JP3472337B2 - Production method of fat emulsion - Google Patents

Production method of fat emulsion

Info

Publication number
JP3472337B2
JP3472337B2 JP08756994A JP8756994A JP3472337B2 JP 3472337 B2 JP3472337 B2 JP 3472337B2 JP 08756994 A JP08756994 A JP 08756994A JP 8756994 A JP8756994 A JP 8756994A JP 3472337 B2 JP3472337 B2 JP 3472337B2
Authority
JP
Japan
Prior art keywords
fat
emulsion
coarse
emulsifier
fat emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08756994A
Other languages
Japanese (ja)
Other versions
JPH07277953A (en
Inventor
幹治 有井
俊三 山下
幸史 国場
Original Assignee
味の素ファルマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素ファルマ株式会社 filed Critical 味の素ファルマ株式会社
Priority to JP08756994A priority Critical patent/JP3472337B2/en
Publication of JPH07277953A publication Critical patent/JPH07277953A/en
Application granted granted Critical
Publication of JP3472337B2 publication Critical patent/JP3472337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、脂肪乳剤の製造法に関
し、より詳しくは、糖、電解質、アミノ酸等の栄養輸液
剤と混合しても外観変化や脂肪粒子の粗大化を起こさな
い、保存安定性に優れた栄養補給用脂肪乳剤を製造する
方法に関する。 【0002】 【従来の技術】各種疾患時あるいは術前術後の栄養補給
のために、経静脈栄養法が広く用いられている。この
際、摂取カロリーが不足すると、アミノ酸輸液を投与し
てもアミノ酸がカロリー源として利用されてしまい、十
分な創傷治癒効果が得られないことが知られている。従
って、経静脈栄養法においては、グルコースや脂肪によ
るカロリー補給が重要であり、そのなかでも、脂肪は単
位重量当りの熱量がグルコースの約2倍であるうえ、生
体内に貯蔵される最も大きなカロリー源として優れた利
点を持っている。また、脂肪の投与は、組織細胞の構
成、並びにその正常な機能の遂行に大きく寄与している
リノール酸、リノレイン酸、アラキドン酸などの必須脂
肪酸補給のため栄養学上極めて重要である。ところが、
脂肪を経静脈投与できるように乳化した水中油型の脂肪
乳剤は他の薬剤とは配合禁忌で、例えばアミノ酸、糖、
電解質等の栄養輸液と混合すれば、経時的に外観変化や
脂肪粒子が粗大化する(島田慈彦ら,新薬と臨床,32,71,
1983 )。また、粗大化した脂肪粒子は、強い毒性を示
すことが知られている(横山和正ら,The Japanese Jour
nal of Parenteral and Eenteral Nutrition(サ゛シ゛ャハ゜ニ
ース゛シ゛ャーナルオフ゛ハ゜レンテラルアント゛ニューウトリション),2,615,198
0)。このような背景から、脂肪乳剤は他の栄養輸液と
は配合せず、Y字管を用いて別に投与するか、あるいは
使用直前に混合した後投与していた。 【0003】脂肪乳剤と他の栄養輸液を混合して保存す
る方法としては、例えば、二価金属イオンを含む溶液と
の混合に際して、クエン酸を添加する安定化法が開示さ
れている (特開平5-32541公報)。しかし、この方法
は、クエン酸を静脈内投与した場合、アルカローシスを
引き起こす可能性があること、さらに、血中濃度が 100
mg/dl(約15mEq/l)に達すると、心機能抑制、血圧下降
及び末梢循環不全をもたらすことが知られおり(外科,M
ook,13,116,1980)、安全性の面で好ましい方法とは言
えない。 【0004】一方、これまでの脂肪乳剤に関する製剤研
究は、いかに平均粒子径が小さく、しかも粗大粒子を含
まない均一で安定な乳化液(エマルジョン)を製造する
かを検討したものが多く、他の栄養輸液剤と混合した際
の保存安定性まで勘案して製造方法を検討したものはな
い。従来の脂肪乳剤の製造法としては、例えば特開平5-
9111公報に記載されているように、水に油脂及び乳化剤
を加えた後、攪拌して粗乳化液を調製し、次いでマント
ンゴーリンホモジナイザーやマイクロフルイダイザーを
用いた高圧乳化法等により精乳化する方法が広く用いら
れている。 【0005】ところが、油脂中に乳化剤を分散させる乳
化剤分散工程、乳化剤分散液に水を加えて粗乳化液を調
製する粗乳化工程さらに粗乳化液を高圧乳化法等により
精乳化する精乳化工程の各製造工程における製造条件と
脂肪乳剤の保存安定性を関連づけて研究した例はない。
従来の検討例を挙げると、例えば、特開平5-9111公報で
は、粗乳化工程の液温が70℃で、精乳化工程の液温が
70℃以下と記載されているに過ぎないし、その温度条
件と保存安定性との関係についての記載はない。また、
80℃に保持された粗乳化液を、直ちに精乳化すると報
告されているが、脂肪乳剤を他の輸液と混合した場合の
保存安定性についての記載はない(石井ら,J.Pharm.Pha
rmacol.(シ゛ャーナルオフ゛ファーマシー & ファーマコロシ゛ー),42,513,199
0)。 【0006】このように、従来の製造法では、粗乳化工
程及び精乳化工程からなる脂肪乳剤の乳化工程におい
て、各調製液の液温を50〜80℃と比較的高い温度に
制御している。しかし、前記の製造条件では、脂肪粒子
の平均粒子径が小さく、粗大粒子を含まず均一なエマル
ジョンを製造できるものの、他の栄養輸液剤と混合する
と外観変化や脂肪粒子の粗大化を起こす問題が生ずる。 【0007】 【発明が解決しようとする課題】本発明の課題は、糖、
電解質、アミノ酸等の栄養輸液剤と混合しても外観変化
や脂肪粒子の粗大化を起こさない、保存安定性に優れた
栄養補給用脂肪乳剤を提供することにある。 【0008】 【課題を解決するための手段】本発明者らは、クエン酸
等の添加剤を使用することなく、脂肪乳剤の各製造工程
の製造条件を適切に制御することで、前述の課題を解決
できないか鋭意検討した。本発明者らは、脂肪乳剤の各
製造工程における各調製液の調製温度が、他の輸液剤と
混合した後の保存安定性を左右する重要な要因であると
の知見を得、その適正な調製温度範囲について検討を重
ねた。 【0009】その結果、乳化工程、すなわち粗乳化工程
及び精乳化工程の調製液の温度を至適範囲内に制御する
ことで、他の栄養輸液と混合しても保存安定性の優れた
脂肪乳剤を製造できることを見いだし本発明を完成させ
た。また、各製造工程のなかで、精乳化工程の調製温度
を制御することが最も重要で、その他の製造工程の調製
温度も至適範囲に制御することで、さらに優れた保存安
定性が得られることを見いだした。 【0010】すなわち、本発明は、少なくとも乳化剤と
油脂を含有する乳化剤分散液に、水を加えて粗乳化して
粗乳化液を得、この粗乳化液をさらに高圧下で精乳化し
て油脂を1〜30 W/V%含む水中油型の栄養補給用脂肪
乳剤を得る脂肪乳剤の製造法において、前記精乳化にお
ける乳化液の液温を5〜35℃に制御しながら精乳化す
る脂肪乳剤の製造法であり、好ましい製造条件として
は、前述の製造方法に、粗乳化液の液温を5〜35℃に
制御しながら粗乳化する条件を加えた製造方法、より好
ましくは、乳化剤分散液の液温を65〜95℃に制御し
ながら乳化剤を分散させる条件を加えた脂肪乳剤の製造
法である。 【0011】本発明は上記の構成からなり、本発明を製
造工程順に詳述すると、第一工程である乳化剤分散工程
における乳化剤分散液の調製は、例えば、高速ホモジナ
イザー、高速ミキサー等を用いて乳化剤を油脂中に分散
させ、乳化剤の固形分が完全に膨潤するまで攪拌するこ
とにより行う。この際、必要に応じて各種の等張化剤を
添加することもできる。また、乳化剤の添加量として
は、油脂重量に対して5〜25%が好ましい。乳化剤分
散工程における乳化剤分散液の調製温度は、65〜95
℃、好ましくは70〜80℃に制御するのがよい。な
お、乳化剤分散液中の乳化剤として使用されるリン脂質
は、油脂に対して5w/v%未満では乳化が不充分となり、
25w/v%を越えると粘度が上昇し、安定な脂肪乳剤が製
造できない。 【0012】乳化剤分散工程に続く粗乳化工程における
粗乳化液の調製は、例えば、前述の方法で製造した乳化
剤分散液を、直ちに5〜35℃に冷却、好ましくは15
〜25℃に冷却し、同じく5〜35℃に冷却した注射用
蒸留水を少量ずつ加えて分散させ、高速ホモジナイザ
ー、高速ミキサー等を用いて液温が5〜35℃になるよ
う制御しながら粗乳化液を調製する。 【0013】精乳化工程における精乳化液の調製は、前
記粗乳化液をマントンゴーリンホモジナイザーやマイク
ロフルイダイザーで、液温を5〜35℃に制御しながら
高圧乳化することにより行う。なお、液温制御以外の精
乳化条件としては、5000〜25000PSI、パス
回数5〜25の条件が好ましい条件として挙げられる。 【0014】前述の各製造工程を経て得られる脂肪乳剤
の平均粒子径は、0.18〜0.36μmである。な
お、平均粒子径がこの範囲からはずれると、他の輸液剤
との混合に際して、安定な脂肪乳剤が製造できない。 【0015】本発明において使用される油脂は、食用油
であればいずれの油脂も使用でき、例えば大豆油、ヤシ
油、ゴマ油、エゴマ油、アマニ油、綿実油、サフラワー
油等の植物油、鯨油、魚油等の動物油、中鎖脂肪酸トリ
グリセリド等の化学合成トリグリセリドから選ばれた1
種叉は2種以上の油脂が好適に使用できる。また、本発
明に使用される乳化剤は、精製大豆リン脂質、水添大豆
リン脂質、精製卵黄リン脂質、水添卵黄リン脂質、非イ
オン性界面活性剤等の1種または2種以上の組み合わせ
で用いられる。乳化剤としては、好ましくは精製卵黄リ
ン脂質を、より好ましくは精製卵黄リン脂質と非イオン
性の界面活性剤を組み合わせて用いるのがよい。 【0016】本発明の製造法で得られた脂肪乳剤は、必
要に応じて他の栄養輸液剤、すなわち糖、電解質、アミ
ノ酸と混合して静脈内投与することができる。さらに、
本発明の製造法で得られた脂肪乳剤には、亜鉛、鉄、
銅、ヨウ素、マンガン等の微量元素、ビタミン類等必要
量を考慮して配合することができる。 【0017】本発明の製造法において、通常用いられて
いる製剤学的添加剤、すなわち、安定化剤やpH調節剤
などを使用できる。 【0018】本発明の製造法で得られた脂肪乳剤は、ガ
ラスバイアルや、ポリプロピレン、ポリエチレン、エチ
レン酢酸ビニル共重合体等からなるプラスチックバッグ
等に充填し、空間部を窒素ガスで置換後、常法により滅
菌できる。 【0019】さらに、本発明の製造法で得られた脂肪乳
剤は、例えば脂肪乳剤とグルコースを二室バッグの下層
に充填して高圧蒸気滅菌してもよく、アミノ酸及び電解
質を残りの上層に充填し、冷後又は使用前に二室間を連
通することによって、他の輸液剤と混合してもよい。二
室バッグは、例えばプラスチック製の柔軟な袋状容器で
あって、その中央部が帯状に剥離可能に熱溶着され、厳
密に隔離された二室のそれぞれに輸液注入口叉は排出口
が設けられたものが使用できる。 【0020】以下、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。 【0021】 【実施例1】精製大豆油30.0g、グリセリン7.5
g及び精製卵黄リン脂質3.6gを80℃に制御しなが
ら、ポリトロン高速ホモジナイザーを用い、完全に膨潤
するまで激しく攪拌し、乳化剤分散液を調製した。この
乳化剤分散液を、直ちに20℃に冷却し、注射用蒸留水
30mlを少量ずつ加え、20℃に制御しながら、ポリ
トロン高速ホモジナイザーで粗乳化液を調製した。こう
して得られた粗乳化液を、直ちにマイクロフルイダイザ
ー(M−110Y型)を用い、20℃に液温を制御しな
がら、10000PSIにて精乳化した。次に、精乳化
液に注射用蒸留水を加えて全量を300mlとし、3.
0μmのメンブランフィルターでろ過した後、100m
lガラスバイアルに充填、窒素置換後密栓し、常法に従
って高圧蒸気滅菌を行い、目的とする脂肪乳剤を調製し
た。 【0022】 【実施例2】粗乳化液の調製温度と精乳化液の調製温度
を35℃に設定した他は、実施例1と同様にして脂肪乳
剤を調製した。 【0023】 【実施例3】精製大豆油31.0g及び精製卵黄レシチ
ン3.72gを80℃に制御しながら、ポリトロン高速
ホモジナイザーを用い激しく攪拌し、乳化剤分散液を調
製した。この乳化剤分散液を、直ちに20℃に冷却し、
50%グルコース液31mlを少量ずつ加え、20℃に
制御しながら、ポリトロン高速ホモジナイザーで粗乳化
液を調製した。こうして得られた粗乳化液を、直ちにマ
イクロフルイダイザー(M−110Y型)を用い、20
℃に制御しながら、10000PSIにて精乳化を行っ
た。次に、精乳化液に、予めグルコース59.5g及び
リン酸二水素ナトリウム(二水和物)0.78gを溶解
した水溶液300mlを加え、さらに蒸留水で全液量を
700mlに調整した。この溶液を孔径3.0μmのメ
ンブランフィルターで濾過し、二室バッグの下層に充填
し、空間部を窒素ガスで置換後密栓した。次に、下記表
1に示した上層組成物を、注射用蒸留水に加温溶解して
250mlとし、1規定の酢酸水溶液でpHを7.0に
調整した後、全量を300mlとした。この溶液を孔径
0.22μmのメンブランフィルターで濾過し、二室バ
ッグの上層に充填し、空間部を窒素ガスで置換後密栓
し、常法にしたがって高圧蒸気滅菌を行った。 【0024】 【表1】 【0025】 【試験例1】各実施例及び以下に述べる対照例の脂肪乳
剤を被験液として、各被験液の製造直後の品質と、その
他の栄養輸液と混合した後の保存安定性を調べた。各被
験液と混合する試験液として、表2に示される組成から
なる糖、電解質及びアミノ酸液を注射用蒸留水に溶解し
て900mlとし、酢酸水溶液でpHを6.2に調整
後、全量を1000mlとしたものを用いた。各被検液
と前記試験液との混合は、試験液を孔径0.22μmの
メンブランフィルターでろ過した後、各被検液62ml
に、それぞれ試験液を138mlづつ無菌的に200m
lプラスチックバッグに混注して行った。保存安定性
は、前記混合操作後、2日間保存(25℃)した混合液
の外観変化及び脂肪粒子中の粗大粒子の割合を調べるこ
とにより評価した。なお、遠心沈降法により測定した2
μm以上脂肪粒子の割合を、粗大粒子の割合とした。表
3に、各被検液の製造直後(高圧乳化処理後)の粗大粒
子の割合と脂肪粒子の平均粒径、さらに保存安定性の評
価結果を示した。試験の結果より、各製造工程の調製温
度を至適範囲に制御した実施例1と実施例2は共に、製
造直後に粗大粒子が生成することなく、且つ保存安定性
も問題のないことが明らかとなった。しかし、表3に示
すような、実施例1及び実施例2とは異なった調製温度
で製造した対照例1〜5の脂肪乳剤は、いずれも製造直
後の品質が好ましくないか、あるいは保存安定性に問題
があるとの評価結果が得られた。さらに、実施例1と乳
化剤分散工程の調製温度を100℃とした以外は実施例
1同様にして調製した対照例6の製造直後の遊離脂肪酸
を測定した結果、実施例1では、遊離脂肪酸が0.31
mEq/lであるのに対し、対照例6では1.24mE
q/lと明かな高値を示し油脂が分解していた。以上の
結果から、脂肪乳剤の製造において、粗乳化工程及び精
乳化工程における調製温度と乳化剤分散時の調製温度に
至適範囲が存在することが明らかとなった。 【0026】 【表2】 【0027】 【表3】【0028】 【試験例2】実施例3の二室バッグ輸液製剤の二室間を
連通し、25℃で2日間保存した後の外観変化を観察
し、さらに、遠心沈降法により2μm以上の粗大粒子の
割合を測定したところ、外観の変化は認められず、且つ
2μm以上の粗大粒子の生成も全く認められなかった。 【0029】 【発明の効果】本発明によれば、他の栄養輸液、すなわ
ちグルコース、電解質及びアミノ酸輸液と混合しても、
外観変化や脂肪粒子の粗大化を起こさない、保存安定性
の優れた脂肪乳剤を製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fat emulsion, and more particularly, to a method for producing a fat emulsion, which can be changed in appearance even when mixed with a nutritional infusion such as sugar, electrolyte and amino acid. The present invention relates to a method for producing a nutritional supplement fat emulsion which does not cause coarsening of fat particles and has excellent storage stability. [0002] Parenteral nutrition is widely used for nutritional supplementation at the time of various diseases or before and after surgery. At this time, it is known that if the intake calorie is insufficient, the amino acid is used as a calorie source even if an amino acid infusion is administered, and a sufficient wound healing effect cannot be obtained. Therefore, in parenteral nutrition, it is important to replenish calories with glucose and fat. Among them, fat has about twice the calorific value per unit weight of glucose and the largest calorie stored in the body. It has excellent advantages as a source. In addition, the administration of fat is extremely important from the nutritional point of view for supplementing essential fatty acids such as linoleic acid, linoleic acid, and arachidonic acid, which greatly contribute to the organization of tissue cells and the performance of their normal functions. However,
Oil-in-water fat emulsions emulsified to allow intravenous administration of fats are contraindicated with other drugs, such as amino acids, sugars,
If mixed with nutrient infusions such as electrolytes, the appearance changes and fat particles become coarse with time (Yoshihiko Shimada et al., Shinyaku and Clinical, 32, 71,
1983). Also, coarsened fat particles are known to exhibit strong toxicity (Kazumasa Yokoyama et al., The Japanese Jour)
nal of Parenteral and Eenteral Nutrition (2,615,198)
0). From such a background, the fat emulsion was not combined with other nutrient infusions, and was separately administered using a Y-tube or mixed after immediately before use. [0003] As a method of mixing and storing a fat emulsion and another nutrient infusion, for example, a stabilization method in which citric acid is added when mixing with a solution containing a divalent metal ion is disclosed (Japanese Patent Application Laid-Open No. HEI 9-258572). 5-32541 publication). However, this method has the potential to cause alkalosis when citric acid is administered intravenously.
It is known that reaching mg / dl (about 15 mEq / l) results in suppression of cardiac function, lowering of blood pressure and peripheral circulatory failure (Surgery, M
ook, 13, 116, 1980), which is not a preferable method in terms of safety. [0004] On the other hand, there have been many studies on the preparation of fat emulsions so far, which examined how to produce a uniform and stable emulsion liquid having a small average particle size and containing no coarse particles. No production method has been studied in consideration of storage stability when mixed with a nutritional infusion. As a conventional method for producing a fat emulsion, for example,
As described in 9111 gazette, after adding fats and oils and an emulsifier to water, agitate to prepare a coarse emulsion, and then finely emulsify by high-pressure emulsification using a Manton-Gaulin homogenizer or a microfluidizer. Is widely used. However, the emulsifier dispersion step of dispersing the emulsifier in fats and oils, the coarse emulsification step of adding water to the emulsifier dispersion to prepare a coarse emulsion, and the fine emulsification step of finely emulsifying the coarse emulsion by a high-pressure emulsification method or the like. There is no example in which the production conditions in each production process were correlated with the storage stability of the fat emulsion.
For example, in Japanese Patent Application Laid-Open No. 5-9111, the liquid temperature in the coarse emulsification step is 70 ° C., and the liquid temperature in the fine emulsification step is only described as 70 ° C. or less, There is no description of the relationship between conditions and storage stability. Also,
It is reported that the coarse emulsion kept at 80 ° C. is immediately finely emulsified, but there is no description about the storage stability when the fat emulsion is mixed with another infusion (Ishii et al., J. Pharm.
rmacol. (Journal Off Pharmacy & Pharma Colosseum), 42,513,199
0). As described above, in the conventional production method, in the emulsification step of the fat emulsion comprising the coarse emulsification step and the fine emulsification step, the temperature of each prepared solution is controlled to a relatively high temperature of 50 to 80 ° C. . However, under the above production conditions, the average particle diameter of fat particles is small, and although a uniform emulsion can be produced without containing coarse particles, there is a problem that when mixed with other nutrient infusions, the appearance changes and the fat particles become coarse. Occurs. [0007] The object of the present invention is to provide a sugar,
An object of the present invention is to provide a nutritional supplement fat emulsion having excellent storage stability which does not cause appearance change or fat particle coarsening even when mixed with a nutritional infusion such as an electrolyte and an amino acid. Means for Solving the Problems The present inventors have achieved the above object by appropriately controlling the production conditions in each production step of a fat emulsion without using an additive such as citric acid. We studied hard to see if we could solve it. The present inventors have found that the preparation temperature of each preparation solution in each production step of a fat emulsion is an important factor influencing the storage stability after being mixed with another infusion agent, The preparation temperature range was studied repeatedly. As a result, by controlling the temperature of the preparation liquid in the emulsifying step, ie, the coarse emulsifying step and the fine emulsifying step, within the optimum range, a fat emulsion having excellent storage stability even when mixed with other nutritional infusions. Have been found, and the present invention has been completed. In each of the production steps, it is most important to control the preparation temperature of the fine emulsification step, and by controlling the preparation temperature of the other production steps within the optimal range, more excellent storage stability can be obtained. I found something. [0010] That is, the present invention provides a coarse emulsion by adding water to an emulsifier dispersion containing at least an emulsifier and a fat to obtain a coarse emulsion. In a method for producing a fat emulsion for obtaining an oil-in-water type nutritional supplement fat emulsion containing 1 to 30 W / V%, the fat emulsion to be finely emulsified while controlling the temperature of the emulsion in the fine emulsification to 5 to 35 ° C. It is a production method, and preferable production conditions include a production method in which the above-mentioned production method is added with a condition of coarse emulsification while controlling the temperature of the coarse emulsion at 5 to 35 ° C., and more preferably an emulsifier dispersion. This is a method for producing a fat emulsion in which conditions for dispersing an emulsifier are added while controlling the liquid temperature at 65 to 95 ° C. The present invention has the above-mentioned constitution, and the present invention will be described in detail in the order of the production steps. The preparation of the emulsifier dispersion in the first step of the emulsifier dispersion step is carried out, for example, by using a high-speed homogenizer, a high-speed mixer or the like. Is dispersed in fats and oils and stirred until the solid content of the emulsifier completely swells. At this time, various tonicity agents can be added as needed. The amount of the emulsifier added is preferably 5 to 25% based on the weight of the fat or oil. The preparation temperature of the emulsifier dispersion in the emulsifier dispersion step is 65 to 95.
° C, preferably 70-80 ° C. In addition, the phospholipid used as an emulsifier in the emulsifier dispersion liquid, emulsification becomes insufficient if less than 5 w / v% with respect to fats and oils,
If it exceeds 25% w / v, the viscosity increases and a stable fat emulsion cannot be produced. In the preparation of the coarse emulsion in the coarse emulsification step following the emulsifier dispersion step, for example, the emulsifier dispersion liquid produced by the above-mentioned method is immediately cooled to 5 to 35 ° C., preferably 15 to 35 ° C.
Cool to ~ 25 ° C, add distilled water for injection, also cooled to 5-35 ° C, little by little and disperse. Using a high-speed homogenizer, high-speed mixer, etc., control the solution temperature to 5-35 ° C while controlling the crude temperature. Prepare an emulsion. The preparation of the finely emulsified liquid in the finely emulsified step is carried out by high-pressure emulsification of the above coarsely emulsified liquid with a Manton-Gaulin homogenizer or a microfluidizer while controlling the liquid temperature at 5 to 35 ° C. Preferred emulsification conditions other than the liquid temperature control include a condition of 5000 to 25000 PSI and a number of passes of 5 to 25 as preferable conditions. The average particle size of the fat emulsion obtained through each of the above-mentioned production steps is 0.18 to 0.36 μm. If the average particle size is out of this range, a stable fat emulsion cannot be produced upon mixing with another infusion. As the fats and oils used in the present invention, any fats and oils can be used as long as they are edible oils, for example, vegetable oils such as soybean oil, coconut oil, sesame oil, perilla oil, linseed oil, cottonseed oil, safflower oil, whale oil, 1 selected from animal oils such as fish oil, and chemically synthesized triglycerides such as medium-chain fatty acid triglycerides.
Seeds or two or more kinds of fats and oils can be suitably used. Further, the emulsifier used in the present invention is one or a combination of two or more of purified soybean phospholipid, hydrogenated soybean phospholipid, purified egg yolk phospholipid, hydrogenated egg yolk phospholipid, nonionic surfactant and the like. Used. As the emulsifier, it is preferable to use purified egg yolk phospholipid, and more preferably to use purified egg yolk phospholipid in combination with a nonionic surfactant. The fat emulsion obtained by the production method of the present invention can be intravenously administered by mixing it with other nutritional infusions, that is, sugars, electrolytes and amino acids, if necessary. further,
The fat emulsion obtained by the production method of the present invention contains zinc, iron,
It can be blended in consideration of trace elements such as copper, iodine, manganese, vitamins, and other necessary amounts. In the production method of the present invention, commonly used pharmaceutical additives, that is, stabilizers and pH adjusters can be used. The fat emulsion obtained by the production method of the present invention is filled in a glass vial or a plastic bag made of polypropylene, polyethylene, ethylene-vinyl acetate copolymer or the like, and the space is replaced with nitrogen gas. It can be sterilized by the method. Further, the fat emulsion obtained by the production method of the present invention may be subjected to high-pressure steam sterilization, for example, by filling the fat emulsion and glucose in the lower layer of a two-compartment bag, and filling the remaining upper layer with amino acids and electrolytes. Then, the mixture may be mixed with another infusion agent by communicating between the two chambers after cooling or before use. The two-chamber bag is, for example, a flexible bag-shaped container made of plastic, the central part of which is heat-sealed in a strip shape so as to be peelable, and an infusion inlet or an outlet is provided in each of the two strictly isolated chambers. Can be used. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 Refined soybean oil 30.0 g, glycerin 7.5
g and 3.6 g of purified egg yolk phospholipid were stirred vigorously using a polytron high-speed homogenizer while completely controlling the temperature at 80 ° C. until they were completely swollen to prepare an emulsifier dispersion. This emulsifier dispersion was immediately cooled to 20 ° C., 30 ml of distilled water for injection was added little by little, and while controlling the temperature at 20 ° C., a coarse emulsion was prepared with a polytron high-speed homogenizer. The crude emulsion thus obtained was immediately emulsified at 10,000 PSI using a microfluidizer (M-110Y type) while controlling the liquid temperature at 20 ° C. Next, distilled water for injection is added to the emulsified emulsion to make the total volume 300 ml.
After filtration through a 0 μm membrane filter, 100 m
One glass vial was filled, replaced with nitrogen, sealed, and subjected to high-pressure steam sterilization according to a conventional method to prepare a target fat emulsion. Example 2 A fat emulsion was prepared in the same manner as in Example 1 except that the preparation temperature of the coarse emulsion and the preparation temperature of the fine emulsion were set at 35 ° C. EXAMPLE 3 While controlling 31.0 g of purified soybean oil and 3.72 g of purified egg yolk lecithin at 80 ° C., the mixture was vigorously stirred using a polytron high-speed homogenizer to prepare an emulsifier dispersion. This emulsifier dispersion was immediately cooled to 20 ° C.
31 ml of a 50% glucose solution was added little by little, and while controlling the temperature at 20 ° C., a coarse emulsion was prepared using a polytron high-speed homogenizer. The crude emulsion thus obtained was immediately used with a microfluidizer (M-110Y type) for 20 minutes.
Fine emulsification was carried out at 10,000 PSI while controlling the temperature to ℃. Next, 300 ml of an aqueous solution in which 59.5 g of glucose and 0.78 g of sodium dihydrogen phosphate (dihydrate) were previously dissolved was added to the fine emulsion, and the total amount was adjusted to 700 ml with distilled water. This solution was filtered through a membrane filter having a pore size of 3.0 μm, filled in the lower layer of a two-chamber bag, and the space was replaced with nitrogen gas and sealed. Next, the upper layer composition shown in Table 1 below was heated and dissolved in distilled water for injection to make 250 ml, the pH was adjusted to 7.0 with a 1N aqueous acetic acid solution, and the total amount was made 300 ml. This solution was filtered through a membrane filter having a pore size of 0.22 μm, filled in the upper layer of the two-chamber bag, and the space was replaced with nitrogen gas, sealed and subjected to high-pressure steam sterilization according to a conventional method. [Table 1] Test Example 1 Using the fat emulsions of the examples and the control examples described below as test liquids, the quality of each test liquid immediately after production and the storage stability after mixing with other nutritional infusions were examined. . As a test solution to be mixed with each test solution, a sugar, an electrolyte and an amino acid solution having the composition shown in Table 2 were dissolved in distilled water for injection to make 900 ml, and the pH was adjusted to 6.2 with an aqueous acetic acid solution. What used as 1000 ml was used. Each test solution was mixed with the test solution by filtering the test solution with a membrane filter having a pore size of 0.22 μm, and then mixing each test solution with 62 ml.
Then, 138 ml of each test solution was aseptically sterilized for 200 m.
This was carried out by mixing and injection into a plastic bag. The storage stability was evaluated by examining the change in appearance of the mixed solution stored at 25 ° C. for 2 days after the mixing operation and the ratio of coarse particles in fat particles. In addition, 2 measured by the centrifugal sedimentation method
The ratio of fat particles of μm or more was defined as the ratio of coarse particles. Table 3 shows the ratio of coarse particles, the average particle size of fat particles, and the evaluation results of storage stability immediately after the production of each test solution (after high-pressure emulsification treatment). From the test results, it is clear that both Example 1 and Example 2 in which the preparation temperature of each production step was controlled to the optimum range did not produce coarse particles immediately after production and had no problem in storage stability. It became. However, as shown in Table 3, the fat emulsions of Comparative Examples 1 to 5 produced at different preparation temperatures from those of Examples 1 and 2 had poor quality immediately after production or storage stability. Was evaluated as having a problem. Furthermore, as a result of measuring the free fatty acid immediately after production of Comparative Example 6 prepared in the same manner as in Example 1 except that the preparation temperature in the emulsifier dispersion step was set to 100 ° C., the free fatty acid in Example 1 was 0%. .31
mEq / l, whereas Control Example 6 had 1.24 mE
The oil / fat was decomposed with a clear high value of q / l. From the above results, it has been clarified that in the production of a fat emulsion, there is an optimum range between the preparation temperature in the coarse emulsification step and the fine emulsification step and the preparation temperature during the dispersion of the emulsifier. [Table 2] [Table 3] Test Example 2 The two-room bag infusion preparation of Example 3 was communicated between the two chambers, observed for changes in appearance after storage at 25 ° C. for 2 days, and further subjected to centrifugal sedimentation to obtain coarse particles of 2 μm or more. When the ratio of the particles was measured, no change in appearance was observed, and no generation of coarse particles of 2 μm or more was observed at all. According to the present invention, even when mixed with other nutritional infusions, ie, glucose, electrolyte and amino acid infusions,
It is possible to produce a fat emulsion having excellent storage stability without causing a change in appearance or coarsening of fat particles.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−279258(JP,A) 特開 昭60−51105(JP,A) 特開 昭57−16818(JP,A) 特開 昭58−222014(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61K 9/00 A61K 47/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-279258 (JP, A) JP-A-60-51105 (JP, A) JP-A-57-16818 (JP, A) JP-A-58-58 222014 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) A61K 9/00 A61K 47/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 脂肪をカロリー源とする高カロリー経静
脈栄養補給のための、油脂を1〜30W/V%含む水中
油型の脂肪乳剤を製造する方法であって、 液温を65〜95℃に制御しながら油脂中に乳化剤を分
散させて乳化剤分散液を調製する工程、 液温を5〜35℃に制御しながら前記乳化剤分散液に水
を加えて粗乳化液を調製する工程、および 液温を5〜35℃に制御しながら前記粗乳化液を精乳化
する工程を含む脂肪乳剤を製造する方法。
(1) A method for producing an oil-in-water type fat emulsion containing 1 to 30 W / V% of fats and oils for high intravenous nutritional supplementation using fat as a calorie source. A step of preparing an emulsifier dispersion by dispersing an emulsifier in fats and oils while controlling the liquid temperature to 65 to 95 ° C., adding water to the emulsifier dispersion while controlling the liquid temperature to 5 to 35 ° C. A method for producing a fat emulsion comprising a step of preparing a coarse emulsion and a step of finely emulsifying the coarse emulsion while controlling the liquid temperature to 5 to 35 ° C.
JP08756994A 1994-03-31 1994-03-31 Production method of fat emulsion Expired - Fee Related JP3472337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08756994A JP3472337B2 (en) 1994-03-31 1994-03-31 Production method of fat emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08756994A JP3472337B2 (en) 1994-03-31 1994-03-31 Production method of fat emulsion

Publications (2)

Publication Number Publication Date
JPH07277953A JPH07277953A (en) 1995-10-24
JP3472337B2 true JP3472337B2 (en) 2003-12-02

Family

ID=13918638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08756994A Expired - Fee Related JP3472337B2 (en) 1994-03-31 1994-03-31 Production method of fat emulsion

Country Status (1)

Country Link
JP (1) JP3472337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103610049A (en) * 2013-11-26 2014-03-05 刘克武 Elderberry fruit oil oral emulsion and preparation method thereof

Also Published As

Publication number Publication date
JPH07277953A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
US5034414A (en) Liquid emulsion for transfusion
JPS60149524A (en) Prostaglandin fat emulsion
JPS5924132B2 (en) Manufacturing method for nutritional supplement emulsion
JPS59216820A (en) Fat emulsion of prostaglandin
EP0700681A1 (en) Nutritional transfusion for peripheral vein administration
TWI749451B (en) Pharmaceutical composition comprising omega fatty acids, and infusion preparation comprising the same
JP2930242B2 (en) Emulsion for parenteral administration
CN105939705A (en) Composition comprising EPA and DHA triglycerides for parenteral administration
JPH0145446B2 (en)
JP3472337B2 (en) Production method of fat emulsion
JPH01249716A (en) Fatty emulsion of fine particle
JP3132085B2 (en) Fat emulsion
KR100211773B1 (en) Pharmaceutical composition in the form of a kit
JP3695499B2 (en) Fat emulsion
JPH0213643B2 (en)
JPH09157179A (en) Liquid nourishing composition
JPH0681739B2 (en) Aqueous liquid containing fat-soluble vitamin K
JP3723992B2 (en) Fat-containing infusion preparation and comprehensive nutrition infusion container containing it
JP2828655B2 (en) Fat-soluble drug-containing aqueous liquid
JPS62221629A (en) Production of phospholipid emulsion
JP3773210B2 (en) Trehalose-containing fat emulsion
JP2851704B2 (en) Pharmaceutical composition for treating cerebral thrombosis
JPS6014933A (en) Preparation of w/o type emulsion
JPH0565220A (en) Transfusion pharmaceutical
JP3611130B2 (en) Preparation method of fat emulsion

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees