JP3473661B2 - Optical wavelength converter - Google Patents

Optical wavelength converter

Info

Publication number
JP3473661B2
JP3473661B2 JP28695696A JP28695696A JP3473661B2 JP 3473661 B2 JP3473661 B2 JP 3473661B2 JP 28695696 A JP28695696 A JP 28695696A JP 28695696 A JP28695696 A JP 28695696A JP 3473661 B2 JP3473661 B2 JP 3473661B2
Authority
JP
Japan
Prior art keywords
wavelength
optical
fiber
light intensity
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28695696A
Other languages
Japanese (ja)
Other versions
JPH10133240A (en
Inventor
貴司 山本
健之 今井
正隆 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28695696A priority Critical patent/JP3473661B2/en
Publication of JPH10133240A publication Critical patent/JPH10133240A/en
Application granted granted Critical
Publication of JP3473661B2 publication Critical patent/JP3473661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ中の四
光波混合を利用して波長変換を行う光波長変換装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion device for wavelength conversion utilizing four-wave mixing in an optical fiber.

【0002】[0002]

【従来の技術】光ファイバ中の四光波混合は3次の非線
形分極に起因し、周波数f1 、f2 、f3 の3つの光に
より第4の光(周波数f4=f1+f2−f3)が発生する
現象である。現在、f1 =f2 の縮退四光波混合の場
合、すなわち光ファイバに周波数f1 、f3 の2つの光
を入射し、新たに周波数f4(=2f1−f3)の光を発生
させる場合について、光信号の波長変換への応用が検討
されている。
2. Description of the Related Art Four-wave mixing in an optical fiber is caused by third-order non-linear polarization, and a fourth light (frequency f 4 = f 1 + f 2 −) is generated by three lights having frequencies f 1 , f 2 and f 3. f 3 ) is a phenomenon that occurs. Currently, in the case of degenerate four-wave mixing with f 1 = f 2 , that is, two lights with frequencies f 1 and f 3 are incident on the optical fiber, and light with a frequency f 4 (= 2f 1 −f 3 ) is newly generated. The application to the wavelength conversion of an optical signal is being examined in the case of making it.

【0003】ところで、四光波混合が起こるためには、
位相整合条件(伝搬定数差=0)が満たされる必要があ
る。この伝搬定数差は、励起光強度がそれほど大きくな
ければ、光ファイバの波長分散D(=d2β/dωdλ) に
より決定される。周波数fP(波長λP)の励起光と周波
数fS(波長λS)の光信号との四光波混合により、周波
数fC(=2fP−fS)の変換光を発生させる場合におい
て、伝搬定数差Δβは、光ファイバの零分散周波数をf
0 およびそれに対応する零分散波長をλ0 とすると、
By the way, in order for four-wave mixing to occur,
The phase matching condition (propagation constant difference = 0) needs to be satisfied. This propagation constant difference is determined by the wavelength dispersion D (= d 2 β / dωdλ) of the optical fiber unless the pump light intensity is so high. In the case of generating converted light of frequency f C (= 2f P −f S ) by four-wave mixing of pumping light of frequency f P (wavelength λ P ) and optical signal of frequency f S (wavelength λ S ), The propagation constant difference Δβ is the zero dispersion frequency of the optical fiber f
If 0 and the corresponding zero-dispersion wavelength are λ 0 ,

【0004】[0004]

【数2】 [Equation 2]

【0005】と表される。式(1) により、励起光波長λ
P を光ファイバの零分散波長λ0 に設定すれば(λP
λ0)、あらゆる光信号波長λS に対してΔβ=0とな
り、位相整合条件が満たされることがわかる。このこと
から、1.55μm帯の光信号に対して波長変換を行う場合
は、1.55μm近辺に零分散波長をもち、かつ光ファイバ
の分散スロープdD/dλが小さい分散シフトファイバ
を四光波混合媒体として用い、励起光波長をその零分散
波長に設定することが行われている(荒井 他、「広波
長帯域FWM光発生ファイバの開発」、1996年電子情報
通信学会総合大会(1996年3月)、B-1137 )。
It is expressed as From equation (1), the pumping light wavelength λ
If P is set to the zero-dispersion wavelength λ 0 of the optical fiber (λ P =
λ 0 ), Δβ = 0 for all optical signal wavelengths λ S , and it can be seen that the phase matching condition is satisfied. Therefore, when wavelength conversion is performed on an optical signal in the 1.55 μm band, a dispersion-shifted fiber having a zero dispersion wavelength near 1.55 μm and a small dispersion slope dD / dλ of the optical fiber is used as a four-wave mixing medium. The wavelength of the pumping light has been set to its zero-dispersion wavelength (Arai et al., “Development of Wide-Waveband FWM Optical Generation Fiber”, 1996 IEICE General Conference (March 1996), B-1137).

【0006】[0006]

【発明が解決しようとする課題】ところで、四光波混合
による波長変換において、変換先の波長を変えるには励
起光波長λP を変える必要がある。しかし、励起光波長
λP が光ファイバの零分散波長λ0 からずれると、伝搬
定数差Δβが0から離れてしまい、位相整合条件が満た
されなくなって変換光の強度は急激に低下してしまう。
By the way, in wavelength conversion by four-wave mixing, it is necessary to change the pumping light wavelength λ P in order to change the conversion destination wavelength. However, when the pumping light wavelength λ P deviates from the zero-dispersion wavelength λ 0 of the optical fiber, the propagation constant difference Δβ deviates from 0, the phase matching condition is not satisfied, and the intensity of the converted light sharply decreases. .

【0007】本発明は、四光波混合による波長変換にお
いて、励起光波長λP を光ファイバの零分散波長λ0
ら光信号波長λS までの範囲で変化させても変換光強度
が低下しない光波長変換装置を提供することを目的とす
る。
According to the present invention, in the wavelength conversion by four-wave mixing, the converted light intensity does not decrease even if the pumping light wavelength λ P is changed in the range from the zero dispersion wavelength λ 0 of the optical fiber to the optical signal wavelength λ S. An object is to provide a wavelength conversion device.

【0008】[0008]

【課題を解決するための手段】本発明の光波長変換装置
は、四光波混合媒体として、光信号波長λS より短波長
側の零分散波長λ0 をもった光ファイバを用いる(λ0
<λS )。励起光波長λP に応じた伝搬定数差の変化曲
線の極大値と極小値との差をΔκPPとしたときに、光フ
ァイバに入射する励起光強度PP をΔκPP/4γ以上に
設定する。
The optical wavelength conversion device of the present invention uses, as a four-wave mixing medium, an optical fiber having a zero-dispersion wavelength λ 0 on the short wavelength side of the optical signal wavelength λ S0
S ). When the difference between the maximum value and the minimum value of the change curve of the propagation constant difference according to the pumping light wavelength λ P is Δκ PP , the pumping light intensity P P incident on the optical fiber is set to Δκ PP / 4γ or more. .

【0009】なお、 γ=n2ωP/cAeff …(2) である。ここで、n2 は非線形屈折率係数、ωP は励起
光の角周波数、cは光速度、Aeff は光ファイバの有効
コア断面積である。これにより、光ファイバの零分散波
長λ0 から光信号波長λS までの範囲内で励起光波長λ
P を変化させたとき(λ0 <λP <λS )の変換光強度
は、励起光波長λP が零分散波長λ0 に一致していると
き(λP =λ0 )の変換光強度以下に低下しない。以
下、その原理について図1を参照して説明する。
Note that γ = n 2 ω P / cA eff (2) Here, n 2 is the nonlinear refractive index coefficient, ω P is the angular frequency of the excitation light, c is the optical velocity, and A eff is the effective core area of the optical fiber. As a result, within the range from the zero-dispersion wavelength λ 0 of the optical fiber to the optical signal wavelength λ S , the pumping light wavelength λ
The converted light intensity when P is changed (λ 0PS ) is the converted light intensity when the pumping light wavelength λ P matches the zero-dispersion wavelength λ 0P = λ 0 ). Does not fall below. The principle will be described below with reference to FIG.

【0010】伝搬定数差Δβは、光ファイバの波長分散
のみに依存するものであるが、光ファイバ中の励起光の
パワー密度が充分大きくなると、励起光のカー効果によ
る屈折率変化に起因する伝搬定数差の変化が無視できな
くなる。これを考慮した伝搬定数差κは、 κ=Δβ+2γPP …(3) と表される。ここで、右辺第2項の 2γPP が励起光の
カー効果の影響による伝搬定数差の変化である。従来
は、励起光強度PP が小さく 2γPP の影響がほとんど
ない、すなわち2γPP≪Δβのところで四光波混合が行
われていた。
The propagation constant difference Δβ depends only on the wavelength dispersion of the optical fiber, but when the power density of the pumping light in the optical fiber becomes sufficiently large, the propagation due to the change in the refractive index due to the Kerr effect of the pumping light occurs. Changes in constant difference cannot be ignored. The propagation constant difference κ in consideration of this is expressed as κ = Δβ + 2γP P (3) Here, 2γP P of the second term on the right side is a change in the propagation constant difference due to the influence of the Kerr effect of the excitation light. Conventionally, there is little influence of the excitation light intensity P P small 2GanmaP P, i.e. four-wave mixing at the 2γP P «Δβ has been performed.

【0011】図1は、励起光波長λP と伝搬定数差κの
関係を模式的に示す。図において、(a) は光ファイバの
零分散波長λ0 が光信号波長λS よりも短波長側にある
場合(λ0 <λS )、(b) は光ファイバの零分散波長λ
0 が光信号波長λS よりも長波長側にある場合(λ0
λS )である。破線で示す曲線は励起光のカー効果の影
響を考慮しない場合(2γPP≪Δβ)であり、実線で示
す曲線はその影響を考慮した場合である。励起光のカー
効果の影響を考慮しない場合には、(a),(b) ともにλP
=λ0 およびλP =λS で伝搬定数差κが0となる。励
起光強度PP が増加してそのカー効果の影響がでると、
破線で示す曲線は縦軸方向に 2γPP だけ増大して実線
で示す曲線になる。
FIG. 1 schematically shows the relationship between the pumping light wavelength λ P and the propagation constant difference κ. In the figure, (a) is the case where the zero-dispersion wavelength λ 0 of the optical fiber is shorter than the optical signal wavelength λ S0S ), and (b) is the zero-dispersion wavelength λ of the optical fiber.
When 0 is on the longer wavelength side than the optical signal wavelength λ S0 >
λ S ). The curve indicated by the broken line is the case where the influence of the Kerr effect of the excitation light is not considered (2γP P << Δβ), and the curve indicated by the solid line is the case where the influence is considered. If the effect of the Kerr effect of the excitation light is not considered, both (a) and (b) are λ P
= Λ 0 and λ P = λ S , the propagation constant difference κ becomes 0. When the excitation light intensity P P is increased and the Kerr effect is exerted,
The curve indicated by the broken line increases by 2γP P in the vertical axis direction to become the curve indicated by the solid line.

【0012】伝搬定数差κの変化曲線の極大値と極小値
との差ΔκPPは、式(1) を用いて計算すると、
The difference Δκ PP between the maximum value and the minimum value of the change curve of the propagation constant difference κ is calculated by using the equation (1),

【0013】[0013]

【数3】 [Equation 3]

【0014】と表される。以下、図1(a) に示すλ0
λS の場合と、図1(b) に示すλ0 >λS の場合に分
け、励起光波長λP を光ファイバの零分散波長λ0 から
光信号波長λS の範囲内でシフトし、変換光波長λ
C (=λ P ・λ S /(2λ S −λ P ))を変化させる際の変換
光強度について説明する。 λ0<λP<λS の場合 伝搬定数差κの変化 2γPP がΔκPP/2よりも大きい
場合、すなわち励起光強度PP がΔκPP/4γ以上の場
合、λ0<λP<λS における伝搬定数差κの絶対値は、
図中太線で示すように、λP =λ0 における伝搬定数差
よりも常に小さくなる。したがって、励起光波長λP
λ0 <λP <λS の範囲内にあるときの変換光強度は、
λP =λ0 における変換光強度よりも大きくなる。
It is expressed as Below, λ shown in Fig. 1 (a)0<
λSAnd λ shown in Fig. 1 (b).0> ΛSIn case of
Excitation light wavelength λPIs the zero-dispersion wavelength λ of the optical fiber0From
Optical signal wavelength λSConverted light wavelength, shifting within the range ofλ
C (= Λ P ・ Λ S / (2λ S −λ P ))Transformation when changing
The light intensity will be described.   λ0PSin the case of Change in propagation constant difference κ 2γPPIs ΔκPPGreater than / 2
Case, that is, the excitation light intensity PPIs ΔκPP/ 4g or more
, Λ0PSThe absolute value of the propagation constant difference κ at is
As indicated by the thick line in the figure, λP= Λ0Propagation constant difference in
Will always be smaller than. Therefore, the pumping light wavelength λPBut
λ0PSThe converted light intensity when in the range of
λP= Λ0It becomes larger than the converted light intensity at.

【0015】ここで、励起光強度PP の下限を決めるΔ
κPP/4γは、式(2) および式(4)を用いて、
Here, Δ which determines the lower limit of the excitation light intensity P P
κ PP / 4γ is calculated by using equation (2) and equation (4).

【0016】[0016]

【数4】 [Equation 4]

【0017】と書き換えることができる。なお、励起光
波長λP がλ0 <λP <λS の範囲内における四光波混
合効率は、上述したようにλP =λ0 における四光波混
合効率よりも小さくなることはなく、励起光波長λP
零分散波長λ0 からシフトして変換光波長λ C (=λ P
・λ S /(2λ S −λ P ))を変化させても、その変換光強
度は低下しない。ただし、励起光強度PP の増大によっ
て四光波混合効率が増大する一方で、伝搬定数差の変化
による四光波混合効率は低下していくので、適当なとこ
ろに励起光強度PPの上限は存在する。図1(a) にはそ
の上限の一例として2γPP =2ΔκPPを示す。
It can be rewritten as It should be noted that the four-wave mixing efficiency within the range where the pumping light wavelength λ P is λ 0PS does not become smaller than the four-wave mixing efficiency at λ P = λ 0 as described above. The wavelength λ P is shifted from the zero-dispersion wavelength λ 0 and the converted light wavelength λ C (= λ P
• Even if λ S / (2λ S −λ P )) is changed, the converted light intensity does not decrease. However, while the four-wave mixing efficiency increases as the pumping light intensity P P increases, the four-wave mixing efficiency decreases as the propagation constant difference changes. Therefore, the upper limit of the pumping light intensity P P exists at an appropriate point. To do. FIG. 1 (a) shows 2γP P = 2Δκ PP as an example of the upper limit.

【0018】 λ0>λP>λS の場合 励起光強度PP の大きさにかかわらず、λ0>λP>λS
における伝搬定数差κは、図中太線で示すように、λP
=λ0 における伝搬定数差よりも常に大きくなる。した
がって、励起光波長λP がλ0 >λP >λS の範囲内に
あるときの変換光強度は、λP =λ0 における変換光強
度よりも小さくなる。すなわち、λ0 >λS の場合は、
励起光波長λP がλ0>λP>λS の範囲内で変換光強度
はさらに小さくなり、励起光波長を可変させる波長変換
に用いることはできない。
[0018] λ 0> λ P> λ regardless of the size of the case the excitation light intensity P P of S, λ 0> λ P> λ S
The propagation constant difference κ at is λ P as shown by the thick line in the figure.
It is always larger than the propagation constant difference at = λ 0 . Therefore, the converted light intensity when the pumping light wavelength λ P is within the range of λ 0 > λ P > λ S is smaller than the converted light intensity when λ P = λ 0 . That is, when λ 0 > λ S ,
When the pumping light wavelength λ P is in the range of λ 0 > λ P > λ S , the converted light intensity becomes further smaller and it cannot be used for wavelength conversion in which the pumping light wavelength is variable.

【0019】[0019]

【発明の実施の形態】図2は、本発明の光波長変換装置
の実施形態を示す。本実施形態では、波長(λS )157
0.9nm、パルス幅40ps、繰り返し周波数2.5GHzの光
信号パルスに対して、零分散波長(λ0 )1561.7nm
(=λS−9.2nm)の光ファイバを四光波混合媒体とし
て用いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows an embodiment of the optical wavelength conversion device of the present invention. In the present embodiment, the wavelength (λ S ) 157
Zero-dispersion wavelength (λ 0 ) 1561.7 nm for optical signal pulse of 0.9 nm, pulse width 40 ps and repetition frequency 2.5 GHz
An optical fiber of (= λ S -9.2 nm) is used as a four-wave mixing medium.

【0020】図において、本実施形態の波長変換装置
は、光信号と同期した 2.5GHzの励起光パルス列(パル
ス幅約60ps)を発生する波長可変励起光源11、光信
号と励起光を合波する光カプラ12、光カプラ12に接
続された細径コアファイバ13(モードフィールド径
4.2μm、零分散波長1561.7nm、長さ5km)により
構成される。本装置に入射された光信号は、光カプラ1
2で励起光と合波されて細径コアファイバ13に入射さ
れ、細径コアファイバ13中の四光波混合により新たに
変換光が発生する。光信号および励起光の細径コアファ
イバ13への平均入射強度は、それぞれ−20.0dBm、+
11.0dBmとした。
In the figure, the wavelength converter of the present embodiment multiplexes the wavelength tunable pumping light source 11 for generating a 2.5 GHz pumping light pulse train (pulse width of about 60 ps) synchronized with the optical signal, and the optical signal and the pumping light. The optical coupler 12 and the thin core fiber 13 (mode field diameter connected to the optical coupler 12
4.2 μm, zero dispersion wavelength 1561.7 nm, length 5 km). The optical signal incident on the device is the optical coupler 1
At 2, the light is combined with the excitation light and is incident on the small-diameter core fiber 13, and the converted light is newly generated by the four-wave mixing in the small-diameter core fiber 13. The average incident intensities of the optical signal and the excitation light on the small-diameter core fiber 13 are −20.0 dBm and +, respectively.
It was set to 11.0 dBm.

【0021】一般的な分散シフトファイバのモードフィ
ールド径が約8μmであるのに対して、これよりもモー
ドフィールド径が小さい、すなわち、有効コア断面積A
effが小さい細径コアファイバ13を用いることによ
り、式(2) に示すγが大きくなって式(3) 第2項の 2γ
P の効果が大きくなる。これにより、低い励起光強度
P で伝搬定数差κの変化を大きくすることができる。
The mode field diameter of a general dispersion-shifted fiber is about 8 μm, whereas the mode field diameter is smaller than this, that is, the effective core area A
By using the small-diameter core fiber 13 with a small eff, γ shown in the equation (2) becomes large and 2γ in the second term of the equation (3) becomes large.
The effect of P P increases. This makes it possible to increase the change in the propagation constant difference κ with a low excitation light intensity P P.

【0022】また、一般的な分散シフトファイバに比べ
て分散スロープdD/dλが小さい細径コアファイバ1
3を用いれば、式(4) に示すΔκPPが小さくなり、伝搬
定数差κの変化を小さくすることができる。これによ
り、励起光波長に応じた変換光強度の変化を小さくする
ことができる。図3は、励起光波長λP に対する変換光
強度を測定した結果を示す。
Further, the small-diameter core fiber 1 has a dispersion slope dD / dλ smaller than that of a general dispersion-shifted fiber.
If 3 is used, Δκ PP shown in equation (4) becomes small, and the change in the propagation constant difference κ can be made small. This makes it possible to reduce the change in the converted light intensity depending on the excitation light wavelength. FIG. 3 shows the result of measuring the converted light intensity with respect to the excitation light wavelength λ P.

【0023】励起光波長λP を光ファイバの零分散波長
λ0 から光信号波長λS 近辺までの範囲で変化させた場
合の変換光強度は、励起光波長λP が光ファイバの零分
散波長にある場合の変換光強度以下になっていないこと
がわかる。また、その範囲において、変換光強度は入射
光信号強度−20.0dBmよりも大きくなっており、波長変
換と同時に光増幅の機能も果していることがわかる。
The converted light intensity when an excitation light wavelength lambda P was varied from zero dispersion wavelength lambda 0 of the optical fiber to near optical signal wavelength lambda S is the zero dispersion wavelength of the excitation light wavelength lambda P is the optical fiber It can be seen that the converted light intensity does not fall below the case. Further, in that range, the converted light intensity is larger than the incident light signal intensity −20.0 dBm, and it can be seen that the function of optical amplification is fulfilled at the same time as wavelength conversion.

【0024】図4は、励起光波長λP を光ファイバの零
分散波長λ0 よりも 1.2nm長波長側に固定した場合
(λP=λ0+1.2 nm)の励起光強度に対する変換光強
度を測定した結果を示す。励起光平均入射強度が+6dB
mを越えるあたりから、励起光による伝搬定数差の変化
により変換光強度が急激に増大している。例えば、励起
光平均入射強度を+6.5 dBmから+9.5 dBmへとわずか
3.0dB増大させると、変換光強度が−37.5dBmから−1
8.2dBmへと19.3dBmもの急激な増加を示していること
が分かる。これは、励起光強度の増加によって伝搬定数
差κが0に近づいた結果と、励起光強度の増加による四
光波混合効率(波長変換利得)の増加が相乗的に現れた
ものである。
FIG. 4 shows the converted light with respect to the pumping light intensity when the pumping light wavelength λ P is fixed on the wavelength side 1.2 nm longer than the zero dispersion wavelength λ 0 of the optical fiber (λ P = λ 0 +1.2 nm). The result of measuring the strength is shown. Average excitation light intensity is +6 dB
From around m, the converted light intensity rapidly increases due to the change in the propagation constant difference due to the excitation light. For example, the excitation light average incident intensity was slightly increased from +6.5 dBm to +9.5 dBm.
When increased by 3.0 dB, the converted light intensity will change from -37.5 dBm to -1.
It can be seen that there is a sharp increase of 19.3 dBm to 8.2 dBm. This is due to the synergistic appearance of the result that the propagation constant difference κ approaches 0 due to the increase of the pump light intensity and the increase of the four-wave mixing efficiency (wavelength conversion gain) due to the increase of the pump light intensity.

【0025】[0025]

【発明の効果】以上説明したように、本発明の光波長変
換装置は、四光波混合媒体として光信号波長λS より短
波長側の零分散波長λ0 をもつ光ファイバを用い、励起
光の強度PP をΔκPP/4γ以上、すなわち、
As described above, the optical wavelength conversion device of the present invention uses an optical fiber having a zero-dispersion wavelength λ 0 on the shorter wavelength side than the optical signal wavelength λ S as a four-wave mixing medium, and The intensity P P is Δκ PP / 4γ or more, that is,

【0026】[0026]

【数5】 [Equation 5]

【0027】以上とする。これにより、励起光波長λP
をλ0 <λP <λS の範囲内でシフトさせたときの変換
光強度は、λP =λ0 のときの変換光強度よりも低下し
ないようにすることができる。このような光波長変換装
置では、波長変換を利用した全光操作による光スイッチ
ングにおいて、光信号の変換先の波長範囲を拡大できる
ことになり、将来の波長多重伝送ネットワークに有用な
ものとなる。
The above is done. As a result, the pumping light wavelength λ P
It is possible to prevent the converted light intensity when the shift is within the range of λ 0PS from being lower than the converted light intensity when λ P = λ 0 . In such an optical wavelength conversion device, the wavelength range of the conversion destination of the optical signal can be expanded in the optical switching by the all-optical operation using the wavelength conversion, and it will be useful for the wavelength multiplexing transmission network in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】励起光波長λP と伝搬定数差κの関係を模式的
に示す図。
FIG. 1 is a diagram schematically showing a relationship between a pumping light wavelength λ P and a propagation constant difference κ.

【図2】本発明の光波長変換装置の実施形態を示すブロ
ック図。
FIG. 2 is a block diagram showing an embodiment of an optical wavelength conversion device of the present invention.

【図3】励起光波長λP に対する変換光強度を測定した
結果を示す図。
FIG. 3 is a diagram showing a result of measuring a converted light intensity with respect to a pumping light wavelength λ P.

【図4】励起光波長λP をλ0+1.2nmに固定したとき
の励起光強度に対する変換光強度を測定した結果を示す
図。
FIG. 4 is a diagram showing a result of measuring a converted light intensity with respect to an excitation light intensity when the excitation light wavelength λ P is fixed to λ 0 +1.2 nm.

【符号の説明】[Explanation of symbols]

11 波長可変励起光源 12 光カプラ 13 細径コアファイバ 11 Tunable pump light source 12 Optical coupler 13 Thin core fiber

フロントページの続き (56)参考文献 山本 貴司 他,光強度に依存する位 相整合条件を考慮した光ファイバ中の高 効率四光波混合,電子情報通信学会技術 研究報告,日本,社団法人 電子情報通 信学会,1996年10月 3日,Vol.96 No.284,P61−66 (58)調査した分野(Int.Cl.7,DB名) G02F 1/35 Front page continued (56) References Takashi Yamamoto et al., High-efficiency four-wave mixing in optical fiber considering phase matching condition depending on light intensity, IEICE technical report, Japan, Electronic Information Network Shinshin Gakkai, October 3, 1996, Vol. 96 No. 284, P61-66 (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/35

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 波長λS の光信号と波長λP の励起光を
入射して波長λC (=λP・λS/(2λS−λP))の変換
光を発生させる四光波混合媒体として、光信号波長λS
より短波長側の零分散波長λ0 をもった光ファイバを用
いた光波長変換装置において、 前記励起光の強度が+6dBm以上であり、 前記励起光波長λP を前記光ファイバの零分散波長λ0
から光信号波長λS までの範囲内に設定したことを特徴
とする光波長変換装置。
1. Four-wave mixing for generating a converted light of wavelength λ C (= λ P · λ S / (2λ S −λ P )) by inputting an optical signal of wavelength λ S and pumping light of wavelength λ P As the medium, the optical signal wavelength λ S
In an optical wavelength conversion device using an optical fiber having a zero-dispersion wavelength λ 0 on the shorter wavelength side, the intensity of the pumping light is +6 dBm or more, and the pumping light wavelength λ P is the zero-dispersion wavelength λ of the optical fiber. 0
To the optical signal wavelength λ S , an optical wavelength conversion device characterized by being set.
【請求項2】 前記光ファイバは、細径コアファイバで
あることを特徴とする請求項1に記載の光波長変換装
置。
2. The optical fiber is a thin core fiber.
The optical wavelength conversion device according to claim 1, wherein
Place
【請求項3】 前記光ファイバは、モードフィールド径
が8μmよりも小さい細径コアファイバであることを特
徴とする請求項1に記載の光波長変換装置。
3. The mode fiber diameter of the optical fiber
Is a small-diameter core fiber smaller than 8 μm.
The optical wavelength conversion device according to claim 1, which is a characteristic.
【請求項4】 前記光ファイバは、モードフィールド径
が 4.2μmの細径コアファイバであることを特徴とする
請求項1に記載の光波長変換装置。
4. The mode field diameter of the optical fiber
Is a 4.2 μm thin core fiber
The optical wavelength conversion device according to claim 1.
JP28695696A 1996-10-29 1996-10-29 Optical wavelength converter Expired - Lifetime JP3473661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28695696A JP3473661B2 (en) 1996-10-29 1996-10-29 Optical wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28695696A JP3473661B2 (en) 1996-10-29 1996-10-29 Optical wavelength converter

Publications (2)

Publication Number Publication Date
JPH10133240A JPH10133240A (en) 1998-05-22
JP3473661B2 true JP3473661B2 (en) 2003-12-08

Family

ID=17711137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28695696A Expired - Lifetime JP3473661B2 (en) 1996-10-29 1996-10-29 Optical wavelength converter

Country Status (1)

Country Link
JP (1) JP3473661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550187B2 (en) * 1999-09-07 2010-09-22 古河電気工業株式会社 Optical fiber wavelength conversion method
US7239440B2 (en) 2003-11-18 2007-07-03 Sumitomo Electric Industries, Ltd. Wavelength conversion apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山本 貴司 他,光強度に依存する位相整合条件を考慮した光ファイバ中の高効率四光波混合,電子情報通信学会技術研究報告,日本,社団法人 電子情報通信学会,1996年10月 3日,Vol.96 No.284,P61−66

Also Published As

Publication number Publication date
JPH10133240A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
US6043927A (en) Modulation instability wavelength converter
US7072549B2 (en) Optical gate device, manufacturing method for the device, and system including the device
EP1102114B1 (en) Raman amplification method
JP2858400B2 (en) Apparatus and method for changing the spectral characteristics of an optical signal
JP4550187B2 (en) Optical fiber wavelength conversion method
US7352504B2 (en) Optical fourier transform device and method
Yamamoto et al. Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching
JP5193188B2 (en) Optical pulse shaper, optical pulse light source, supercontinuum light generator and supercontinuum light generation method
US6424774B1 (en) Tunable wavelength four light wave mixer
JP4309071B2 (en) Optical transmission system
JPH1090737A (en) Optical fiber, light source device and system
JP3473661B2 (en) Optical wavelength converter
JP2002229080A (en) Optical pulse waveform converter and optical pulse light source having the same
JPH1065623A (en) Method and device for generating supershort optical pulse
JP5408313B2 (en) Optical device, wavelength conversion method, and optical fiber suitable therefor
JP2004184524A (en) Optical module, optical fiber and optical transmission system
JP5261968B2 (en) Optical device, wavelength conversion method, and optical fiber suitable therefor
JP3474773B2 (en) White pulse light source
JP3975202B2 (en) Optical fiber and light source device
JP3524355B2 (en) Coherent broadband light source
Torchigin et al. An increase in the wavelength of light pulses propagating through a fiber
JP3033920B2 (en) Optical frequency conversion method
JP2000214499A (en) Optical pulse compressor
He et al. Four-wave mixing in a fiber loop mirror constructed from two polarization-maintaining dispersion-shifted fibers
JPH0566441A (en) Nonlinear optical device and optical amplifying method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9