JP3473576B2 - Antenna device and transmitting / receiving device - Google Patents

Antenna device and transmitting / receiving device

Info

Publication number
JP3473576B2
JP3473576B2 JP2000369951A JP2000369951A JP3473576B2 JP 3473576 B2 JP3473576 B2 JP 3473576B2 JP 2000369951 A JP2000369951 A JP 2000369951A JP 2000369951 A JP2000369951 A JP 2000369951A JP 3473576 B2 JP3473576 B2 JP 3473576B2
Authority
JP
Japan
Prior art keywords
dielectric
primary radiator
dielectric line
line
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000369951A
Other languages
Japanese (ja)
Other versions
JP2001217634A (en
Inventor
容平 石川
透 谷崎
文宣 中村
郁夫 高桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000369951A priority Critical patent/JP3473576B2/en
Publication of JP2001217634A publication Critical patent/JP2001217634A/en
Application granted granted Critical
Publication of JP3473576B2 publication Critical patent/JP3473576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえばミリ波
帯の電磁波を送受波して探知物体までの距離や相対速度
を計測するレーダ等に用いられるアンテナ装置および送
受信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna device and a transmission / reception device used in a radar or the like for transmitting and receiving electromagnetic waves in the millimeter wave band to measure the distance to a detection object and the relative speed.

【0002】[0002]

【従来の技術】たとえば道路を走行中に、前方または後
方を走行する車両との距離や相対速度を計測することな
どを目的として、いわゆる車載用ミリ波レーダが開発さ
れている。このようなミリ波レーダの送受信装置は一般
に、ミリ波発振器、サーキュレータ、方向性結合器、ミ
キサ、アンテナ等が一体化されたモジュールから成り、
車両の前部または後部に取りつけられる。
2. Description of the Related Art For example, so-called on-vehicle millimeter-wave radar has been developed for the purpose of measuring a distance and a relative speed to a vehicle traveling forward or backward while traveling on a road. Such a millimeter-wave radar transmitter / receiver generally comprises a module in which a millimeter-wave oscillator, a circulator, a directional coupler, a mixer, an antenna, etc. are integrated.
Mounted on the front or rear of the vehicle.

【0003】たとえば図21において、右側の車両はそ
の前方を走行する車両(図における左側の車両)との相
対距離および相対速度を、たとえばFM−CW方式でミ
リ波を送受波することによって計測する。図22はミリ
波レーダの全体の構成を示すブロック図である。同図に
おいて送受信装置およびアンテナは、図21に示した例
では、車両の前部に取り付けられ、信号処理装置は通常
任意の箇所に設けられる。信号処理装置内の信号処理部
は送受信装置を用いて、前方を走行する車両までの距離
と相対速度を数値情報として抽出し、制御・警報部で
は、自車の走行速度と車間距離との関係から、たとえば
予め定めた条件を満たすときに警報を発したり、前方車
両との相対速度が予め定めたしきい値を超えたときに警
報を発する。
For example, in FIG. 21, a vehicle on the right side measures a relative distance and a relative speed to a vehicle traveling in front of it (a vehicle on the left side in the figure) by transmitting and receiving a millimeter wave by the FM-CW system, for example. . FIG. 22 is a block diagram showing the overall configuration of the millimeter wave radar. In the example shown in FIG. 21, the transmission / reception device and the antenna are attached to the front part of the vehicle in FIG. 21, and the signal processing device is usually provided at an arbitrary position. The signal processing unit in the signal processing device uses a transmitter / receiver to extract the distance to the vehicle traveling ahead and the relative speed as numerical information.The control / alarm unit uses the relationship between the traveling speed of the vehicle and the inter-vehicle distance. Therefore, for example, an alarm is issued when a predetermined condition is satisfied, or an alarm is issued when the relative speed with respect to the vehicle ahead exceeds a predetermined threshold value.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来のミリ
波レーダにおいては、アンテナの指向方向が固定である
ため、次に述べるように、条件によっては目的通りの探
知や計測が行われない場合が生じる。すなわち、たとえ
ば図18に示すように複数車線の道路を車両が走行して
いる場合に、前方に存在する他の車両から反射する電波
を受信するだけでは、その車両が自車が現在走行してい
る車線上に存在するのか否かが直ちには判定できない。
すなわち図18において自車CmからB2で示す放射ビ
ームで電波を送波した場合に、前方を走行する車両Ca
からの反射波とともに対向車線を走行する車両Cbから
の反射波も受波することになり、後者の反射波により求
められる相対速度は非常に大きな値となって、誤って警
報が出されるといった不都合が生じる。また図19に示
す例では、自車CmがB1で示す放射ビームで前方に電
波を送波しても車線に沿って前方を走行している車両C
aを探知することはできない。さらに図20に示すよう
に、起伏のある道路を走行中に、自車Cmが前方にB1
で示す放射ビームで電波の送波を行っても前方の車両C
aを探知することはできない。
By the way, in the conventional millimeter-wave radar, since the pointing direction of the antenna is fixed, the desired detection or measurement may not be performed depending on the conditions as described below. Occurs. That is, for example, when a vehicle is traveling on a road having a plurality of lanes as shown in FIG. 18, if the vehicle is currently traveling, the vehicle is currently traveling only by receiving a radio wave reflected from another vehicle in front. It cannot be immediately determined whether or not the vehicle is in the existing lane.
That is, when radio waves are transmitted from the own vehicle Cm in FIG. 18 with a radiation beam indicated by B2, the vehicle Ca traveling in front of
The reflected wave from the vehicle Cb traveling in the opposite lane is also received together with the reflected wave from the vehicle, and the relative speed obtained by the latter reflected wave becomes a very large value, and an alarm is erroneously issued. Occurs. In the example shown in FIG. 19, the vehicle Cm traveling forward along the lane even if the vehicle Cm transmits a radio wave forward with the radiation beam indicated by B1.
It cannot detect a. Further, as shown in FIG. 20, while traveling on an uneven road, the vehicle Cm moves forward B1
Vehicle C ahead even if radio waves are transmitted by the radiation beam shown in
It cannot detect a.

【0005】そこで、放射ビームの方向を変化させて上
述した問題を解消することが考えられる。たとえば図1
8に示した例では、放射ビームをB1〜B3の範囲で変
化させ、演算処理によって各ビーム方向での計測結果を
比較することにより前方の角度方向に近接する2つの探
知物体を分離探知することができる。また図19に示し
た例では、ハンドル操作(ステアリングホイールの舵
角)や、前方を撮像するカメラからの画像情報を解析す
ることによって車線のカーブを判定し、それに応じた方
向に、たとえばB2で示す方向に放射ビームを向けるこ
とによって、前方の車両Caを探知することができる。
さらに図20に示した例でも前方を撮像するカメラから
の画像情報を解析することによって道路の起伏を判定
し、それに応じた方向に、たとえばB2で示す方向に放
射ビームを上げることによって、前方の車両Caを探知
することができる。
Therefore, it is conceivable to change the direction of the radiation beam to solve the above-mentioned problems. Figure 1
In the example shown in FIG. 8, the radiation beam is changed in the range of B1 to B3, and the detection results are compared in the respective beam directions by the calculation processing to separately detect two detection objects that are close to each other in the forward angular direction. You can In the example shown in FIG. 19, the curve of the lane is determined by analyzing the steering wheel operation (steering angle of the steering wheel) and the image information from the camera that images the front, and in the corresponding direction, for example, at B2. By directing the radiation beam in the direction shown, it is possible to detect the vehicle Ca ahead.
Furthermore, in the example shown in FIG. 20 as well, by analyzing the image information from the camera that images the front, the undulation of the road is determined, and by raising the radiation beam in the direction corresponding thereto, for example, in the direction indicated by B2, the front The vehicle Ca can be detected.

【0006】ところが、従来のマイクロ波帯やミリ波帯
の送受信装置において電磁波の放射ビームの指向方向を
変える方法は、アンテナを含む送受信装置の筐体全体を
単にモータ等で回転させて、放射ビームの方向を変化
(チルト)させるものであるため、全体に大型であり、
放射ビームの方向を高速に走査(以下「スキャン」とい
う。)させることも困難であった。
However, the conventional method for changing the directivity of the radiation beam of the electromagnetic wave in the transmission / reception device of the microwave band or millimeter wave band is to rotate the entire housing of the transmission / reception device including the antenna simply by a motor or the like, and Since it changes (tilt) the direction of,
It was also difficult to scan the direction of the radiation beam at high speed (hereinafter referred to as “scan”).

【0007】この発明の目的はこのような従来の問題を
解消して、全体に容易に小型化でき、指向方向を高速に
切り換えるのに適したアンテナ装置およびそれを用いた
送受信装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide an antenna device which can be easily downsized as a whole and which is suitable for switching the pointing direction at high speed, and a transmitting / receiving device using the antenna device. It is in.

【0008】[0008]

【課題を解決するための手段】この発明は、誘電体レン
ズと1次放射器とからなるアンテナ装置であって、可動
部分の質量を低減し、その慣性を小さくして高速にスキ
ャンできるようにするために、前記1次放射器に備えら
れた第1の誘電体線路と、該第1の誘電体線路に近接す
る第2の誘電体線路とによって方向性結合器を構成し、
該方向性結合器を前記1次放射器の入出力部として、
1の誘電体線路と第2の誘電体線路との結合を保ったま
ま、前記第1の誘電体線路と前記1次放射器とを移動さ
せて、前記誘電体レンズと前記1次放射器との相対位置
関係を変位させる手段を設ける。これにより誘電体レン
ズと1次放射器の相対位置関係を変えることによって、
誘電体レンズの焦点面内で1次放射器の位置を変位さ
せ、誘電体レンズと1次放射器の位置関係から定まるビ
ームの指向方向を変化させる。
SUMMARY OF THE INVENTION The present invention is an antenna device comprising a dielectric lens and a primary radiator, which reduces the mass of a movable part and reduces its inertia so that scanning can be performed at high speed. to, et al provided in the primary radiator
The first dielectric line and the second dielectric line adjacent to the first dielectric line to form a directional coupler,
Using the directional coupler as an input / output unit of the primary radiator, the first dielectric line and the primary radiation are maintained while the coupling between the first dielectric line and the second dielectric line is maintained. And means for moving the container to displace the relative positional relationship between the dielectric lens and the primary radiator. By changing the relative positional relationship between the dielectric lens and the primary radiator,
The position of the primary radiator is displaced within the focal plane of the dielectric lens to change the beam directing direction determined by the positional relationship between the dielectric lens and the primary radiator.

【0009】また、この発明は、上記方向性結合器の結
合量を約0dBとする。これにより、方向性結合器にお
ける伝送損失を極力抑えて、アンテナの能率の低下を防
止する。
Further, according to the present invention, the coupling amount of the directional coupler is set to about 0 dB. This suppresses the transmission loss in the directional coupler as much as possible, and prevents the efficiency of the antenna from decreasing.

【0010】また、この発明は、上記誘電体線路を非放
射性誘電体線路とする。これにより、伝送損失を低減す
る。また、線路外部への不要輻射を防止し、且つ線路外
部からの不要信号の入射を防止して、アンテナの利得等
の総合特性を向上させる。
Further, according to the present invention, the dielectric line is a non-radiative dielectric line. This reduces transmission loss. In addition, unnecessary radiation to the outside of the line is prevented, and unnecessary signals from the outside of the line are prevented from entering to improve the overall characteristics such as the gain of the antenna.

【0011】また、この発明は、上記第2の誘電体線路
に、送信部、受信部および送信信号と受信信号とを分離
するサーキュレータを接続して送受共用にする。これに
より1次放射器の入出力部である第1の誘電体線路に結
合する第2の誘電体線路部分を送受共用にすることがで
き、上記方向性結合器を用いて可動部分を構成すること
による大型化を避ける。
Further, according to the present invention, a transmitting section, a receiving section, and a circulator for separating a transmission signal and a reception signal are connected to the second dielectric line so as to be used for both transmission and reception. As a result, the second dielectric line portion that is coupled to the first dielectric line, which is the input / output unit of the primary radiator, can be used for both transmission and reception, and the directional coupler is used to configure the movable portion. Avoid increasing size.

【0012】また、この発明は、上記いずれかの構成か
らなるアンテナ装置に、誘電体レンズと1次放射器との
相対位置関係を変位させる駆動部を設けて送受信装置を
構成する。これにより、アンテナの指向方向をスキャン
させることのできる小型の送受信装置を得る。
Further, according to the present invention, a transmitting / receiving device is constituted by providing a driving unit for displacing the relative positional relationship between the dielectric lens and the primary radiator to the antenna device having any one of the above configurations. As a result, a small transmission / reception device capable of scanning the directional direction of the antenna is obtained.

【0013】さらに、この発明は、発振器と、1の誘
電体線路と、前記発振器からの発振信号が放射しさらに
探知物体からの反射波が入射する開口部と、前記第1の
誘電体線路と当該第1の誘電体線路に近接する第2の誘
電体線路とによって方向性結合器を構成し、該方向性結
合器を1次放射器の入出力部とし、第1の誘電体線路と
第2の誘電体線路との結合を保ったまま前記1次放射器
を移動させて、前記誘電体レンズと前記1次放射器との
相対位置関係を変位させる手段と、誘電体レンズとを含
んでなるアンテナ装置と、前記探知物体からの反射波
と、前記発振器からの発振信号の一部によって構成され
るローカル信号とが入力されるミキサとを含んで、レー
ダ用送受信装置を構成する。 これにより、探知能力に
優れ、高速スキャン可能なレーダを得る。
Furthermore, the present invention includes an oscillator and a first dielectric line, and an opening which reflected waves from the further detection object oscillation signal is radiated from the oscillator is incident, the first dielectric waveguide And a second dielectric line adjacent to the first dielectric line, form a directional coupler, and the directional coupler is connected.
The combiner serves as an input / output unit of the primary radiator, and the primary radiator is moved while maintaining the coupling between the first dielectric line and the second dielectric line, and the dielectric lens and the first dielectric line are connected to each other. An antenna device including means for displacing the relative positional relationship with the secondary radiator, a dielectric lens, a reflected wave from the detection object, and a local signal formed by a part of an oscillation signal from the oscillator. And a mixer to which is input, and a radar transmitter / receiver is configured. As a result, a radar having excellent detection ability and capable of high-speed scanning is obtained.

【0014】[0014]

【発明の実施の形態】この発明の第1の実施形態に係る
アンテナ装置および送受信装置の構成を図1〜図7を参
照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configurations of an antenna device and a transmitting / receiving device according to a first embodiment of the present invention will be described with reference to FIGS.

【0015】図1は誘電体レンズと1次放射器との位置
関係および放射ビームの指向性との関係を示す図であ
る。同図において1は1次放射器であり、その放射方向
を中心軸として誘電体レンズ2を配置している。(A)
〜(C)は誘電体レンズ2を固定、1次放射器1を可動
とした場合の例であり、(A)に示すように1次放射器
1の放射方向に誘電体レンズ2の中心軸が一致している
場合、誘電体レンズ2の正面方向に放射ビームBが指向
するが、(B)および(C)に示すように1次放射器1
が誘電体レンズ2の焦点面内で変位した場合、その変位
方向とは逆方向に放射ビームBが指向することになる。
(D)〜(F)は1次放射器を固定、誘電体レンズ2側
を可動とした場合の例であり、1次放射器1の放射方向
に誘電体レンズ2の中心軸が一致している場合には、誘
電体レンズ2の正面方向に放射ビームBが指向するが、
(E)および(F)に示すように誘電体レンズ2がその
中心軸に垂直な方向に変位した場合、その変位方向に放
射ビームBが指向することになる。
FIG. 1 is a diagram showing the positional relationship between the dielectric lens and the primary radiator and the relationship with the directivity of the radiation beam. In the figure, reference numeral 1 is a primary radiator, and a dielectric lens 2 is arranged with its radiation direction as a central axis. (A)
(C) is an example when the dielectric lens 2 is fixed and the primary radiator 1 is movable. As shown in (A), the central axis of the dielectric lens 2 is in the radial direction of the primary radiator 1. , The radiation beam B is directed in the front direction of the dielectric lens 2, but as shown in (B) and (C), the primary radiator 1
When is displaced in the focal plane of the dielectric lens 2, the radiation beam B is directed in the direction opposite to the displacement direction.
(D) to (F) are examples in which the primary radiator is fixed and the dielectric lens 2 side is movable, and the central axis of the dielectric lens 2 is aligned with the radiation direction of the primary radiator 1. If there is, the radiation beam B is directed in the front direction of the dielectric lens 2,
When the dielectric lens 2 is displaced in the direction perpendicular to its central axis as shown in (E) and (F), the radiation beam B is directed in the displacement direction.

【0016】図2は誘電体レンズと1次放射器との成す
角度を変えて放射ビームの指向方向を変えるようにした
場合であり、(A)に示すように、1次放射器1の放射
方向が誘電体レンズ2の中心軸方向を向いている場合に
は、誘電体レンズ2の正面方向に放射ビームBが指向す
るが、(B)および(C)に示すように1次放射器1に
対する誘電体レンズの軸方向を変えることによって、そ
の方向に放射ビームBが指向することになる。
FIG. 2 shows a case where the angle formed by the dielectric lens and the primary radiator is changed to change the directing direction of the radiation beam. As shown in FIG. When the direction is the direction of the central axis of the dielectric lens 2, the radiation beam B is directed in the front direction of the dielectric lens 2, but as shown in (B) and (C), the primary radiator 1 By changing the axial direction of the dielectric lens relative to, the radiation beam B will be directed in that direction.

【0017】図3は誘電体レンズ2に対する1次放射器
1の焦点面内での変位(オフセット)量を変えた時の放
射ビームの指向角(チルト角)の測定結果を示す。ここ
で誘電体レンズ2としては、比誘電率εr=2.3のP
Eを用い、その開口径φを75mm、焦点距離dを2
2.5mmとし、1次放射器1としてはホーンアンテナ
を用いた。このように1次放射器1のオフセット量を0
〜5mmの範囲で変位させることによって、放射ビーム
のチルト角を0〜7°の範囲で変位させることができ
る。
FIG. 3 shows the measurement result of the directivity angle (tilt angle) of the radiation beam when the displacement (offset) amount of the primary radiator 1 with respect to the dielectric lens 2 is changed. Here, as the dielectric lens 2, P having a relative permittivity εr = 2.3 is used.
E, the aperture diameter φ is 75 mm, and the focal length d is 2
A horn antenna was used as the primary radiator 1 with a size of 2.5 mm. Thus, the offset amount of the primary radiator 1 is set to 0
By displacing in the range of ˜5 mm, the tilt angle of the radiation beam can be displaced in the range of 0 to 7 °.

【0018】図4は1次放射器に対する誘電体レンズ2
の軸方向を変化させた時の放射ビームの指向角(チルト
角)の測定結果を示す。ここで誘電体レンズ2として
は、比誘電率εr=2.3のPEを用い、その開口径φ
を75mm、焦点距離dを21.0mmとし、1次放射
器1としては非放射性誘電体線路(NRDガイド)によ
り励振される誘電体共振器による垂直1次放射器を用い
た。このように誘電体レンズ2の角度を0〜5°の範囲
で変化させることによって、放射ビームのチルト角を0
〜9°の範囲で変位させることができる。
FIG. 4 shows a dielectric lens 2 for the primary radiator.
The measurement result of the directivity angle (tilt angle) of the radiation beam when the axial direction of is changed is shown. Here, as the dielectric lens 2, PE having a relative permittivity εr = 2.3 is used, and its aperture diameter φ
Is 75 mm, the focal length d is 21.0 mm, and the primary radiator 1 is a vertical primary radiator with a dielectric resonator excited by a non-radiative dielectric line (NRD guide). In this way, by changing the angle of the dielectric lens 2 in the range of 0 to 5 °, the tilt angle of the radiation beam is set to 0.
It can be displaced in the range of ~ 9 °.

【0019】図5は送受信装置の構成を示す断面図であ
る。同図において3は1次放射器1を含む送受信部を収
める筐体であり、その開口部(図における上部)に誘電
体レンズ2を取りつけている。筐体3の内部において、
1次放射器1は駆動部4を介して取りつけていて、駆動
部4は1次放射器1を放射方向に垂直な面方向に変位さ
せる。この駆動部4はたとえばリニアモータやソレノイ
ド等から構成する。この構造によって、図1の(A)〜
(C)に示したように誘電体レンズ2と1次放射器1と
の相対位置関係を変化させて放射ビームをチルトさせ
る。
FIG. 5 is a sectional view showing the structure of the transmitting / receiving apparatus. In the figure, reference numeral 3 is a housing for housing a transmitting / receiving unit including the primary radiator 1, and a dielectric lens 2 is attached to the opening (upper part in the drawing). Inside the housing 3,
The primary radiator 1 is attached via a drive unit 4, and the drive unit 4 displaces the primary radiator 1 in a plane direction perpendicular to the radial direction. The drive unit 4 is composed of, for example, a linear motor or a solenoid. With this structure, (A) to FIG.
As shown in (C), the relative positional relationship between the dielectric lens 2 and the primary radiator 1 is changed to tilt the radiation beam.

【0020】図6は送受信装置の他の構成例を示す断面
図である。同図において筐体3の内部には1次放射器1
を含む送受信部全体を固定していて、誘電体レンズ2を
駆動部4を介して筐体3の開口部に取りつけている。こ
の駆動部4はソレノイドやリニアモータ等からなり、誘
電体レンズ2をその中心軸に垂直な面方向に変位させ
る。これにより図1の(D)〜(F)に示したように、
1次放射器に対して誘電体レンズを変位させて放射ビー
ムをチルトさせる。
FIG. 6 is a sectional view showing another example of the structure of the transmitting / receiving apparatus. In the figure, the primary radiator 1 is provided inside the housing 3.
The entire transmission / reception section including is fixed, and the dielectric lens 2 is attached to the opening of the housing 3 via the drive section 4. The drive unit 4 is composed of a solenoid, a linear motor, etc., and displaces the dielectric lens 2 in a plane direction perpendicular to the central axis thereof. As a result, as shown in (D) to (F) of FIG.
The dielectric lens is displaced with respect to the primary radiator to tilt the radiation beam.

【0021】なお、図2に示したように1次放射器に対
する誘電体レンズの成す角度を変える場合にも、基本的
に図6に示した構造を採ることができる。すなわち図6
において左右2つの駆動部4をそれぞれ変位させて、誘
電体レンズの軸方向が変化するように構成すればよい。
また、誘電体レンズに対する1次放射器の成す角度を変
化させる場合には、基本的に図5に示した構造を採るこ
とができる。すなわち図5において左右2つの駆動部4
をそれぞれ変位させて、1次放射器の軸方向が変化する
ように構成すればよい。以上に述べた例では、説明上紙
面の面内方向に1次放射器または誘電体レンズを変位さ
せるように説明したが、図18〜図20に示したよう
に、車両の正面方向の探知を行うミリ波レーダのよう
に、左右方向だけでなく、上下方向にも放射ビームをチ
ルトさせる場合には、1次放射器または誘電体レンズを
2次元方向に変位させればよい。図7は誘電体レンズの
軸方向から見た送受信装置の正面図である。この場合、
誘電体レンズに対して1次放射器1をx軸方向およびy
軸方向に相対的に変位させることによって、放射ビーム
をx軸方向およびy軸方向にチルトさせる。
Incidentally, even when the angle formed by the dielectric lens with respect to the primary radiator is changed as shown in FIG. 2, the structure shown in FIG. 6 can be basically adopted. That is, FIG.
In, the left and right drive units 4 may be respectively displaced so that the axial direction of the dielectric lens changes.
Further, when changing the angle formed by the primary radiator with respect to the dielectric lens, the structure shown in FIG. 5 can be basically adopted. That is, in FIG.
May be respectively displaced to change the axial direction of the primary radiator. In the example described above, the primary radiator or the dielectric lens is displaced in the in-plane direction of the plane of description, but as shown in FIGS. 18 to 20, the detection in the front direction of the vehicle is performed. When the radiation beam is tilted not only in the horizontal direction but also in the vertical direction as in the case of the millimeter wave radar, the primary radiator or the dielectric lens may be displaced in the two-dimensional direction. FIG. 7 is a front view of the transmission / reception device viewed from the axial direction of the dielectric lens. in this case,
Set the primary radiator 1 in the x-axis direction and y with respect to the dielectric lens.
The relative displacement in the axial direction tilts the radiation beam in the x-axis direction and the y-axis direction.

【0022】次に第2の実施形態に係るアンテナ装置お
よび送受信装置の構成を図8〜図14を参照して説明す
る。
Next, the configurations of the antenna device and the transmission / reception device according to the second embodiment will be described with reference to FIGS.

【0023】図8は送受信装置全体の構成を示す概略図
であり、この第2の実施形態では、筐体3内部において
1次放射器1を図における左右方向に変位させることに
よって放射ビームを図における左右方向にチルトさせ
る。
FIG. 8 is a schematic diagram showing the overall structure of the transmitting / receiving apparatus. In the second embodiment, the radiation beam is generated by displacing the primary radiator 1 in the left-right direction in the figure inside the housing 3. Tilt left and right in.

【0024】図9はこの第2の実施形態に係る送受信装
置で用いる誘電体線路の構造を示す部分斜視図である。
同図において101,102はそれぞれ導電体板であ
り、(B),(D)で示す例では、この2つの導電体板
の間に誘電体ストリップ100を挟み込む形態で誘電体
線路を構成している。また(A),(C)で示す例で
は、導電体板101,102の間に誘電体ストリップ1
00a,100bとともに、基板103を挟み込むよう
に設けて、誘電体ストリップの伝送方向に平行な面を持
つ基板を同時に形成している。また(A),(B)と
(C),(D)の違いは、導電体板101,102の溝
の有無である。(A),(B)のように溝を形成すると
ともに、誘電体ストリップによる伝搬域と誘電体ストリ
ップのない非伝搬域の導電体板の間隔および誘電体スト
リップの誘電率を定めて、LSM01モードの遮断周波
数をLSE01モードの遮断周波数より低くなるように
設定すれば、誘電体ストリップのベンド部の曲率半径等
に関わらず、常にLSM01モードの単一モードで伝送
を行うことが可能となる。これにより全体に小型化し、
かつ低損失化を図ることができる。図9に示した各構造
の誘電体線路は、必要に応じて用いればよい。
FIG. 9 is a partial perspective view showing the structure of the dielectric line used in the transmitting / receiving apparatus according to the second embodiment.
In the figure, 101 and 102 are conductor plates, respectively, and in the examples shown in (B) and (D), the dielectric strip 100 is sandwiched between the two conductor plates to form a dielectric line. In the examples shown in (A) and (C), the dielectric strip 1 is provided between the conductor plates 101 and 102.
00a and 100b are provided so as to sandwich the substrate 103, and a substrate having a surface parallel to the transmission direction of the dielectric strip is simultaneously formed. The difference between (A) and (B) and (C) and (D) is the presence or absence of grooves in the conductor plates 101 and 102. The grooves are formed as in (A) and (B), and the distance between the conductor plates in the propagation region by the dielectric strip and the non-propagation region without the dielectric strip and the dielectric constant of the dielectric strip are set to determine the LSM01 mode. If the cutoff frequency is set to be lower than the cutoff frequency in the LSE01 mode, it is possible to always perform transmission in the single mode of the LSM01 mode regardless of the radius of curvature of the bend portion of the dielectric strip. This made it smaller overall,
In addition, low loss can be achieved. The dielectric line of each structure shown in FIG. 9 may be used as necessary.

【0025】図10は垂直1次放射器の構造を示す図で
あり、(A)は放射方向から見た平面図、(B)はその
主要部の断面図である。導電体板41と42との間には
誘電体ストリップ12と円柱状の誘電体共振器11とを
設けていて、導電体板41には誘電体共振器11に対し
て同軸関係にある孔43を形成している。そして、この
誘電体共振器11と孔43との間に、導電体板にスリッ
トを形成したスリット板44を挟み込んでいる。これに
より誘電体ストリップ12の長手方向(図におけるx軸
方向)に直角で導電体板41,42に平行な方向(図に
おけるy軸方向)の成分を持つ電界と、導電体板41,
42に垂直な方向(図におけるz軸方向)の成分を持つ
磁界とが生じるLSMモードで、誘電体ストリップ12
内を電磁波が伝搬する。そして、誘電体ストリップ12
と誘電体共振器11とが電磁結合し、誘電体共振器11
内に誘電体ストリップ12の電界と同一方向の電界成分
を持つHE111モードが発生する。そして、直線偏波
の電磁波が開口部43を介して導電体板41に垂直な方
向(z軸方向)に放射される。逆に開口部43から電磁
波が入射されると、誘電体共振器11はHE111モー
ドで励振し、これと結合する誘電体ストリップ12にL
SMモードで電磁波が伝搬することになる。
10A and 10B are views showing the structure of a vertical primary radiator. FIG. 10A is a plan view seen from the radiation direction, and FIG. 10B is a sectional view of the main part thereof. A dielectric strip 12 and a cylindrical dielectric resonator 11 are provided between the conductor plates 41 and 42, and the conductor plate 41 has a hole 43 coaxial with the dielectric resonator 11. Is formed. A slit plate 44 having a slit formed in a conductor plate is sandwiched between the dielectric resonator 11 and the hole 43. As a result, an electric field having a component perpendicular to the longitudinal direction of the dielectric strip 12 (x-axis direction in the figure) and parallel to the conductor plates 41, 42 (y-axis direction in the figure), and the conductor plate 41, 42.
In the LSM mode where a magnetic field having a component in the direction perpendicular to 42 (z-axis direction in the figure) is generated, the dielectric strip 12
Electromagnetic waves propagate inside. Then, the dielectric strip 12
And the dielectric resonator 11 are electromagnetically coupled, and the dielectric resonator 11
An HE111 mode having an electric field component in the same direction as the electric field of the dielectric strip 12 is generated therein. Then, the linearly polarized electromagnetic wave is radiated through the opening 43 in the direction perpendicular to the conductor plate 41 (z-axis direction). On the contrary, when an electromagnetic wave is incident from the opening 43, the dielectric resonator 11 is excited in HE111 mode, and L is applied to the dielectric strip 12 coupled to this.
Electromagnetic waves propagate in SM mode.

【0026】図11は、垂直1次放射器と、その誘電体
線路に結合する誘電体線路を備える誘電体線路装置との
関係を示す図である。同図の上半部は垂直1次放射器4
0と誘電体線路装置50との結合部分の平面図である。
但し、同図においては上部の導電体板を取り除いた状態
で表している。また同図の下半部は垂直1次放射器40
と誘電体レンズ2との関係を示す断面図である。このよ
うに誘電体線路装置50には誘電体ストリップ13を設
けていて、垂直1次放射器40の誘電体ストリップ12
を誘電体ストリップ13に近接させて、図中破線で囲む
部分に誘電体線路による方向性結合器を構成している。
この誘電体ストリップ12,13を用いた方向性結合器
は、ポート#1から伝搬されてくる電磁波をポート#4
へ略0dBで伝搬させる。すなわち0dB方向性結合器
を構成する。この状態で垂直1次放射器40が図におけ
る左右方向に移動しても方向性結合器の結合関係は変わ
らず、ポート#1から伝搬されてくる電磁波は常に略0
dBでポート#4へ出力される。逆に、誘電体共振器の
励振によりポート#4から入射された電磁波は略0dB
でポート#1へ伝搬される。図に示す状態では、a,b
部分に誘電体ストリップ12のo,o′で示す部分が対
応しているが、垂直1次放射器40が図において右方向
に最大変位したとき、a,b部分にn,n′の点が一致
し、逆に、垂直1次放射器40が図において左方向に最
大変位したとき、a,b部分にp,p′の点が一致す
る。このように垂直1次放射器40が変位しても、誘電
体ストリップ13に結合する誘電体ストリップ12の部
分は直線部分であるため、常に一定の結合量に保たれる
ことになる。
FIG. 11 is a diagram showing the relationship between the vertical primary radiator and a dielectric line device having a dielectric line coupled to the dielectric line. The upper half of the figure is the vertical primary radiator 4
5 is a plan view of a coupling portion between 0 and the dielectric line device 50. FIG.
However, in the figure, the upper conductor plate is removed. The lower half of the figure is the vertical primary radiator 40.
4 is a cross-sectional view showing the relationship between the dielectric lens 2 and the dielectric lens 2. FIG. Thus, the dielectric line device 50 is provided with the dielectric strip 13, and the dielectric strip 12 of the vertical primary radiator 40 is provided.
Is arranged close to the dielectric strip 13 to form a directional coupler by a dielectric line in a portion surrounded by a broken line in the figure.
The directional coupler using the dielectric strips 12 and 13 transmits the electromagnetic wave propagating from the port # 1 to the port # 4.
To about 0 dB. That is, a 0 dB directional coupler is formed. In this state, even if the vertical primary radiator 40 moves in the left-right direction in the figure, the coupling relationship of the directional coupler does not change, and the electromagnetic wave propagating from the port # 1 is almost zero.
Output to port # 4 in dB. On the contrary, the electromagnetic wave incident from port # 4 due to the excitation of the dielectric resonator is about 0 dB.
Is propagated to port # 1. In the state shown in the figure, a, b
The portions correspond to the portions indicated by o and o'of the dielectric strip 12, but when the vertical primary radiator 40 is displaced to the maximum in the right direction in the figure, points a and b are n and n '. On the contrary, when the vertical primary radiator 40 is displaced to the maximum in the left direction in the figure, points a and b'are coincident with the portions a and b. Even if the vertical primary radiator 40 is displaced in this manner, the portion of the dielectric strip 12 that is coupled to the dielectric strip 13 is a straight portion, so that the coupling amount is always kept constant.

【0027】図12は上記垂直1次放射器と誘電体線路
装置との間に構成した方向性結合器の部分斜視図であ
る。同図において51,52はそれぞれ導電体板であ
り、この2つの導電体板51,52は垂直1次放射器側
の導電体板41,42に近接しているため、誘電体スト
リップを挟む上下の導電体平面の連続性が保たれる。こ
れにより2枚の導電体板の間に2本の誘電体ストリップ
を並設した方向性結合器と略同様に作用する。
FIG. 12 is a partial perspective view of a directional coupler formed between the vertical primary radiator and the dielectric line device. In the figure, 51 and 52 are conductor plates, respectively. Since these two conductor plates 51 and 52 are close to the conductor plates 41 and 42 on the side of the vertical primary radiator, the upper and lower sides of the dielectric strip are sandwiched. The continuity of the conductor plane is maintained. As a result, it operates in substantially the same manner as a directional coupler in which two dielectric strips are arranged side by side between two conductive plates.

【0028】図13は上記方向性結合器とその電力分配
比との関係を示す図である。今、誘電体ストリップ1
2,13による結合線路の偶モードの位相定数をβe、
奇モードの位相定数をβoとし、Δβ=|βe−βo|
と置くと、ポート#1から入力される電磁波に対する
ポート#2へ出力される電磁波の電力比は P2/P1
=1−sin2 (Δβz/2)で表され、ポート#1か
ら入力される電磁波に対するポート#4へ出力される電
磁波の電力比は P4/P1=sin2 (Δβz/2)
で表される。したがって、(Δβz/2)=nπ+π/
2〔n:0,1,2 ... 〕の関係とすれば、ポート#1からの
入力は全てポート#4へ出力されることになり、0dB
方向性結合器が構成される。
FIG. 13 is a diagram showing the relationship between the directional coupler and its power distribution ratio. Now dielectric strip 1
The phase constant of the even mode of the coupled line by 2 and 13 is βe,
Let βo be the phase constant of the odd mode, and Δβ = | βe−βo |
Then, the power ratio of the electromagnetic wave output to port # 2 to the electromagnetic wave input from port # 1 is P2 / P1
= 1-sin 2 (Δβz / 2), and the power ratio of the electromagnetic wave output to port # 4 to the electromagnetic wave input from port # 1 is P4 / P1 = sin 2 (Δβz / 2)
It is represented by. Therefore, (Δβz / 2) = nπ + π /
In the case of the relationship of 2 [n: 0,1,2 ...], all the input from the port # 1 is output to the port # 4, and 0 dB.
A directional coupler is constructed.

【0029】図14は送受信部を含む誘電体線路装置お
よび垂直1次放射器全体の構成を示す図である。但し上
部の導電体板を取り除いた状態として示している。同図
において53はサーキュレータであり、ポート#1から
の入力信号はポート#2へ出力し、ポート#2からの入
力信号はポート#3へ出力する。ポート#1へは誘電体
ストリップ14による誘電体線路を接続していて、ポー
ト#3には誘電体ストリップ15による誘電体線路を接
続している。そして誘電体ストリップ14,15による
それぞれの誘電体線路に発振器55およびミキサ54を
接続している。さらに誘電体線路14,15の間に、そ
れぞれの誘電体線路と結合してそれぞれ方向性結合器を
構成する誘電体ストリップ16を配置している。この誘
電体ストリップ16の両端部には終端器21,22を設
けている。ここで、ミキサ54および発振器55部分に
は、バラクタダイオードやガンダイオードを設け、これ
らに対するバイアス電圧印加用の回路を設けるために、
図9の(A)または(C)に示した基板を介在させた誘
電体線路を構成している。
FIG. 14 is a diagram showing the overall construction of a dielectric line device including a transmitter / receiver and a vertical primary radiator. However, the state is shown with the upper conductor plate removed. In the figure, reference numeral 53 is a circulator, which outputs an input signal from the port # 1 to the port # 2 and an input signal from the port # 2 to the port # 3. A dielectric line formed by the dielectric strip 14 is connected to the port # 1, and a dielectric line formed by the dielectric strip 15 is connected to the port # 3. The oscillator 55 and the mixer 54 are connected to the respective dielectric lines formed by the dielectric strips 14 and 15. Further, between the dielectric lines 14 and 15, there are arranged dielectric strips 16 which are coupled to the respective dielectric lines to form directional couplers. Terminators 21 and 22 are provided at both ends of the dielectric strip 16. Here, to provide a varactor diode and a Gunn diode in the mixer 54 and the oscillator 55 and to provide a circuit for applying a bias voltage to them,
A dielectric line is formed with the substrate shown in FIG. 9A or 9C interposed.

【0030】このように構成することによって、発振器
55の発振信号は誘電体ストリップ14→サーキュレー
タ53→誘電体ストリップ13→誘電体ストリップ12
→誘電体共振器11の経路で伝搬されて、誘電体共振器
11の軸方向に電磁波が放射され、逆に、誘電体共振器
11に入射した電磁波は誘電体ストリップ12→誘電体
ストリップ13→サーキュレータ53→誘電体ストリッ
プ15の経路でミキサ54に入力される。また誘電体ス
トリップ15,16,14により構成される2つの方向
性結合器を介して発振信号の一部がローカル信号とし
て、受信信号とともにミキサ54に与えられる。これに
よりミキサ54は送信信号と受信信号の差の周波数成分
を中間周波信号として生成する。
With this configuration, the oscillation signal of the oscillator 55 is generated by the dielectric strip 14 → circulator 53 → dielectric strip 13 → dielectric strip 12.
→ The electromagnetic wave is propagated through the path of the dielectric resonator 11 and is radiated in the axial direction of the dielectric resonator 11, and conversely, the electromagnetic wave incident on the dielectric resonator 11 is the dielectric strip 12 → the dielectric strip 13 → The circulator 53 is input to the mixer 54 along the path of the dielectric strip 15. Further, a part of the oscillation signal is given to the mixer 54 together with the reception signal as a local signal via the two directional couplers constituted by the dielectric strips 15, 16 and 14. Thereby, the mixer 54 generates a frequency component of the difference between the transmission signal and the reception signal as an intermediate frequency signal.

【0031】次に第3の実施例形態に係るアンテナ装置
および送受信装置の構成を図15を参照して説明する。
この第3の実施形態は、垂直1次放射器を2次元方向に
移動可能とするものであり、図15の平面図に示すよう
に、誘電体線路装置60に誘電体ストリップ13による
誘電体線路を設けるとともに、誘電体線路装置50に誘
電体ストリップ17による誘電体線路やサーキュレータ
53等を構成している。垂直1次放射器40に設けた誘
電体ストリップ12と誘電体線路装置60側の誘電体ス
トリップ13とによって1つの0dB方向性結合器を構
成していて、誘電体ストリップ13と17とによっても
う1つの0dB方向性結合器を構成している。そして、
垂直1次放射器40は誘電体線路装置60に対して図に
おける左右方向に可動状態に設けていて、誘電体線路装
置60は誘電体線路装置50に対して図における縦方向
に可動状態に設けている。この場合、誘電体線路装置5
0は固定しておく。これによって結合器部分での損失が
殆どない状態で誘電体共振器11の位置を2次元方向に
移動させることができる。
Next, the configurations of the antenna device and the transmitting / receiving device according to the third embodiment will be described with reference to FIG.
In the third embodiment, the vertical primary radiator is movable in a two-dimensional direction. As shown in the plan view of FIG. 15, the dielectric line device 60 includes a dielectric strip 13 and a dielectric line. In addition to the above, the dielectric line device 50 includes a dielectric line formed by the dielectric strip 17, a circulator 53, and the like. The dielectric strip 12 provided on the vertical primary radiator 40 and the dielectric strip 13 on the side of the dielectric line device 60 constitute one 0 dB directional coupler, and the dielectric strips 13 and 17 make another one. Two 0 dB directional couplers are configured. And
The vertical primary radiator 40 is provided in a movable state in the left-right direction in the figure with respect to the dielectric line device 60, and the dielectric line device 60 is provided in a movable state in the vertical direction in the figure with respect to the dielectric line device 50. ing. In this case, the dielectric line device 5
0 is fixed. As a result, the position of the dielectric resonator 11 can be moved in the two-dimensional direction with almost no loss in the coupler portion.

【0032】図16は可動部分における方向性結合器の
他の構成例を示す平面図である。但し上下の導電体板は
図において省略している。(A)の例では、誘電体共振
器11と結合する側の誘電体ストリップ12を直線状に
形成している。(B)では垂直1次放射器の誘電体スト
リップ12に結合する側の誘電体ストリップ13を直線
状に形成している。また(C)では誘電体共振器11と
一方の端部で結合する誘電体ストリップ12の他方の端
部をその端部まで相手側の誘電体ストリップ13に平行
に一定距離を保っている。
FIG. 16 is a plan view showing another structural example of the directional coupler in the movable part. However, the upper and lower conductor plates are omitted in the figure. In the example of (A), the dielectric strip 12 on the side coupled to the dielectric resonator 11 is formed in a linear shape. In (B), the dielectric strip 13 on the side that is coupled to the dielectric strip 12 of the vertical primary radiator is formed in a linear shape. Further, in (C), the other end of the dielectric strip 12 coupled to the dielectric resonator 11 at one end is kept at a certain distance in parallel to the mating dielectric strip 13 up to that end.

【0033】図17は第5の実施形態に係る可動部分の
方向性結合器の構成例を示す図である。以上に示した例
では可動部分の方向性結合器として0dB方向性結合器
を構成したが、この図17に示すように、誘電体ストリ
ップ12,13の一方の端部を開放端とせずに終端器2
3,24を設けてもよい。
FIG. 17 is a diagram showing a structural example of a directional coupler of a movable part according to the fifth embodiment. In the example shown above, a 0 dB directional coupler is configured as the directional coupler of the movable part. However, as shown in FIG. 17, one end of the dielectric strips 12 and 13 is terminated without being an open end. Bowl 2
3, 24 may be provided.

【0034】なお、以上に述べた実施形態では、1次放
射器として、誘電体共振器および誘電体線路を用いた垂
直1次放射器またはホーンアンテナを例示したが、その
他にパッチアンテナ等のマイクロストリップアンテナを
用いてもよい。
In the above-described embodiments, the primary radiator is a vertical primary radiator using a dielectric resonator and a dielectric line or a horn antenna. However, in addition to this, a micro antenna such as a patch antenna is used. A strip antenna may be used.

【0035】[0035]

【発明の効果】この発明によれば、第1の誘電体線路と
当該第1の誘電体線路に近接する第2の誘電体線路とに
よって方向性結合器を構成し、方向性結合器を1次放射
器の入出力部として、第1の誘電体線路と第2の誘電体
線路との結合を保ったまま、第1の誘電体線路と1次放
射器とを移動させて、誘電体レンズと1次放射器との相
対位置関係を変位させるようにしたため、全体に大型化
しない。また可動部自体の質量を小さくし、その慣性を
小さくすることによって、高速に放射ビームをスキャン
させることが可能となる。
According to the present invention, the directional coupler is constituted by the first dielectric line and the second dielectric line adjacent to the first dielectric line, and Secondary radiation
As the input / output unit of the container, the first dielectric line and the primary radiator are moved while the coupling between the first dielectric line and the second dielectric line is maintained, and the dielectric lens and Since the relative positional relationship with the secondary radiator is changed, the overall size is not increased. Further, by reducing the mass of the movable portion itself and the inertia thereof, it becomes possible to scan the radiation beam at high speed.

【0036】また、この発明によれば、上記方向性結合
器の結合量を約0dBとすることにより、方向性結合器
における伝送損失が抑えられて、高利得特性が得られ
る。
Further, according to the present invention, by setting the coupling amount of the directional coupler to about 0 dB, the transmission loss in the directional coupler can be suppressed and a high gain characteristic can be obtained.

【0037】また、この発明によれば、上記誘電体線路
を非放射性誘電体線路とすることにより、伝送損失が低
減し、線路外部への不要輻射および線路外部からの不要
信号の入射も防止されて、アンテナの利得等の総合特性
が向上する。
Further, according to the present invention, by making the dielectric line a non-radiative dielectric line, transmission loss is reduced, and unnecessary radiation to the outside of the line and unnecessary signals from the outside of the line are prevented from entering. As a result, the overall characteristics such as the gain of the antenna are improved.

【0038】また、この発明によれば、上記第2の誘電
体線路に、送信部、受信部および送信信号と受信信号と
を分離するサーキュレータを接続して送受共用にするこ
とにより、1次放射器の入出力部である第1の誘電体線
路に結合する第2の誘電体線路部分が送受共用となる。
その結果、方向性結合器を用いて可動部分を構成するこ
とによる大型化が避けられる。
Further, according to the present invention, primary radiation is achieved by connecting the second dielectric line with a transmitter, a receiver and a circulator for separating a transmission signal and a reception signal so as to be shared. The second dielectric line portion that is coupled to the first dielectric line, which is the input / output portion of the container, is used for both transmission and reception.
As a result, it is possible to avoid an increase in size due to the configuration of the movable part using the directional coupler.

【0039】また、この発明によれば、上記いずれかの
構成からなるアンテナ装置に、誘電体レンズと1次放射
器との相対位置関係を変位させる駆動部を設けて送受信
装置を構成することにより、アンテナの指向方向をスキ
ャンさせることのできる小型の送受信装置が得られる。
Further, according to the present invention, the transmitting / receiving device is configured by providing the antenna device having any one of the above-mentioned configurations with the drive section for displacing the relative positional relationship between the dielectric lens and the primary radiator. As a result, it is possible to obtain a small transmission / reception device capable of scanning the directional direction of the antenna.

【0040】さらに、この発明によれば、上記構成のア
ンテナ装置、発振器、およびミキサを備えて、レーダ用
送受信装置を構成することにより、探知能力に優れ、高
速スキャン可能なレーダが容易に構成できるようにな
る。
Further, according to the present invention, by configuring the radar transmitter / receiver by including the antenna device, the oscillator, and the mixer having the above-described configurations, it is possible to easily configure a radar having excellent detection capability and capable of high-speed scanning. Like

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態に係るアンテナ装置の誘電体レ
ンズと1次放射器および放射ビームのチルト角の関係を
示す図である。
FIG. 1 is a diagram showing a relationship among a dielectric lens, a primary radiator, and a tilt angle of a radiation beam of an antenna device according to a first embodiment.

【図2】第1の実施形態に係るアンテナ装置の誘電体レ
ンズと1次放射器および放射ビームのチルト角の他の関
係を示す図である。
FIG. 2 is a diagram showing another relationship between the dielectric lens of the antenna device according to the first embodiment, the primary radiator, and the tilt angle of the radiation beam.

【図3】誘電体レンズに対する1次放射器のオフセット
に対する放射ビームのチルト角の測定結果を示す図であ
る。
FIG. 3 is a diagram showing a measurement result of a tilt angle of a radiation beam with respect to an offset of a primary radiator with respect to a dielectric lens.

【図4】1次放射器に対する誘電体レンズの成す角度を
変化させたときの放射ビームのチルト角の測定結果を示
す図である。
FIG. 4 is a diagram showing a measurement result of a tilt angle of a radiation beam when an angle formed by a dielectric lens with respect to a primary radiator is changed.

【図5】第1の実施形態に係る送受信装置の構成例を示
す断面図である。
FIG. 5 is a cross-sectional view showing a configuration example of a transmission / reception device according to the first embodiment.

【図6】第1の実施形態に係る送受信装置の他の構成例
を示す断面図である。
FIG. 6 is a cross-sectional view showing another configuration example of the transmission / reception device according to the first embodiment.

【図7】第1の実施形態に係る送受信装置の平面図であ
る。
FIG. 7 is a plan view of the transmission / reception device according to the first embodiment.

【図8】第2の実施形態に係る送受信装置の概略構成図
である。
FIG. 8 is a schematic configuration diagram of a transmission / reception device according to a second embodiment.

【図9】同送受信装置で用いる誘電体線路の構造を示す
図である。
FIG. 9 is a diagram showing a structure of a dielectric line used in the transmitting / receiving apparatus.

【図10】垂直1次放射器の構成を示す平面図および断
面図である。
FIG. 10 is a plan view and a cross-sectional view showing the configuration of a vertical primary radiator.

【図11】垂直1次放射器と誘電体線路装置との関係を
示す図である。
FIG. 11 is a diagram showing a relationship between a vertical primary radiator and a dielectric line device.

【図12】方向性結合器部分の部分斜視図である。FIG. 12 is a partial perspective view of a directional coupler portion.

【図13】方向性結合器の構造とその特性との関係を示
す図である。
FIG. 13 is a diagram showing the relationship between the structure of a directional coupler and its characteristics.

【図14】第2の実施形態に係る送受信装置の送受信部
を含む全体の構成図である。
FIG. 14 is an overall configuration diagram including a transmission / reception unit of a transmission / reception device according to a second embodiment.

【図15】第3の実施形態に係る送受信装置の構成を示
す平面図である。
FIG. 15 is a plan view showing a configuration of a transmission / reception device according to a third embodiment.

【図16】第4の実施形態に係るアンテナ装置の可動部
分における方向性結合器の3つの例を示す図である。
FIG. 16 is a diagram showing three examples of directional couplers in a movable part of the antenna device according to the fourth embodiment.

【図17】第5の実施形態に係るアンテナ装置の可動部
分における方向性結合器の例を示す図である。
FIG. 17 is a diagram showing an example of a directional coupler in a movable part of the antenna device according to the fifth embodiment.

【図18】車載用レーダにおいて、放射ビームを水平方
向にチルトさせた様子を示す図である。
FIG. 18 is a diagram showing a state in which a radiation beam is tilted in a horizontal direction in a vehicle-mounted radar.

【図19】車載用レーダにおいて、放射ビームを水平方
向にチルトさせた様子を示す図である。
FIG. 19 is a diagram showing a state in which a radiation beam is tilted in a horizontal direction in a vehicle-mounted radar.

【図20】車載用レーダにおいて、放射ビームを鉛直方
向にチルトさせた様子を示す図である。
FIG. 20 is a diagram showing a state in which a radiation beam is tilted in a vertical direction in a vehicle-mounted radar.

【図21】車載用ミリ波レーダの使用形態を示す図であ
る。
FIG. 21 is a diagram showing a usage pattern of a vehicle-mounted millimeter-wave radar.

【図22】車載用ミリ波レーダの構成を示すブロック図
である。
FIG. 22 is a block diagram showing a configuration of a vehicle-mounted millimeter wave radar.

【符号の説明】[Explanation of symbols]

1−1次放射器 2−誘電体レンズ 3−筐体 4−駆動部 11−誘電体共振器 12〜17−誘電体ストリップ 21〜24−終端器 40−垂直1次放射器 41,42−導電体板 43−開口部 44−スリット板 50−誘電体線路装置 51,52−導電体板 53−サーキュレータ 54−ミキサ 55−発振器 60−誘電体線路装置 100,100a,100b−誘電体ストリップ 101,102−導電体板 103−基板 1-1 primary radiator 2-dielectric lens 3-case 4-Drive 11-dielectric resonator 12-17-Dielectric strip 21-24-Terminator 40-vertical primary radiator 41, 42-conductor plate 43-opening 44-slit plate 50-Dielectric line device 51, 52-conductor plate 53-circulator 54-mixer 55-oscillator 60-Dielectric line device 100, 100a, 100b-dielectric strip 101, 102-conductor plate 103-substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高桑 郁夫 京都府長岡京市天神二丁目26番10号 株 式会社村田製作所内 (56)参考文献 特開 平10−200331(JP,A) 特開 平8−316727(JP,A) 特開 平8−191211(JP,A) 特開 平2−305002(JP,A) 特開 平6−152223(JP,A) 特開 平8−8621(JP,A) 特開 昭53−1440(JP,A) 特開 昭64−79680(JP,A) 特開 昭61−24334(JP,A) 特開 平5−264726(JP,A) 実開 昭63−181981(JP,U) 実開 平5−85110(JP,U) 特表 平5−502296(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01Q 3/14 G01S 7/03 G01S 7/28 H01P 3/16 H01P 5/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ikuo Takakuwa Ikuo Takakuwa 2-10-10 Tenjin, Nagaokakyo-shi, Kyoto Inside Murata Manufacturing Co., Ltd. (56) Reference JP-A-10-200331 (JP, A) JP-A 8-316727 (JP, A) JP-A-8-1911211 (JP, A) JP-A-2-305002 (JP, A) JP-A-6-152223 (JP, A) JP-A-8-8621 (JP, A) JP 53-1440 (JP, A) JP 64-79680 (JP, A) JP 61-24334 (JP, A) JP 5-264726 (JP, A) Actual development Sho 63 -181981 (JP, U) Actual Kaihei 5-85110 (JP, U) Special Table 5-502296 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01Q 3/14 G01S 7/03 G01S 7/28 H01P 3/16 H01P 5/18

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体レンズと1次放射器とからなるア
ンテナ装置において、誘電体レンズの焦点面内での1次
放射器の位置を変え得るように誘電体レンズおよび1次
放射器を設け、誘電体レンズに対する1次放射器の相対
位置の変位により放射ビームのチルト角を変えられるよ
うにしたアンテナ装置であって、前記1次放射器に備えられた第1の誘電体線路と、 該第
1の誘電体線路に近接する第2の誘電体線路とによって
方向性結合器を構成し、該方向性結合器を前記1次放射器の入出力部として、
1の誘電体線路と第2の誘電体線路との結合を保ったま
ま、前記第1の誘電体線路と前記1次放射器とを移動さ
せて、前記誘電体レンズと前記1次放射器との相対位置
関係を変位させる手段を設けたことを特徴とするアンテ
ナ装置。
1. An antenna device comprising a dielectric lens and a primary radiator, wherein the dielectric lens and the primary radiator are provided so that the position of the primary radiator in the focal plane of the dielectric lens can be changed. An antenna device capable of changing a tilt angle of a radiation beam by displacement of a relative position of the primary radiator with respect to a dielectric lens , the first dielectric line being provided in the primary radiator; A directional coupler is formed by the second dielectric line adjacent to the first dielectric line, and the directional coupler is used as an input / output unit of the primary radiator to form the first dielectric line and the first dielectric line. While maintaining the coupling with the second dielectric line, the first dielectric line and the primary radiator are moved to displace the relative positional relationship between the dielectric lens and the primary radiator. An antenna device comprising means.
【請求項2】 前記方向性結合器の結合量を約0dBと
したことを特徴とする請求項1に記載のアンテナ装置。
2. The antenna device according to claim 1, wherein the coupling amount of the directional coupler is about 0 dB.
【請求項3】 前記誘電体線路が非放射性誘電体線路で
あることを特徴とする請求項1または2記載のアンテ
ナ装置。
3. The antenna device according to claim 1 or 2, wherein the dielectric waveguide is nonradiative dielectric line.
【請求項4】 前記第2の誘電体線路に、送信部、受信
部および送信信号と受信信号とを分離するサーキュレー
タを接続して送受共用にしたことを特徴とする請求項1
〜3のいずれかに記載のアンテナ装置。
4. The transmission / reception is shared by connecting a transmitter, a receiver, and a circulator for separating a transmission signal and a reception signal to the second dielectric line.
The antenna device according to any one of 1 to 3.
【請求項5】 請求項1〜4のうちいずれか1項に記載
のアンテナ装置に、前記誘電体レンズと前記1次放射器
との相対位置関係を変位させる駆動部を設けたことを特
徴とする送受信装置。
5. The antenna device according to claim 1, further comprising a drive unit that displaces a relative positional relationship between the dielectric lens and the primary radiator. Transmitter / receiver device.
【請求項6】 発振器と、 1の誘電体線路と、前記発振器からの発振信号が放射
しさらに探知物体からの反射波が入射する開口部と、前
記第1の誘電体線路と当該第1の誘電体線路に近接する
第2の誘電体線路とによって方向性結合器を構成し、
方向性結合器を1次放射器の入出力部とし、第1の誘電
体線路と第2の誘電体線路との結合を保ったまま前記1
次放射器を移動させて、前記誘電体レンズと前記1次放
射器との相対位置関係を変位させる手段と、誘電体レン
ズとを含んでなるアンテナ装置と、 前記探知物体からの反射波と、前記発振器からの発振信
号の一部によって構成されるローカル信号とが入力され
るミキサとを含んで構成されることを特徴とするレーダ
用送受信装置。
6. oscillator and a first dielectric line, an opening oscillation signal from the oscillator is incident reflected wave from the further detection object emits, the first dielectric line and the first the configure directional coupler by the second dielectric waveguide proximate the dielectric waveguide, the
The directional coupler is used as an input / output unit of the primary radiator, and the first dielectric line and the second dielectric line are kept connected to each other, and
Means for moving a secondary radiator to displace the relative positional relationship between the dielectric lens and the primary radiator; an antenna device including a dielectric lens; and a reflected wave from the detection object, A radar transmission / reception device comprising: a mixer to which a local signal formed by a part of an oscillation signal from the oscillator is input.
JP2000369951A 2000-12-05 2000-12-05 Antenna device and transmitting / receiving device Expired - Fee Related JP3473576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369951A JP3473576B2 (en) 2000-12-05 2000-12-05 Antenna device and transmitting / receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369951A JP3473576B2 (en) 2000-12-05 2000-12-05 Antenna device and transmitting / receiving device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00089397A Division JP3186622B2 (en) 1997-01-07 1997-01-07 Antenna device and transmitting / receiving device

Publications (2)

Publication Number Publication Date
JP2001217634A JP2001217634A (en) 2001-08-10
JP3473576B2 true JP3473576B2 (en) 2003-12-08

Family

ID=18839909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369951A Expired - Fee Related JP3473576B2 (en) 2000-12-05 2000-12-05 Antenna device and transmitting / receiving device

Country Status (1)

Country Link
JP (1) JP3473576B2 (en)

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855898B2 (en) 2002-09-20 2006-12-13 株式会社村田製作所 Antenna device and transmitting / receiving device
KR100702204B1 (en) 2006-02-06 2007-04-03 서울시립대학교 산학협력단 Directional coupler for rfid with signal-reflective port
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN114070907B (en) * 2020-07-30 2024-03-26 荣耀终端有限公司 Lens decoration assembly and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531440A (en) * 1976-06-28 1978-01-09 Nippon Telegr & Teleph Corp <Ntt> Directional coupler for dielectric lines
JPS6124334A (en) * 1984-07-12 1986-02-03 Nec Corp Radio communication equipment
JPS63181981U (en) * 1987-05-14 1988-11-24
JPS6479680A (en) * 1987-09-22 1989-03-24 Honda Motor Co Ltd Millimeter wave radar
JPH02305002A (en) * 1989-05-18 1990-12-18 Murata Mfg Co Ltd Antenna system
GB8927905D0 (en) * 1989-12-09 1990-02-14 Lucas Ind Plc Detection device
JP3135344B2 (en) * 1992-03-16 2001-02-13 富士通株式会社 Radar equipment
JPH0585110U (en) * 1992-04-14 1993-11-16 デイエツクスアンテナ株式会社 Multiple satellite selective reception antenna
JPH06152223A (en) * 1992-11-06 1994-05-31 Fujitsu General Ltd Cs antenna
JPH088621A (en) * 1994-06-17 1996-01-12 Nissan Motor Co Ltd Directional coupler for nrd guide
JP3060871B2 (en) * 1995-01-09 2000-07-10 株式会社村田製作所 antenna
JP3042364B2 (en) * 1995-05-19 2000-05-15 株式会社村田製作所 Dielectric antenna
JP3186622B2 (en) * 1997-01-07 2001-07-11 株式会社村田製作所 Antenna device and transmitting / receiving device

Also Published As

Publication number Publication date
JP2001217634A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JP3473576B2 (en) Antenna device and transmitting / receiving device
JP3186622B2 (en) Antenna device and transmitting / receiving device
JP3617374B2 (en) Directional coupler, antenna device, and transmission / reception device
EP0871239B1 (en) Antenna device and radar module
JP3163981B2 (en) Transceiver
US6441699B2 (en) Directional coupler, antenna device, and transmitting-receiving device
JP3731354B2 (en) Antenna device and transmitting / receiving device
EP1195849A2 (en) Antenna device, communication apparatus and radar module
JP3279242B2 (en) Different type non-radiative dielectric line converter structure and device
JP3498611B2 (en) Directional coupler, antenna device, and transmission / reception device
JP3485054B2 (en) Different type non-radiative dielectric line converter structure and device
JP3259637B2 (en) Transceiver
JP3617397B2 (en) Dielectric line waveguide converter, dielectric line connection structure, primary radiator, oscillator, and transmitter
JPH11251819A (en) Antenna device and radar module

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees