JP3473750B2 - High-speed motion search device - Google Patents
High-speed motion search deviceInfo
- Publication number
- JP3473750B2 JP3473750B2 JP29886299A JP29886299A JP3473750B2 JP 3473750 B2 JP3473750 B2 JP 3473750B2 JP 29886299 A JP29886299 A JP 29886299A JP 29886299 A JP29886299 A JP 29886299A JP 3473750 B2 JP3473750 B2 JP 3473750B2
- Authority
- JP
- Japan
- Prior art keywords
- search
- motion
- stage
- prediction error
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/557—Motion estimation characterised by stopping computation or iteration based on certain criteria, e.g. error magnitude being too large or early exit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/533—Motion estimation using multistep search, e.g. 2D-log search or one-at-a-time search [OTS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/144—Movement detection
- H04N5/145—Movement estimation
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高速動き検索装置
に関し、特に、動画像を圧縮符号化する動画像符号化装
置において、圧縮効率を向上させるために最適な動きベ
クトルを高速に求める高速動きベクトル検索装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed motion search apparatus, and more particularly, to a high-speed motion calculating apparatus for compressing and coding a moving picture at high speed to obtain an optimum motion vector to improve compression efficiency. The present invention relates to a vector search device.
【0002】[0002]
【従来の技術】動き補償フレーム間符号化とは、kフレ
ームの画素Xijk を予測するのに、k−1フレームの信
号のなかからXijに最も近い画素値Xlmを探し出す操作
である。特にここでは一定の矩形領域に区切られたブロ
ック単位に、最も相関性の高いブロックを探し出す操作
を意味する。ここで、XijとXlmとの空間的なずれ|i
−l|と|j−m|を付加情報(動きベクトル)として
伝送する。2. Description of the Related Art Motion-compensated interframe coding is an operation for predicting a pixel Xijk of a k-frame to find a pixel value Xlm closest to Xij in a signal of a k-1 frame. In particular, this means an operation of searching for a block having the highest correlation in block units divided into fixed rectangular areas. Here, the spatial deviation between Xij and Xlm | i
-L | and | j-m | are transmitted as additional information (motion vector).
【0003】従来、フレーム間予測符号化を行う画像圧
縮装置において、画質を向上させるために有効な手段と
して最も相関性の高い部分と差分を求めて、符号化する
データ量を少なくするという方法があげられる。Conventionally, in an image compression apparatus for performing inter-frame predictive coding, a method of obtaining the difference with the most highly correlated portion and reducing the amount of data to be encoded is an effective means for improving the image quality. can give.
【0004】この方法によれば、ベクトル検索の範囲が
広ければ広いほど正確な検索を行うことができるが、処
理量は飛躍的に増加する。高速な圧縮処理を要求される
場合には、この検索範囲を狭くしたり、ある程度相関性
の高い部分を見付けたら検索を打ち切ったりすることで
演算量を減らす手法が一般的であり、この方法は、第1
の従来例としてあげられる特開平10−271514号
公報でも示されている。According to this method, the wider the vector search range, the more accurate the search can be performed, but the amount of processing increases dramatically. When high-speed compression processing is required, it is common to reduce the calculation amount by narrowing the search range or stopping the search when a part with a high degree of correlation is found. , First
Japanese Patent Application Laid-Open No. 10-271514, which is cited as a conventional example of the above.
【0005】しかしながら、これらの方法を実行した場
合には、さらに相関性の高い部分が存在するにも関わら
ず検索処理が中断される可能性が高くなるために、画質
が劣化するという問題点がある。However, when these methods are executed, there is a high possibility that the search process will be interrupted despite the existence of a portion having a higher degree of correlation, resulting in a problem that the image quality deteriorates. is there.
【0006】また、第2の従来例としてあげられる特開
平8−32969号公報には、前フレームの同位置との
相関性を用いて検索範囲を動的に変える手法が記載され
ている。Further, Japanese Patent Laid-Open No. 8-32969, which is a second conventional example, describes a method of dynamically changing the search range by using the correlation with the same position of the previous frame.
【0007】この第2の従来例による手法では、動きの
大きい画像かどうかが検索範囲に反映しないために、動
きの小さい部分でも広い範囲を検索してしまう可能性が
多く、処理時間が短縮されるとは限らない。例えば、物
体の境界部が動いた部分の検索では前フレームと同位置
の相関性が低くなるために広い範囲を検索してしまう。In the method according to the second conventional example, since the search range does not reflect whether or not the image has a large motion, there is a possibility that a wide range is searched even in a small motion area, and the processing time is shortened. Not necessarily. For example, in the search of a part where the boundary part of the object has moved, the correlation at the same position as the previous frame is low, so a wide range is searched.
【0008】また、第3の従来例としてあげられる特開
平10−191352号公報には、相関性を求める処理
を並列に行う手法が記載されているが、演算器を複数持
たなければならないために回路規模が大きくなり、例え
ばパソコン上で実現させようとすると複数のCPUを必
要とするといった問題点があった。Further, Japanese Patent Application Laid-Open No. 10-191352, which is a third conventional example, describes a method of performing the processing for obtaining the correlation in parallel, but since it is necessary to have a plurality of arithmetic units. There has been a problem that the circuit scale becomes large and a plurality of CPUs are required when it is realized on a personal computer, for example.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、このよ
うな叙上の第1〜第3の従来技術にはそれぞれ下記に示
す如き欠点があった。However, the above-mentioned first to third prior arts have the following drawbacks, respectively.
【0010】即ち、第1の従来例は、さらに相関性の高
い部分が存在するにも関わらず検索処理が中断される可
能性が高くなるために、画質が劣化するという欠点があ
った。That is, the first conventional example has a drawback that the image quality is deteriorated because the possibility that the search process is interrupted increases even if there is a portion having a higher correlation.
【0011】また第2の従来例は、動きの大きい画像か
どうかが検索範囲に反映しないために、動きの小さい部
分でも広い範囲を検索してしまう可能性が多く、処理時
間が短縮されるとは限らない。例えば、物体の境界部が
動いた部分の検索では前フレームと同位置の相関性が低
くなるために広い範囲を検索してしまうという欠点があ
った。Further, in the second conventional example, since the search range does not reflect whether or not the image has a large motion, there is a high possibility that a wide range is searched even for a small motion part, and the processing time is shortened. Not necessarily. For example, in the search for a part where the boundary of the object has moved, there is a drawback that a wide range is searched because the correlation at the same position as the previous frame is low.
【0012】第3の従来例は、演算器を複数持たなけれ
ばならないために回路規模が大きくなり、例えばパソコ
ン上で実現させようとすると複数のCPUを必要とする
といった欠点があった。The third conventional example has a drawback that the circuit scale becomes large because it has to have a plurality of arithmetic units, and for example, a plurality of CPUs are required when it is realized on a personal computer.
【0013】本発明は従来の上記実情に鑑み、従来の技
術に内在する上記諸欠点を解消する為になされたもので
あり、従って本発明の目的は、高速にして的確な動きベ
クトルを検出することを可能とした新規な動きベクトル
検索装置を提供することにある。In view of the above-mentioned conventional circumstances, the present invention has been made to solve the above-mentioned drawbacks inherent in the prior art. Therefore, the object of the present invention is to detect a motion vector accurately at high speed. It is to provide a novel motion vector search device that enables the above.
【0014】[0014]
【課題を解決するための手段】上記目的を達成する為
に、本発明に係る高速動き検索装置は、1フレーム単位
に画像入力される画像入力手段と、該画像入力手段から
出力される現フレームと前フレームとの相関性を求める
動き検索手段と、該動き検索手段による検索にて最小の
予測誤差が得られた場所へのベクトルを動きベクトルと
して参照フレームのその場所のブロックとの差分演算を
行うブロック間差分手段と、該ブロック間差分手段によ
り求められたブロック差分データを周波数成分に変換す
る周波数変換手段と、前記周波数成分を量子化する量子
化手段と、該量子化手段の量子化出力を圧縮符号化して
出力する可変長符号化手段とを有する圧縮符号化装置に
おいて、前記動きベクトル検索手段として、1段目動き
検索手段と2段目動き検索手段とを設け、前記1段目動
き検索手段は、前フレームでの検索結果を参照して決め
られる検索範囲を検索して、最小となる予測誤差がしき
い値より小さければこの範囲を検索した時点で動き検索
処理を終了し、もし予測誤差がしきい値より大きければ
前記2段目動き検索手段であらかじめ設定された検索範
囲内の前記1段目動き検索手段で検索を行わなかった部
分を検索して予測誤差が最小となる場所を求め、検索を
2段階に分けて行い、1段目の検索範囲を動的に変更す
ることで高速で誤検出の少ない動きベクトルの検索を行
うことを特徴としている。In order to achieve the above object, a high speed motion retrieval apparatus according to the present invention comprises an image input unit for inputting an image in units of one frame and a current frame output from the image input unit. And a previous frame and a motion search means for obtaining a correlation between the motion vector and a previous frame, and a difference calculation with a block at the position of the reference frame using a vector to a position where a minimum prediction error is obtained by the search by the motion search means as a motion vector. Inter-block difference means for performing, frequency conversion means for converting the block difference data obtained by the inter-block difference means into frequency components, quantization means for quantizing the frequency components, and quantization output of the quantization means. In a compression coding apparatus having a variable-length coding means for compressing and outputting the motion vector, the first-stage motion searching means and the second-stage motion are used as the motion vector searching means. Search means is provided, and the first-stage motion search means searches a search range determined by referring to the search result in the previous frame, and searches this range if the minimum prediction error is smaller than the threshold value. If the prediction error is larger than the threshold value, the motion search process is terminated at the point of time, and the part not searched by the first-step motion search means within the search range preset by the second-step motion search means. To search for a location where the prediction error is minimized, perform the search in two stages, and dynamically change the search range in the first stage to perform a high-speed motion vector search with few false detections. Is characterized by.
【0015】前記画像入力手段に画像データが入力され
ると検索情報データが参照可能か否かが判断されるが初
回の検索では該情報が参照できないために前記1段目動
き検索手段では既定の検索範囲が特別な処理なしで検索
される。When the image data is input to the image input means, it is determined whether or not the search information data can be referred to. However, since the information cannot be referred to in the first search, the first stage motion search means has a predetermined value. The search range is searched without any special processing.
【0016】前記しきい値は、前フレームの同位置にあ
るマクロブロックの検索結果が用いられる。As the threshold value, a search result of macroblocks located at the same position in the previous frame is used.
【0017】前記1段目動き検索手段の検索範囲は、前
フレームで求められた動きベクトルの長さの2倍を一辺
とする正方領域で決定される。The search range of the first-stage motion search means is determined in a square area having a side that is twice the length of the motion vector obtained in the previous frame.
【0018】検索情報が参照できる場合には、前フレー
ムの同位置にあるマクロブロックの動きベクトルや予測
誤差の情報を取得し、前記前フレームの動きベクトル情
報を基にしてそのベクトル分検索開始位置をずらして検
索を行うことで予測誤差が最小となる場所を予測し、そ
この場所を中心に検索し、取得したベクトル情報より1
段目の動き検索する範囲が決定される。When the search information can be referred to, the motion vector and prediction error information of the macroblock at the same position in the previous frame is obtained, and the search start position for that vector is calculated based on the motion vector information of the previous frame. The location where the prediction error is minimized is predicted by shifting the search, and the search is performed centering on that location.
The range to be searched for the movement of the stage is determined.
【0019】前記検索範囲は、フレーム内のすでに検索
済みの周囲のブロックのベクトルの最大値またはメディ
アン値か、または過去数フレームの同位置のベクトルの
最大値またはメディアン値のいずれかでもよく、該検索
範囲で得られた予測誤差の最小値が前フレームの同位置
ブロックでの予測誤差より小さければ検索処理は終了
し、そうでなければ検索処理が継続される。The search range may be either the maximum value or median value of the vectors of the surrounding blocks already searched in the frame, or the maximum value or median value of the vectors at the same position in the past several frames. If the minimum value of the prediction error obtained in the search range is smaller than the prediction error in the same-position block of the previous frame, the search process ends, otherwise the search process continues.
【0020】前記1段目及び2段目動き検索手段の出力
の後に検索情報保存手段が設けられ、次フレームの動き
検索のために前記1段目、または2段目動き検索手段に
より求められた動きベクトル値や予測誤差の最小値は前
記検索情報保存手段に保存される。Search information storage means is provided after the output of the first-stage and second-stage motion search means, and is obtained by the first-stage or second-stage motion search means for motion search of the next frame. The motion vector value and the minimum value of the prediction error are stored in the search information storage means.
【0021】前記1段目動き検索手段と前記量子化手段
に、該量子化手段の出力を逆量子化すると共に更に逆周
波数変換を行って周波数成分から画素成分に変換し、該
画素成分から参照フレームのデータを生成する動き補償
手段が設けられている。The first stage motion search means and the quantization means dequantize the output of the quantization means and further perform inverse frequency conversion to convert frequency components into pixel components, and refer to the pixel components. Motion compensation means is provided for generating frame data.
【0022】[0022]
【作用】図1において、1段目動き検索手段12は、前
フレームでの検索結果を参照して決められる検索範囲を
検索して、最小となる予測誤差がしきい値より小さけれ
ばこの範囲を検索した時点で動き検索処理を終了する。
もし予測誤差がしきい値より大きければ2段目動き検索
手段13で、あらかじめ設定された検索範囲内の1段目
動き検索で検索を行わなかった部分を検索して、予測誤
差が最小となる場所を求める。In FIG. 1, the first stage motion search means 12 searches the search range determined by referring to the search result in the previous frame, and if the minimum prediction error is smaller than the threshold value, this range is searched. The motion search process ends when the search is performed.
If the prediction error is larger than the threshold value, the second-step motion search means 13 searches for a portion within the preset search range that has not been searched for in the first-step motion search, and the prediction error is minimized. Ask for a place.
【0023】こうして検索を2段階に分けて行い、1段
目の検索範囲を変更することで高速で誤検出の少ない動
きベクトルの検索を行うことができる。By thus performing the search in two stages and changing the search range in the first stage, it is possible to perform a high-speed motion vector search with less erroneous detection.
【0024】[0024]
【発明の実施の形態】次に、本発明をその好ましい一実
施の形態について図面を参照しながら詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
【0025】図1は、本発明による一実施の形態を示す
ブロック構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.
【0026】[実施の形態の構成]図1を参照するに、
本発明に係る高速動き検索装置の一実施の形態は、画像
入力手段11と、1段目動き検索手段12と、2段目動
き検索手段13と、検索情報保存手段14と、ブロック
間差分手段15と、周波数変換手段16と、量子化手段
17と、逆量子化手段18と、逆周波数変換手段19
と、動き補償手段20と、可変長符号化手段21と、出
力手段22とから構成されている。[Structure of Embodiment] Referring to FIG.
One embodiment of a high-speed motion search device according to the present invention is an image input unit 11, a first-stage motion search unit 12, a second-stage motion search unit 13, a search information storage unit 14, and an inter-block difference unit. 15, frequency conversion means 16, quantization means 17, dequantization means 18, and inverse frequency conversion means 19
, Motion compensation means 20, variable length coding means 21, and output means 22.
【0027】これらの各手段はそれぞれ概略次のように
動作する。Each of these means operates roughly as follows.
【0028】画像入力手段11よりカメラ等から1フレ
ーム単位に画像が取り込まれ、1段目動き検索手段12
で参照フレームとして動き補償手段20に格納されてい
る前フレームと現フレームとの相関性が求められる。そ
の際の検索範囲は前フレームで求められた動きベクトル
の長さの2倍を1辺とする正方領域とする。この検索範
囲を検索して得られた最小の予測誤差が、前フレームの
同位置にあるマクロブロック(符号化ブロック単位)の
検索結果の予測誤差より小さい値であれば2段目動き検
索手段13による検索は行なわずに、その最小の場所へ
のベクトル値を動きベクトルとして、参照フレームのそ
の場所のブロックとの差分演算がブロック間差分手段1
5で行なわれる。An image is taken in from the camera or the like by the image input means 11 in units of frames, and the first stage motion retrieval means 12
Then, the correlation between the previous frame and the current frame stored as the reference frame in the motion compensation means 20 is obtained. The search range at this time is a square area having one side that is twice the length of the motion vector obtained in the previous frame. If the minimum prediction error obtained by searching this search range is smaller than the prediction error of the search result of the macro block (coding block unit) at the same position in the previous frame, the second stage motion search means 13 The inter-block difference means 1 performs the difference calculation with the block at that position of the reference frame without using the search by
Done at 5.
【0029】そうでなければ、すなわち、1段目動き検
索手段12で得られた最小の予測誤差が前フレームの同
位置にあるマクロブロックの検索結果の予測誤差より大
きい値である場合には、2段目動き検索手段13で規定
の検索範囲内であって1段目動き検索手段12で検索し
なかった部分を検索し、最小の予測誤差が得られた場所
へのベクトルを動きベクトルとし、参照フレームのその
場所のブロックとの差分演算がブロック間差分手段15
で行なわれる。Otherwise, that is, when the minimum prediction error obtained by the first stage motion search means 12 is larger than the prediction error of the search result of the macroblock at the same position in the previous frame, The second stage motion search means 13 searches for a portion within the prescribed search range that is not searched by the first stage motion search means 12, and the vector to the place where the minimum prediction error is obtained is set as the motion vector, The difference calculation between the reference frame and the block at that location is performed by the inter-block difference means 15.
Done in.
【0030】また、次フレームの動き検索のために今求
められた動きベクトル値や予測誤差の最小値は検索情報
保存手段14で保存しておかれる。Further, the motion vector value and the minimum value of the prediction error which have been obtained for the motion search of the next frame are stored in the search information storage means 14.
【0031】求められたブロック差分データは、周波数
変換手段16で周波数成分に変換され、量子化手段17
で量子化が行われる。量子化されたデータは、可変長符
号化手段21で圧縮符号に符号化されて、出力手段22
で出力される。The obtained block difference data is converted into frequency components by the frequency conversion means 16, and the quantization means 17 is used.
Quantization is performed in. The quantized data is encoded into a compression code by the variable length coding means 21, and output means 22.
Is output with.
【0032】また、次のフレーム圧縮用の参照フレーム
作成のために、量子化手段17の結果は逆量子化手段1
8で逆量子化が行なわれ、逆周波数変換手段19で周波
数成分から画素成分に変換され、動き補償手段20で参
照フレームのデータが生成される。In order to create a reference frame for the next frame compression, the result of the quantizing means 17 is the inverse quantizing means 1.
Inverse quantization is performed in 8, inverse frequency conversion means 19 converts the frequency components into pixel components, and motion compensation means 20 generates reference frame data.
【0033】[実施の形態の動作]次に、実施の形態の
動作について、図面を参照して詳細に説明する。[Operation of Embodiment] Next, the operation of the embodiment will be described in detail with reference to the drawings.
【0034】図2は本実施の形態の動作フロー例を示す
フローチャートである。FIG. 2 is a flow chart showing an example of the operation flow of this embodiment.
【0035】図2を参照するに、画像データが入力され
ると、検索情報データが参照可能かどうかを確認する
(ステップS11)。Referring to FIG. 2, when the image data is input, it is confirmed whether the search information data can be referred to (step S11).
【0036】初回の検索ではこの情報が参照できないた
めに既定の検索範囲を特別な処理なしで検索する(ステ
ップS12)。Since this information cannot be referred to in the first search, the default search range is searched without any special processing (step S12).
【0037】検索情報が参照できる場合には、前フレー
ムの同位置にあるマクロブロックの動きベクトルや予測
誤差の情報を取得する(ステップS13)。When the search information can be referred to, the information of the motion vector and prediction error of the macroblock at the same position in the previous frame is acquired (step S13).
【0038】動きの方向が急激に変化することは稀なの
で、前フレームの動きベクトル情報を基にしてそのベク
トル分検索開始位置をずらして検索を行うことで予測誤
差が最小となる場所を予測し、そこの場所を中心に検索
する(ステップS14)。Since the direction of motion rarely changes abruptly, the position where the prediction error is minimized is predicted by shifting the search start position by that vector based on the motion vector information of the previous frame. , The search is performed mainly on that place (step S14).
【0039】取得したベクトル情報より検索する範囲が
決められ、そのベクトル長の2倍を検索範囲に設定し、
1段目の検索を行う(ステップS15)。The range to be searched is determined from the acquired vector information, and twice the vector length is set as the search range.
The first search is performed (step S15).
【0040】ここで検索範囲は前フレームの同位置のベ
クトル情報を使うとしたが、これは同フレーム内のすで
に検索済みの周囲のブロックのベクトルの最大値または
メディアン値でもよく、また過去数フレームの同位置の
ベクトルの最大値またはメディアン値でも構わない。こ
の検索範囲で得られた予測誤差の最小値が前フレームの
同位置ブロックでの予測誤差より小さければ検索処理は
終了し、そうでなければ検索処理を継続する(ステップ
S16)。Here, the search range is assumed to use vector information at the same position in the previous frame, but this may be the maximum value or median value of the vectors of the already searched surrounding blocks in the same frame, or past several frames. It may be the maximum value or median value of the vector at the same position of. If the minimum value of the prediction error obtained in this search range is smaller than the prediction error in the same-position block of the previous frame, the search process ends, otherwise the search process continues (step S16).
【0041】検索継続と判定されると2段目の検索処理
が行われる(ステップS17)。When it is determined that the search is continued, the second-stage search processing is performed (step S17).
【0042】ここでの検索は既定の検索範囲内であって
1段目の検索処理で未検索の領域を検索する。1段目の
検索で求められた予測誤差より小さい結果が得られれば
ベクトル値を更新し、そうでなければ1段目の検索結果
が現マクロブロックのベクトル値をして決定される。In the search here, an unsearched area is searched for in the first search process within the predetermined search range. If a result smaller than the prediction error obtained in the first search is obtained, the vector value is updated. Otherwise, the first search result is determined by using the vector value of the current macroblock.
【0043】これらの処理により得られたベクトル値、
予測誤差値は次のフレームの検索の際に参照されるの
で、一時保存領域に保存される(ステップS18)。Vector values obtained by these processes,
Since the prediction error value is referred to when the next frame is searched, it is stored in the temporary storage area (step S18).
【0044】次に本実施の形態を具体例を用いて説明す
る。Next, the present embodiment will be described using a specific example.
【0045】特に、ここではMPEG(Moving
Picture ExpertsGroup)について
説明する。In particular, here, MPEG (Moving)
The Picture Experts Group) will be described.
【0046】図3を用いてMPEG1のフレーム構成に
ついて説明する。The frame structure of MPEG1 will be described with reference to FIG.
【0047】図3を参照するに、フレームタイプには、
予測を行わないIフレーム、過去の情報から予測を行う
Pフレーム、過去・未来の情報から予測を行うBフレー
ムの3種類がある。Referring to FIG. 3, frame types include
There are three types: I-frames that are not predicted, P-frames that are predicted from past information, and B-frames that are predicted from past / future information.
【0048】この例では圧縮に必要な最小フレーム数は
参照フレームとなるフレームから次の参照フレームまで
の4フレームで、IBBPもしくはPBBPとなる。In this example, the minimum number of frames required for compression is four frames from the reference frame to the next reference frame, which is IBBP or PBBP.
【0049】参照の方向、順番を考慮すると、ref1
は前フレームの参照結果がないので検索情報が取得でき
ず既定の範囲を検索し、ref2はref1の検索情報
を基に1段目の検索範囲及びしきい値を決定して検索
し、同様にref3はref2の検索情報を基に検索す
る。Considering the reference direction and order, ref1
Indicates that there is no reference result for the previous frame, search information cannot be acquired, and a predetermined range is searched, and ref2 determines the search range and threshold value of the first stage based on the search information of ref1 and performs a search. ref3 searches based on the search information of ref2.
【0050】次にref4の検索を行おうとするとB2
からP0を予測した情報がないために既定の範囲を検索
し、ref5はref4の検索情報を基に検索する。Next, when a search for ref4 is performed, B2
Since there is no information that predicts P0 to P0, a predetermined range is searched, and ref5 is searched based on the search information of ref4.
【0051】また、ref6はref4の予測誤差情報
はそのまま使用し、ベクトル情報はそのままで向きが反
対の情報を使うことで参照することができる。ref9
もref4と同様の理由で参照情報を得ることができな
いために既定の検索を行なう。The ref6 can be referred to by using the prediction error information of ref4 as it is, the vector information as it is, and the information of the opposite direction. ref9
Also, since the reference information cannot be obtained for the same reason as ref4, a predetermined search is performed.
【0052】図4は動き検索の方法を説明するための図
である。FIG. 4 is a diagram for explaining a motion search method.
【0053】次に図4を参照して、動き検索の方法につ
いて説明する。動きベクトルの検索は16×16の矩形
領域で参照フレームとの間でマクロブロック差分を求
め、その差分値の絶対値和もしくは二乗和を予測誤差と
して、予測誤差が最も小さくなるブロックを求める方式
が一般的である。既定の検索範囲を縦横それぞれ−15
〜+15とする。Next, referring to FIG. 4, a method of motion search will be described. The motion vector search is performed by a method of obtaining a macroblock difference between a reference frame and a 16 × 16 rectangular area, and using a sum of absolute values or a sum of squares of the difference values as a prediction error to obtain a block with the smallest prediction error. It is common. Default search range is -15 vertically and horizontally
Set to +15.
【0054】1段目の検索では前フレームの同位置マク
ロブロックのベクトルを参照して、そのベクトル分検索
の開始点を移動させる。これは隣接するフレーム間で同
位置のベクトルには急激な変化は少ないと予測して開始
点を予測の中心に移動させることで検索範囲を狭くして
もベクトルの誤検出をする確立が低くなるという傾向が
あるからである。In the first search, the vector of the macroblock at the same position in the previous frame is referred to and the search start point is moved by that vector. This is because the vector at the same position between adjacent frames is predicted not to change abruptly, and the starting point is moved to the center of the prediction to reduce the probability of false detection of the vector even if the search range is narrowed. Because there is a tendency.
【0055】現在位置が(32,32)で参照ベクトル
(3,−4)であった場合には、検索開始位置は(3
5,28)になる。また検索範囲も参照ベクトル長から
決定するため、1段目の検索範囲は−5〜+5になる。If the current position is (32,32) and the reference vector (3, -4), the search start position is (3
5, 28). Since the search range is also determined from the reference vector length, the search range in the first stage is -5 to +5.
【0056】ここでは単にベクトル長をそのまま検索範
囲に用いたが、ベクトル長の1割増分を検索範囲として
もよい。これより図4の点線で囲まれた領域が1段目の
検索範囲となり、実線で囲まれた領域が既定の検索範囲
となり、点線と実線に挟まれた領域が2段目の検索範囲
となる。Here, the vector length is simply used as it is as the search range, but a 10% increment of the vector length may be used as the search range. As a result, the area surrounded by the dotted line in FIG. 4 is the search area in the first row, the area surrounded by the solid line is the default search area, and the area between the dotted and solid lines is the search area in the second row. .
【0057】もし1段目の検索が図5に示すように既定
の検索範囲外に出てしまった場合には既定の領域を優先
し、はみ出した部分は検索対象外とする。If the search in the first step goes out of the default search range as shown in FIG. 5, the default area is given priority, and the protruding portion is excluded from the search target.
【0058】参照予測誤差が80であったとして、1段
目の検索で予測誤差が図6のようになったとすると、最
小の予測誤差値75が参照予測誤差値80以下なので検
索処理は2段目を行わずに終了し、次フレームの参照用
にこのマクロブロックの予測誤差を75として保存す
る。If the reference prediction error is 80 and the prediction error is as shown in FIG. 6 in the first search, the minimum prediction error value 75 is equal to or less than the reference prediction error value 80, and therefore the search process is performed in two steps. The process ends without performing any eyes, and the prediction error of this macroblock is stored as 75 for reference to the next frame.
【0059】また図7のように1段目の最小予測誤差値
が82の場合には参照予測誤差値より大きいために2段
目の検索を行い、1段目と2段目の両方の検索で予測誤
差値が最小となったベクトルを動きベクトルとする。Further, as shown in FIG. 7, when the minimum prediction error value of the first step is 82, it is larger than the reference prediction error value, so the second step is searched and both the first step and the second step are searched. The vector whose prediction error value is the smallest is defined as the motion vector.
【0060】[0060]
【発明の効果】本発明は、以上の如く構成され、作用す
るものであり、本発明によれば以下に示すような効果が
得られる。The present invention is constructed and operates as described above, and according to the present invention, the following effects can be obtained.
【0061】第1の効果は、高速な動きベクトルの検索
が行えることにある。The first effect is that high-speed motion vector search can be performed.
【0062】その理由は、検索範囲が必ず規定値以下に
なるような範囲で適応的に変化するので、ブロックマッ
チング処理の回数を減らすことができるからである。The reason is that the number of times of block matching processing can be reduced because the search range is adaptively changed within a range that is always less than or equal to the specified value.
【0063】第2の効果は、上記動きベクトル検索処理
において、動きの少ない場所ほど高速なベクトル検索が
行えることにある。The second effect is that in the motion vector search process, the vector search can be performed at higher speed in a place with less motion.
【0064】その理由は、前フレームの同位置で検出さ
れたベクトルを参照して新たな検索範囲を設定するの
で、前フレームの動きが少ない場所、すなわちベクトル
が小さい場所ほど検索範囲が狭くなるからである。The reason is that since a new search range is set by referring to the vector detected at the same position in the previous frame, the search range becomes narrower at the place where the motion of the previous frame is smaller, that is, the place where the vector is smaller. Is.
【0065】第3の効果は、上記動きベクトル検索処理
において、正確な動きベクトルを検出できることにあ
る。The third effect is that an accurate motion vector can be detected in the motion vector search process.
【0066】その理由は、一定の範囲を検索するまでは
検索処理を打ち切らないで、相関性の高いマクロブロッ
クを正確に検出することができるからである。The reason is that macroblocks having high correlation can be accurately detected without aborting the search process until a certain range is searched.
【0067】第4の効果は、上記動きベクトル検索処理
において、動きの大きさが変化しても正確な動きベクト
ルを検出できることにある。The fourth effect is that in the above motion vector search processing, an accurate motion vector can be detected even if the magnitude of motion changes.
【0068】その理由は、一定の検索範囲を検索しても
相関性が低い場合には既定の検索範囲を検索して正確な
動きベクトルを検出することができるからである。The reason is that an accurate motion vector can be detected by searching a predetermined search range if the correlation is low even if a certain search range is searched.
【図1】本発明による一実施の形態を示すブロック構成
図である。FIG. 1 is a block diagram showing an embodiment according to the present invention.
【図2】本発明による一実施の形態の動作例を示すフロ
ーチャートである。FIG. 2 is a flowchart showing an operation example of an embodiment according to the present invention.
【図3】本発明に使用されるMPEG1のフレーム構成
を説明する図である。FIG. 3 is a diagram illustrating a frame structure of MPEG1 used in the present invention.
【図4】本発明による検索方法を説明するための図であ
る。FIG. 4 is a diagram for explaining a search method according to the present invention.
【図5】本発明による検索方法を説明するための図であ
る。FIG. 5 is a diagram for explaining a search method according to the present invention.
【図6】本発明による検索方法を説明するための図であ
る。FIG. 6 is a diagram for explaining a search method according to the present invention.
【図7】本発明による検索方法を説明するための図であ
る。FIG. 7 is a diagram for explaining a search method according to the present invention.
11…画像入力手段 12…1段目動き検索手段 13…2段目動き検索手段 14…検索情報保存手段 15…ブロック間差分手段 16…周波数変換手段 17…量子化手段 18…逆量子化手段 19…逆周波数変換手段 20…動き補償手段 21…可変長符号化手段 22…出力手段 11 ... Image input means 12 ... 1st stage motion search means 13 ... Second stage motion search means 14 ... Search information storage means 15 ... Block difference means 16 ... Frequency conversion means 17 ... Quantization means 18 ... Inverse quantization means 19 ... Inverse frequency conversion means 20 ... Motion compensation means 21 ... Variable length coding means 22 ... Output means
Claims (5)
手段と、該画像入力手段から出力される現フレームと前
フレームとの相関性を求める動き検索手段と、該動き検
索手段による検索にて最小の予測誤差が得られた場所へ
のベクトルを動きベクトルとして参照フレームのその場
所のブロックとの差分演算を行うブロック間差分手段
と、該ブロック間差分手段により求められたブロック差
分データを周波数成分に変換する周波数変換手段と、前
記周波数成分を量子化する量子化手段と、該量子化手段
の量子化出力を圧縮符号化して出力する可変長符号化手
段とを有する圧縮符号化装置において、 前記動きベクトル検索手段として、1段目動き検索手段
と2段目動き検索手段とを設け、 前記1段目動き検索手段は、前フレームでの検索結果を
参照して決められる検索範囲を検索して、最小となる予
測誤差がしきい値より小さければこの範囲を検索した時
点で動き検索処理を終了し、もし予測誤差がしきい値よ
り大きければ前記2段目動き検索手段であらかじめ設定
された検索範囲内の前記1段目動き検索手段で検索を行
わなかった部分を検索して予測誤差が最小となる場所を
求め、検索を2段階に分けて行い、1段目の検索範囲を
動的に変更することで高速で誤検出の少ない動きベクト
ルの検索を行う高速動き検索装置であって、 前記1段目動き検索手段の検索範囲は、前フレームで求
められた動きベクトルの長さの2倍を一辺とする正方領
域であること を特徴とした高速動き検索装置。1. An image input unit for inputting an image in units of one frame, a motion search unit for obtaining a correlation between a current frame and a previous frame output from the image input unit, and a search by the motion search unit. An inter-block difference means for performing a difference calculation with a block at that location of a reference frame using a vector to a location where the minimum prediction error is obtained as a motion vector, and block difference data obtained by the inter-block difference means as a frequency component. In the compression encoding device, the compression encoding device includes: a frequency conversion unit that converts the frequency component into a frequency component, a quantization unit that quantizes the frequency component, and a variable length encoding unit that compression-encodes and outputs the quantized output of the quantization unit, As the motion vector search means, a first stage motion search means and a second stage motion search means are provided, and the first stage motion search means obtains the search result in the previous frame. If the minimum prediction error is smaller than the threshold value, the motion search process is terminated at the time when the minimum prediction error is smaller than the threshold value. The step which is not searched by the first step motion searching means within the search range preset by the step moving search means is searched to find the place where the prediction error is minimum, and the search is performed in two steps. , a fast motion search apparatus for searching for erroneous less motion vector of detected fast by dynamically changing the search range of the first stage, the search range of the first stage motion search means, the previous frame Request
A square with one side that is twice the length of the motion vector
A high-speed motion search device characterized by being a region .
ムの同位置にあるマクロブロックの動きベクトルや予測
誤差の情報を取得し、前記前フレームの動きベクトル情
報を基にしてそのベクトル分検索開始位置をずらして検
索を行うことで予測誤差が最小となる場所を予測し、そ
この場所を中心に検索し、取得したベクトル情報より1
段目の動き検索する範囲を決定することを更に特徴とす
る請求項1に記載の高速動き検索装置。2. When the search information can be referred to, information on a motion vector and a prediction error of a macroblock at the same position in the previous frame is acquired, and the vector search is performed based on the motion vector information of the previous frame. By predicting the place where the prediction error is the minimum by shifting the start position, the search is performed centering on that place, and 1 is obtained from the acquired vector information.
The high-speed motion search device according to claim 1, further comprising: determining a range of motion search of the stage.
済みの周囲のブロックのベクトルの最大値またはメディ
アン値か、または過去数フレームの同位置のベクトルの
最大値またはメディアン値のいずれかであり、該検索範
囲で得られた予測誤差の最小値が前フレームの同位置ブ
ロックでの予測誤差より小さければ検索処理は終了し、
そうでなければ検索処理を継続することをさらに特徴と
する請求項2に記載の高速動き検索装置。3. The search range is either the maximum value or median value of vectors of surrounding blocks already searched in a frame, or the maximum value or median value of co-located vectors in the past several frames. , If the minimum value of the prediction error obtained in the search range is smaller than the prediction error in the same position block of the previous frame, the search processing ends,
The high-speed motion search device according to claim 2 , further comprising continuing the search process otherwise.
目及び2段目動き検索手段の出力との間に検索情報保存
手段を設け、次フレームの動き検索のために前記1段
目、2段目動き検索手段により求められた動きベクトル
値や予測誤差の最小値を前記検索情報保存手段に保存し
ておくことをさらに特徴とする請求項1に記載の高速動
き検索装置。4. A search information storage means is provided between the input of the first-stage motion search means and the outputs of the first-stage and second-stage motion search means, and the first-stage is used for motion search of the next frame. The high-speed motion search device according to claim 1, further comprising storing the motion vector value and the minimum value of the prediction error obtained by the first and second stage motion search means in the search information storage means.
との間に、該量子化手段の出力を逆量子化すると共に更
に逆周波数変換を行って周波数成分から画素成分に変換
し、該画素成分から参照フレームのデータを生成する動
き補償手段を設けたことを更に特徴とする請求項1に記
載の高速動き検索装置。5. Between the first-stage motion search means and the quantization means, the output of the quantization means is inversely quantized, and further the inverse frequency conversion is performed to convert the frequency component into the pixel component, The high-speed motion search device according to claim 1, further comprising motion compensation means for generating reference frame data from the pixel component.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29886299A JP3473750B2 (en) | 1999-10-20 | 1999-10-20 | High-speed motion search device |
US09/690,751 US6788741B1 (en) | 1999-10-20 | 2000-10-18 | Device and method of retrieving high-speed motion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29886299A JP3473750B2 (en) | 1999-10-20 | 1999-10-20 | High-speed motion search device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001119701A JP2001119701A (en) | 2001-04-27 |
JP3473750B2 true JP3473750B2 (en) | 2003-12-08 |
Family
ID=17865164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29886299A Expired - Fee Related JP3473750B2 (en) | 1999-10-20 | 1999-10-20 | High-speed motion search device |
Country Status (2)
Country | Link |
---|---|
US (1) | US6788741B1 (en) |
JP (1) | JP3473750B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4389866B2 (en) * | 2005-12-12 | 2009-12-24 | セイコーエプソン株式会社 | Image processing method, image processing apparatus, display apparatus, and program |
US9530222B2 (en) * | 2015-03-30 | 2016-12-27 | Ca, Inc. | Detecting divergence or convergence of related objects in motion and applying asymmetric rules |
EP3611925A4 (en) | 2017-04-13 | 2020-03-25 | Panasonic Intellectual Property Corporation of America | Encoding device, decoding device, encoding method, and decoding method |
TWI782974B (en) | 2017-04-13 | 2022-11-11 | 美商松下電器(美國)知識產權公司 | Decoding device, decoding method, and non-transitory computer-readable medium |
CN107801026B (en) * | 2017-11-09 | 2019-12-03 | 京东方科技集团股份有限公司 | Method for compressing image and device, compression of images and decompression systems |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0832969A (en) | 1994-07-12 | 1996-02-02 | Canon Inc | Motion vector detector |
JP2768646B2 (en) * | 1995-04-05 | 1998-06-25 | 株式会社グラフィックス・コミュニケーション・ラボラトリーズ | Motion vector search method and search device |
EP0941614A4 (en) * | 1996-11-27 | 2004-10-13 | Princeton Video Image Inc | Motion tracking using image-texture templates |
JP3631868B2 (en) | 1996-12-20 | 2005-03-23 | 株式会社東芝 | Motion vector detection apparatus and method |
JPH10271514A (en) | 1997-03-23 | 1998-10-09 | Tadayoshi Enomoto | Signal processing method for moving image information and device for the method |
JPH10327415A (en) * | 1997-05-22 | 1998-12-08 | Mitsubishi Electric Corp | Motion vector detector |
US6212237B1 (en) * | 1997-06-17 | 2001-04-03 | Nippon Telegraph And Telephone Corporation | Motion vector search methods, motion vector search apparatus, and storage media storing a motion vector search program |
JP3155509B2 (en) | 1997-06-17 | 2001-04-09 | 日本電信電話株式会社 | Motion vector search method, motion vector search device, and storage medium storing motion vector search program |
-
1999
- 1999-10-20 JP JP29886299A patent/JP3473750B2/en not_active Expired - Fee Related
-
2000
- 2000-10-18 US US09/690,751 patent/US6788741B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001119701A (en) | 2001-04-27 |
US6788741B1 (en) | 2004-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6925123B2 (en) | Method and apparatus for performing high quality fast predictive motion search | |
US7023921B2 (en) | Method and apparatus for determining block match quality | |
KR100955152B1 (en) | Multi-dimensional neighboring block prediction for video encoding | |
US7444026B2 (en) | Image processing apparatus and method of motion vector detection in a moving picture, and recording medium used therewith | |
JP4338654B2 (en) | Motion vector detection apparatus and method, and image coding apparatus capable of using the motion vector detection apparatus | |
US5859668A (en) | Prediction mode selecting device in moving image coder | |
US8204114B2 (en) | Direction detection algorithms for H.264/AVC intra prediction | |
US20070268964A1 (en) | Unit co-location-based motion estimation | |
KR950009699B1 (en) | Motion vector detection method and apparatus | |
US20060045186A1 (en) | Apparatus and method for coding moving picture | |
RU2516220C2 (en) | Movement evaluation techniques | |
JP2003528500A (en) | Motion estimation algorithm | |
US20070098075A1 (en) | Motion vector estimating device and motion vector estimating method | |
JPH11289544A (en) | Motion detector and its method | |
US7903736B2 (en) | Fast mode-searching apparatus and method for fast motion-prediction | |
JPH0884337A (en) | Data processor and its method | |
US7433407B2 (en) | Method for hierarchical motion estimation | |
US20090028241A1 (en) | Device and method of coding moving image and device and method of decoding moving image | |
US20080212719A1 (en) | Motion vector detection apparatus, and image coding apparatus and image pickup apparatus using the same | |
KR100632072B1 (en) | Moving picture compression/coding apparatus and motion vector detection method | |
JP3473750B2 (en) | High-speed motion search device | |
JP2009152895A (en) | Code amount control method, device, code amount control program, and camera system | |
US6975681B2 (en) | Method and apparatus for coding moving pictures | |
KR100602148B1 (en) | Method for motion picture encoding use of the a quarter of a pixel motion vector in mpeg system | |
JP2002112270A (en) | Moving picture high-speed encoder and moving picture high-speed encoding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |