : Sulfur content rate of feed oil (mass%) LHSV: Liquid hourly space velocity (h -1 ) PH 2 : Hydrogen partial pressure (MPa) H 2 / oil: Hydrogen / source oil Ratio (L / L) f H2S : f H2S = 1 / (1 + 0.06 × C) The coefficient C according to the H 2 S concentration in the gas defined by the formula (1) is the H 2 S concentration (mol%). . f FEED : Coefficient according to the properties of the feedstock oil defined by the formula (2) or the formula (3) S f <1.1% by mass, f FEED = exp (1.29-1.22 × S f ) Formula (2) S f ≧ At 1.1 mass%, f FEED = exp (7.11−0.18 × S f −0.023 × D 50 ) Formula (3) In Formula (3), D 50 is the 50 vol% distillation temperature (° C.) of the feedstock. Subscript 0 in the formulas of Formulas 1 to 3: Known hydrotreating condition of reference feedstock Subscript 1: Means hydrotreating condition applied to hydrocarbon oil of any one oil type.
【請求項2】 請求項1に記載の炭化水素油の水素化処
理方法において、式(2)又は(3)に代えて、式
(4)により基準原料油及び任意の一の油種の炭化水素
油のfFEEDを算出することを特徴とする炭化水素油の水
素化処理方法。ここで、fFEEDは、式(4)で規定され
る原料油の性状による係数であって、 fFEED=exp(2.1465−0.00226 ×D50−0.234 ×10-4×BT −0.336 ×10-4×DBT −1.65×10-4×C5-DBT −11.1×10-4×4-MDBT−3.94×10-4×4,6-DMDBT) 式(4) 式(4)中、 BT :原料油中のC2-DBT(DBTはシ゛ヘ゛ンソ゛チオフェン の略記、以下、同じ) 〜 C8-DBTに由来する硫黄含有率 DBT :原料油中のDBT〜C5-シ゛ヘ゛ンソ゛チオフェンに由来する硫黄含有率 (4-MDBT 、4,6-DMDBTは除く) C5-DBT :原料油中のC5-DBTより重質な硫黄化合物に由来する硫黄含有率 4-MDBT :原料油中の4-メチルシ゛ヘ゛ンソ゛チオフェンに由来する硫黄含有率 4,6-DMDBT :原料油中の4,6-シ゛メチルシ゛ヘ゛ンソ゛チオフェンに由来する硫黄含有率 であり、単位はそれぞれ質量ppmである。
2. The method for hydrotreating a hydrocarbon oil according to claim 1, wherein, instead of formula (2) or (3), formula (4) is used to carbonize the reference feedstock and any one oil type. A method for hydrotreating a hydrocarbon oil, which comprises calculating f FEED of the hydrogen oil. Here, f FEED is a coefficient according to the properties of the feedstock oil defined by the formula (4), and f FEED = exp (2.1465-0.00226 × D 50 -0.234 × 10 -4 × BT -0.336 × 10 -4 × DBT −1.65 × 10 -4 × C 5 -DBT −11.1 × 10 -4 × 4-MDBT−3.94 × 10 -4 × 4,6-DMDBT) Formula (4) In formula (4), BT: feedstock oil C 2 -DBT (DBT is abbreviated dibenzothiophene, hereinafter the same) in sulfur content from ~ C 8 -DBT DBT: DBT~C in the feedstock 5 - sulfur content derived from dibenzothiophene (4 -MDBT and 4,6-DMDBT are excluded) C 5 -DBT: Sulfur content derived from a heavier sulfur compound than C 5 -DBT in the feedstock 4-MDBT: To 4-methylbenzenesothiophene in the feedstock Derived sulfur content 4,6-DMDBT: Sulfur content derived from 4,6-dimethyldibenzodithiophene in the feed oil, and the unit is mass ppm.
【請求項3】 水素化処理触媒の存在下で水素化処理を
施して、低い硫黄含有率の生成油を得る炭化水素油の水
素化処理方法において、 水素化処理条件として、反応温度が300〜400℃の
範囲、水素分圧が2.5〜10MPaの範囲、反応器の
液空間速度が0.5〜5hr-1の範囲、水素/原料油比
(L/L)が100〜700の範囲にあって、炭化水素
油の水素化処理条件を上記範囲内で再設定するに際し、 反応温度、水素分圧、液空間速度、水素/原料油比、f
H2S 、及び、生成油の硫黄含有率からなる水素化処理条
件のうちのいずれかを除いて他の全てを設定するステッ
プと、 変更前のそれぞれ既知の、反応温度、水素分圧、液空間
速度、水素/原料油比、fH2S 及び、生成油の硫黄含有
率の水素化処理条件に基づいて、以下の数4から数6及
び式(1)にそれぞれ規定する関係式に従い、一の油種
の炭化水素油に適用する上記除いた一の水素化処理条件
を算出するステップとを有し、 除いた一の水素化処理条件を上記算出した値に設定し
て、一の油種の炭化水素油の水素化処理を行うことを特
徴とする炭化水素油の水素化処理方法。 【数4】 【数5】 【数6】 ここで、数4から数6の式中、 T :温度(K) R :気体定数=8.313(J/mol/K) E :活性化エネルギー=125,000 (J/mol) k :反応速度定数 Sp :生成油硫黄含有率(質量%) Sf :原料油硫黄含有率(質量%) LHSV :液空間速度(h-1) PH2 :水素分圧(MPa) H2 /oil :水素/原料油比(L/L) fH2S :fH2S =1 /(1+0.06×C) 式(1) で規定されるガス中のH2 S濃度による係数 C :H2 S濃度(mol%) 数4から数6の式中 添え字 0:変更前の既知の水素化処理条件 添え字 1:変更する水素化処理条件 をそれぞれ意味する。
3. A method for hydrotreating a hydrocarbon oil, which comprises hydrotreating in the presence of a hydrotreating catalyst to obtain a product oil having a low sulfur content. 400 ° C. range, hydrogen partial pressure in the range of 2.5 to 10 MPa, liquid hourly space velocity of the reactor in the range of 0.5 to 5 hr −1 , hydrogen / feed oil ratio (L / L) in the range of 100 to 700 Therefore, when resetting the hydrotreating conditions of the hydrocarbon oil within the above range, the reaction temperature, the hydrogen partial pressure, the liquid hourly space velocity, the hydrogen / feed oil ratio, f
H2S and the step of setting all but the hydroprocessing conditions consisting of the sulfur content of the product oil, and the known reaction temperature, hydrogen partial pressure, liquid hourly space velocity before each change , Hydrogen / feed oil ratio, f H2S, and the hydrotreating conditions of the sulfur content of the produced oil, according to the relational expressions respectively defined in the following Equations 4 to 6 and Equation (1), one oil type And the step of calculating the above-mentioned one hydrotreatment condition applied to the hydrocarbon oil of the above, and setting the above-mentioned one hydrotreatment condition to the value calculated above, and the hydrocarbon of the one oil type. A method for hydrotreating a hydrocarbon oil, which comprises hydrotreating an oil. [Equation 4] [Equation 5] [Equation 6] Here, in the formulas of the formulas 4 to 6, T: temperature (K) R: gas constant = 8.313 (J / mol / K) E: activation energy = 125,000 (J / mol) k: reaction rate constant S p : Sulfur content rate of produced oil (mass%) S f : Sulfur content rate of feed oil (mass%) LHSV: Liquid hourly space velocity (h -1 ) PH 2 : Hydrogen partial pressure (MPa) H 2 / oil: Hydrogen / source oil Ratio (L / L) f H2S : f H2S = 1 / (1 + 0.06 × C) Coefficient by the H 2 S concentration in the gas defined by the formula (1) C: H 2 S concentration (mol%) Number 4 To the subscript 0 in the formulas of Equation 6: Known hydrotreating condition before change Subscript 1: Means the hydrotreating condition to be changed.
JP24123696A 1996-08-23 1996-08-23 Hydrotreatment of hydrocarbon oils Expired - Fee Related JP3473812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24123696A JP3473812B2 (en) 1996-08-23 1996-08-23 Hydrotreatment of hydrocarbon oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24123696A JP3473812B2 (en) 1996-08-23 1996-08-23 Hydrotreatment of hydrocarbon oils

Publications (2)

Publication Number Publication Date
JPH1060455A JPH1060455A (en) 1998-03-03
JP3473812B2 true JP3473812B2 (en) 2003-12-08

Family

ID=17071237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24123696A Expired - Fee Related JP3473812B2 (en) 1996-08-23 1996-08-23 Hydrotreatment of hydrocarbon oils

Country Status (1)

Country Link
JP (1) JP3473812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023537B2 (en) * 2012-10-02 2016-11-09 Jxエネルギー株式会社 Method for hydrotreating hydrocarbon oil and method for producing base oil for lubricating oil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666878A (en) * 1984-12-28 1987-05-19 Exxon Research And Engineering Company Amorphous, iron promoted Mo and W sulfide hydroprocessing catalysts and uses thereof
JPH05311179A (en) * 1992-05-11 1993-11-22 Showa Shell Sekiyu Kk Production of high performance light gas oil having low sulfur content
JP3362359B2 (en) * 1994-03-24 2003-01-07 株式会社ジャパンエナジー Method for producing hydrotreating catalyst
US5474670A (en) * 1994-05-17 1995-12-12 Exxon Research And Engineering Company Stacked bed catalyst system for deep hydrodesulfurization
JP3414861B2 (en) * 1994-06-03 2003-06-09 株式会社ジャパンエナジー Hydrorefining treatment of gas oil fraction
JP2992971B2 (en) * 1994-09-01 1999-12-20 株式会社ジャパンエナジー Hydrotreating catalyst
JP3432040B2 (en) * 1995-04-26 2003-07-28 三井造船株式会社 Method for producing desulfurized gas oil

Also Published As

Publication number Publication date
JPH1060455A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
EP0537500B1 (en) A method of treatment of heavy hydrocarbon oil
Ancheyta Modeling and simulation of catalytic reactors for petroleum refining
Kaufmann et al. Catalysis science and technology for cleaner transportation fuels
CN101376839B (en) Diesel fraction deep hydrogenation method
Ancheyta-Juárez et al. Hydrotreating of straight run gas oil–light cycle oil blends
JP4977299B2 (en) Multi-stage hydrotreating process for naphtha desulfurization
KR20030003012A (en) Crude oil desulfurization
CA2709361A1 (en) Targeted hydrogenation hydrocracking
EP3536765B1 (en) Process for production of petrochemicals from cracked streams
Valavarasu et al. Mild hydrocracking—a review of the process, catalysts, reactions, kinetics, and advantages
CA2323910A1 (en) Integrated hydroconversion process with reverse hydrogen flow
JP2009046693A (en) Desulfurization process for light gas oil fraction, and desulfurization apparatus for light gas oil fraction
JP2001207177A (en) Method for reducing content of sulfur compound and polycyclic aromatic hydrocarbon in hydrocarbon feed
Marroquı́n-Sánchez et al. Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor
CN101747936B (en) Hydrogenation method for producing high-quality low-sulfur diesel fraction
Botchwey et al. Kinetics of Bitumen‐Derived Gas Oil Upgrading Using a Commercial NiMo/Al2O3 Catalyst
CN101463270B (en) Hydro-upgrading method for diesel distillate
CN101942331A (en) Gasoline and diesel oil combined hydrogenation method
CA2479008C (en) Method and facility for refining oil
JP3473812B2 (en) Hydrotreatment of hydrocarbon oils
CN106010641A (en) Method for high yield of clean diesel fuel with low freezing point through coked naphtha and diesel oil mixed fractions
US6447673B1 (en) Hydrofining process
Ancheyta Upgrading of Heavy and Extra-Heavy Crude Oils by Catalytic Hydrotreating: The History of HIDRO-IMP Technology
CN101942328B (en) Hydrogenation method for gasoline and diesel
JPH0848981A (en) Method for hydrorefining gas oil fraction

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees