JP3471386B2 - Fluid mixing cooling device - Google Patents

Fluid mixing cooling device

Info

Publication number
JP3471386B2
JP3471386B2 JP06888193A JP6888193A JP3471386B2 JP 3471386 B2 JP3471386 B2 JP 3471386B2 JP 06888193 A JP06888193 A JP 06888193A JP 6888193 A JP6888193 A JP 6888193A JP 3471386 B2 JP3471386 B2 JP 3471386B2
Authority
JP
Japan
Prior art keywords
perforated plate
fluid
cooling gas
reaction
reaction fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06888193A
Other languages
Japanese (ja)
Other versions
JPH06277496A (en
Inventor
勝洋 斉藤
武 大原
康夫 鈴木
哲哉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP06888193A priority Critical patent/JP3471386B2/en
Publication of JPH06277496A publication Critical patent/JPH06277496A/en
Application granted granted Critical
Publication of JP3471386B2 publication Critical patent/JP3471386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルキル化反応、水素
化脱硫反応、水素化分解反応、水素化精製、不飽和化合
物の水素添加反応等の発熱をともなう化学反応が行なわ
れる多段反応器において、この多段反応器内の反応流体
(液体)を混合冷却する流体混合冷却装置に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a multi-stage reactor in which an exothermic chemical reaction such as an alkylation reaction, a hydrodesulfurization reaction, a hydrocracking reaction, a hydrorefining reaction, a hydrogenation reaction of an unsaturated compound is carried out. , Reaction fluid in this multi-stage reactor
The present invention relates to a fluid mixing and cooling device that mixes and cools (liquid) .

【0002】[0002]

【従来の技術】周知のように、気相と液相との二相系の
発熱反応が固定床反応器で行なわれる場合がある。かか
る場合、発熱反応により反応熱が発生し、固定床反応器
内の反応層の反応流体の温度が過度に上昇することによ
り、反応を促進させる触媒が劣化し、反応の選択率が低
下し、目的生成物の収量が低下するという問題がある。
また、断面積の大きな反応器では、反応流体が触媒床を
流下する過程で流れに偏りを起こす場合がある。かかる
場合、過度な温度上昇により液相の一部が気化すること
などにより、反応器の径方向における生成物組成および
流体の温度が異なるおそれがあった。
As is well known, a two-phase exothermic reaction of a gas phase and a liquid phase may be carried out in a fixed bed reactor. In such a case, heat of reaction is generated by the exothermic reaction, and the temperature of the reaction fluid in the reaction bed in the fixed bed reactor is excessively increased, whereby the catalyst for promoting the reaction is deteriorated and the selectivity of the reaction is lowered. There is a problem that the yield of the target product decreases.
Further, in a reactor having a large cross-sectional area, the flow of the reaction fluid may be biased in the process of flowing down the catalyst bed. In such a case, the product composition and the temperature of the fluid in the radial direction of the reactor may be different due to vaporization of a part of the liquid phase due to an excessive temperature rise.

【0003】そこで、反応器内の反応層を複数段に区画
し、各反応段の間に冷却装置を配置することにより、反
応流体を冷却するとともに、反応流体を混合する装置や
方法が提案されている。かかる例として、特公昭57
ー22614号公報、特公昭57ー26815号公
報、特公昭60ー7532号公報、特開平4ー22
7040号公報等が示されている。
Therefore, an apparatus and method for cooling the reaction fluid and mixing the reaction fluid by dividing the reaction layer in the reactor into a plurality of stages and disposing a cooling device between the reaction stages have been proposed. ing. As an example of this, Japanese Patent Publication No. 57
No. 22614, Japanese Patent Publication No. 57-26815, Japanese Patent Publication No. 60-7532, and Japanese Patent Laid-Open No. 4-22
No. 7040 publication is shown.

【0004】特公昭57ー22614号公報には、反
応層と反応層との中間に、内側仕切室と外側仕切室とを
画成する壁部を備えている。この内側仕切室と外側仕切
室との間の壁部が通路を有し、両端部が高く中央部で谷
部を形成する屋根部を備えている。この谷部の屋根が内
側仕切室に連通する多数個の小孔で形成された通路を有
し、さらに外側仕切室を画成する部分に通路を有する床
を備える多段順流式水素接触反応用の急冷箱が開示され
ている。この急冷箱では、急冷箱の上部から冷却用ガス
が供給され、この冷却用ガスが、上部反応層から流下し
てきた反応流体と合一して、谷部の屋根に設けられた通
路を通り、内側仕切室に流入される。
In Japanese Patent Publication No. 57-22614, a wall portion is provided between the reaction layer and the reaction layer to define an inner partition chamber and an outer partition chamber. A wall portion between the inner partition chamber and the outer partition chamber has a passage, and is provided with a roof portion in which both end portions are high and a central portion forms a valley portion. The roof of this valley portion has a passage formed by a large number of small holes communicating with the inner partition chamber, and further has a floor having a passage in the portion that defines the outer partition chamber for a multistage forward hydrogen contact reaction. A quench box is disclosed. In this quench box, cooling gas is supplied from the top of the quench box, and this cooling gas, together with the reaction fluid flowing down from the upper reaction layer, passes through a passage provided on the roof of the valley, It flows into the inner compartment.

【0005】特公昭57ー26815号公報には、開
口部の縁部に堰を設けた仕切板を塔壁に固定し、該堰を
覆うキャップ状部を有する多孔板を該仕切板のやや上方
に設けて開口部、堰とキャップとの間隙および仕切板と
多孔板との隙間を通る流路を形成するとともに、該多孔
板上に触媒を収容して反応層とし、かかる反応層を塔内
の上下方向に多段に設け、上下の反応層相互間を溢流管
にて連結した多段交換反応塔が開示されている。この多
段交換反応塔では、塔上方より水が溢流管を通して仕切
板上の触媒層に流れ、この触媒層から溢れた水が次の溢
流管を通して下部に流れる。一方、仕切板と多孔板との
間にガスを流し、このガスが多孔板から触媒層内の水を
押し上げ、水を攪拌する。
In Japanese Patent Publication No. 57-26815, a partition plate having a weir at the edge of an opening is fixed to a tower wall, and a porous plate having a cap-like portion covering the weir is provided slightly above the partition plate. A flow path passing through the opening, the gap between the weir and the cap, and the gap between the partition plate and the perforated plate, and a catalyst is accommodated on the perforated plate to form a reaction layer. There is disclosed a multi-stage exchange reaction tower in which the upper and lower reaction layers are provided in multiple stages and the upper and lower reaction layers are connected by an overflow pipe. In this multi-stage exchange reaction tower, water flows from the upper part of the tower through the overflow pipe to the catalyst layer on the partition plate, and the water overflowing from this catalyst layer flows to the lower part through the next overflow pipe. On the other hand, a gas is caused to flow between the partition plate and the perforated plate, and this gas pushes up the water in the catalyst layer from the perforated plate to stir the water.

【0006】特公昭60ー7532号公報には、反応
塔の中心部に設けた冷却ガス用クエンチヘッダーと該ク
エンチヘッダーから略水平かつ放射状に配置されたガス
噴射用小孔を有する複数本の支管と、その下方に液滞留
堰が設けられたクエンチディストリビューターが開示さ
れている。この装置では、冷却用ガスと合一した反応流
体は液滞留堰と反応塔内壁の広い隙間を流下するため、
この部分の圧力損失の増大と脈流発生とを回避できる。
JP-B-60-7532 discloses a plurality of branch pipes having a quench header for a cooling gas provided in the center of a reaction tower and gas injection small holes arranged substantially horizontally and radially from the quench header. And a quench distributor having a liquid retention weir below it. In this device, the reaction fluid combined with the cooling gas flows down through a wide gap between the liquid retention weir and the inner wall of the reaction tower.
It is possible to avoid an increase in pressure loss in this portion and the occurrence of pulsating flow.

【0007】特開平4ー227040号公報には、ふ
たつの反応帯域間の空間で外部から供給された冷却用ガ
スと反応流体とを混合するための改良帯域間混合装置が
開示されている。この混合装置では、冷却用ガスと反応
流体を限られた空間領域で合一し、プレート上に配置さ
れた円筒キャップ内に合一流体を導入する際、その流れ
に乱れを起こすことにより混合効率が高められる。
Japanese Unexamined Patent Publication (Kokai) No. 4-227040 discloses an improved inter-zone mixing apparatus for mixing a cooling gas supplied from the outside with a reaction fluid in a space between two reaction zones. In this mixing device, the cooling gas and the reaction fluid are united in a limited space area, and when the united fluid is introduced into the cylindrical cap placed on the plate, the flow is disturbed to cause mixing efficiency. Is increased.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特公
昭57ー22614号公報の急冷箱では、谷部の屋根に
設けられた小孔の通路を反応流体と冷却用ガスが合一し
て通るため、操作条件によりこの部分の圧力損失が大き
くなり、脈流の発生、反応流体中に含まれる固体状物質
による小孔の閉塞などのおそれがあった。また、構造が
複雑であるという問題があった。
However, in the quench box of Japanese Patent Publication No. 57-22614, since the reaction fluid and the cooling gas pass together through the passage of the small hole provided in the roof of the valley, Depending on the operating conditions, the pressure loss at this portion becomes large, and there is a risk of pulsating flow generation and blockage of the small holes by the solid substances contained in the reaction fluid. There is also a problem that the structure is complicated.

【0009】特公昭57ー26815号公報の多段交
換反応塔では、上下反応層相互間を連結する溢流管が塔
壁と仕切板の縁部との間に設けられているため、溢流管
に流体が流れたときに該溢流管の周囲に旋回流れを発生
できない。このため、反応層内の混合効率の向上が図れ
ない。そして、仕切板の中央部に位置する開口部からガ
スを流し、このガスが水を押し上げて多孔板から上方に
流れるため、開口部の周囲に位置する多孔板の中央部に
ガスが多く流れ、多孔板の縁部を流れるガスが少なくな
り、ガスの流れに偏りが生じ、多孔板からガスが不均一
に分散されるおそれがあった。このため、ガスの熱交換
効率の向上が図れないおそれがあった。
In the multi-stage exchange reaction column of Japanese Patent Publication No. 57-26815, an overflow pipe connecting the upper and lower reaction layers is provided between the column wall and the edge of the partition plate. A swirl flow cannot be generated around the overflow pipe when the fluid flows into the pipe. Therefore, the mixing efficiency in the reaction layer cannot be improved. Then, a gas is caused to flow from the opening located at the center of the partition plate, and this gas pushes up water and flows upward from the perforated plate, so that a large amount of gas flows to the center of the perforated plate located around the opening, The amount of gas flowing through the edge of the perforated plate was reduced, the gas flow was unevenly distributed, and the gas could be unevenly dispersed from the perforated plate. Therefore, the heat exchange efficiency of the gas may not be improved.

【0010】特公昭60ー7532号公報のクエンチ
ディストリビューターでは、冷却ガス噴射用支管の各噴
射孔から冷却用ガスを均一に噴射するために噴射孔の差
圧を大きくとる必要があった。このため、噴射孔から噴
射される冷却用ガスの流速が早くなり、この冷却用ガス
と反応液との接触時間が短くなる。さらに、枝管が放射
状に配設されているため、中心部から外周部に向かって
単位断面積当りの噴射孔の数が減少するため、冷却用ガ
スの吹き込みが不均一になり、冷却用ガスと反応液との
熱交換率が低いという問題があった。 特開平4ー227040号公報の混合装置では、構造
が複雑であり、冷却用ガスと反応流体との熱交換率が低
いという問題があった。
In the quench distributor disclosed in Japanese Patent Publication No. Sho 60-7532, it is necessary to increase the pressure difference between the injection holes in order to uniformly inject the cooling gas from the injection holes of the cooling gas injection branch pipe. Therefore, the flow velocity of the cooling gas injected from the injection holes is increased, and the contact time between the cooling gas and the reaction liquid is shortened. Further, since the branch pipes are radially arranged, the number of injection holes per unit cross-sectional area decreases from the central portion to the outer peripheral portion, so that the cooling gas is not uniformly blown into the cooling gas. There was a problem that the heat exchange rate with the reaction solution was low. The mixing device disclosed in JP-A-4-227040 has a problem that the structure is complicated and the heat exchange rate between the cooling gas and the reaction fluid is low.

【0011】本発明は前記課題を有効に解決するもの
で、冷却気体の圧力損失を低減させ、冷却気体と液体で
ある反応流体との熱交換率を向上させるとともに、簡単
な構造の流体混合冷却装置を提供することを目的とす
る。
The present invention effectively solves the above-mentioned problems by reducing the pressure loss of the cooling gas and using the cooling gas and the liquid.
An object of the present invention is to provide a fluid mixing and cooling device having a simple structure while improving the heat exchange rate with a reaction fluid.

【0012】[0012]

【課題を解決するための手段】請求項1記載の流体混合
冷却装置は、多段反応器の各反応段の間に配設され、
体の反応流体と該反応流体を冷却する冷却気体とを混合
冷却する流体混合冷却装置において、該流体混合冷却装
置を上部と下部とに区画する仕切板と、該仕切板の上方
に並設され、反応流体を保持する多孔板と、これら仕切
板および多孔板を貫通して該多孔板の上方に突出配設さ
れ、該多孔板の上方に位置する反応流体を上端部付近の
側面開口から導入して下部に流出させる一本または複数
本の溢流管と、前記仕切板と多孔板との間に配設され、
冷却気体が流入される流入管と、前記仕切板に形成され
前記多孔板から漏洩する液体を流出させるドレイン孔と
を有し、前記溢流管の側面開口位置が前記反応流体の冷
却及び混合を行う滞留槽の高さを規定し、前記多孔板に
は、冷却気体を噴出させる噴出孔が複数形成されている
ことを特徴とするものである。
Fluid mixing cooling device SUMMARY OF THE INVENTION The first aspect is disposed between each reaction stage of a multistage reactor, liquid
In a fluid mixing and cooling device for mixing and cooling a reaction fluid of a body and a cooling gas for cooling the reaction fluid, a partition plate for partitioning the fluid mixing and cooling device into an upper part and a lower part, and a partition plate arranged in parallel above the partition plate. A perforated plate for holding the reaction fluid, and a partition plate and a perforated plate penetrating the perforated plate so as to project above the perforated plate .
One or a plurality of overflow pipes that are introduced from the side opening and flow out to the lower portion, and are arranged between the partition plate and the perforated plate,
An inflow pipe into which cooling gas flows and formed on the partition plate.
A drain hole for letting out the liquid leaking from the perforated plate;
And a side opening position of the overflow pipe cools the reaction fluid.
It is characterized in that the height of a holding tank for performing cooling and mixing is defined, and a plurality of ejection holes for ejecting cooling gas are formed in the perforated plate.

【0013】請求項2記載の流体混合冷却装置は、前記
噴出孔は、多孔板に直交する軸に対して斜めに形成され
ていることを特徴とするものである。請求項3記載の流
体混合冷却装置は、前記多孔板は、冷却気体を噴出孔か
ら噴出させるときの圧力損失が5mm水柱以上に設定さ
れる開口面積に形成されていることを特徴とするもので
ある。
A fluid mixing and cooling device according to a second aspect of the invention is characterized in that the ejection holes are formed obliquely with respect to an axis orthogonal to the perforated plate. The fluid mixing and cooling device according to claim 3 is characterized in that the porous plate is formed in an opening area in which a pressure loss when the cooling gas is ejected from the ejection hole is set to 5 mm or more of a water column. is there.

【0014】請求項4記載の流体混合冷却装置は、前記
多孔板は、噴出孔を噴出する冷却気体の線流速が20m
/秒以下に設定される開口面積に形成されていることを
特徴とするものである。また、前記溢流管は、多孔板か
らの突出高さが20mm以上に形成させるのが好まし
い。
According to a fourth aspect of the fluid mixing and cooling device of the present invention, the perforated plate has a linear flow velocity of cooling gas ejected from the ejection holes of 20 m.
It is characterized in that it is formed with an opening area set to be less than or equal to / second. Further, it is preferable that the overflow pipe is formed so that the protruding height from the perforated plate is 20 mm or more.

【0015】[0015]

【作用】請求項1記載の流体混合冷却装置では、該流体
混合冷却装置が仕切板で上部と下部とに区画され、この
仕切板の上方に並設された多孔板に液体の反応流体が保
持される。これら仕切板と多孔板との間に流入管から冷
却気体が流入され、この冷却気体が多孔板の噴出孔を噴
出することにより、冷却気体が反応流体の中を通り、こ
の反応流体を混合・冷却する。そして、溢流管は、上端
部付近の側面開口から多孔板の上方に位置する反応流体
を仕切板の下部に流出させることで、反応流体の冷却及
び混合を行う滞留槽の高さを規定する。また、多孔板か
ら漏洩して仕切板に流れ出した液体は、この仕切板に形
成したドレイン孔から流出する。
According to the fluid mixing and cooling device of the present invention, the fluid mixing and cooling device is divided into an upper portion and a lower portion by a partition plate, and a liquid reaction fluid is held by a perforated plate arranged in parallel above the partition plate. To be done. Cooling gas is introduced from the inflow pipe between the partition plate and the perforated plate, and the cooling gas ejects from the ejection holes of the perforated plate, so that the cooling gas passes through the reaction fluid and mixes the reaction fluid. Cooling. And the overflow pipe is at the top
The reaction fluid located above the perforated plate is discharged from the side opening near the section to the lower part of the partition plate to cool and cool the reaction fluid.
Specifies the height of the holding tank for mixing and mixing. Also, is it a perforated plate?
The liquid that leaks from the partition and flows out to the partition plate will form on this partition plate.
It flows out from the drain hole made.

【0016】請求項2記載の流体混合冷却装置では、請
求項1記載の作用を有するとともに、冷却気体が多孔板
上の反応流体に対して斜めに噴射孔から噴射され、反応
流体を斜めから冷却気体が通ることにより、反応流体を
混合する。請求項3記載の流体混合冷却装置では、請求
項1記載の作用を有するとともに、冷却気体を多孔板の
噴出孔から噴出させるときの圧力損失が5mm水柱以上
に設定されているから、多孔板を通過する冷却気体の流
量が時間的に変動するのを防止させ、冷却気体が反応流
体中に均一に分散される。
In the fluid mixing and cooling device according to the second aspect, in addition to having the function of the first aspect, the cooling gas is jetted obliquely to the reaction fluid on the perforated plate from the jet holes, and the reaction fluid is cooled diagonally. The reaction fluid is mixed by passing the gas. According to the fluid mixing and cooling device of the third aspect, in addition to having the action of the first aspect, the pressure loss when ejecting the cooling gas from the ejection holes of the perforated plate is set to 5 mm or more of water column. The flow rate of the cooling gas passing therethrough is prevented from changing with time, and the cooling gas is uniformly dispersed in the reaction fluid.

【0017】請求項4記載の流体混合冷却装置では、請
求項1記載の作用を有するとともに、多孔板の噴出孔を
噴出する冷却気体の線流速が20m/秒以下に設定され
るから、冷却気体を反応流体にきめ細かく噴出でき、冷
却気体と反応流体との接触効率が高められる。また、溢
流管は、多孔板からの突出高さが20mm以上に形成さ
せることにより、反応流体と冷却気体との接触時間が十
分に確保される。
In the fluid mixing and cooling device according to the fourth aspect, in addition to having the action according to the first aspect, the linear flow velocity of the cooling gas ejected from the ejection holes of the perforated plate is set to 20 m / sec or less. Can be jetted finely into the reaction fluid, and the contact efficiency between the cooling gas and the reaction fluid can be improved. Further, the overflow pipe is formed so that the protruding height from the perforated plate is 20 mm or more, so that the contact time between the reaction fluid and the cooling gas is sufficiently secured.

【0018】[0018]

【実施例】以下、本発明の流体混合冷却装置の一実施例
について、図1ないし図6を参照しながら説明する。図
1に示すように、符号10は流体混合冷却装置であり、
この流体混合冷却装置10は、多段反応器11の各反応
段の間に配設されており、該流体混合冷却装置10を上
部と下部とに区画する仕切板12と、該仕切板12の上
方に並設され、液体である反応流体を保持する多孔板1
4と、これら仕切板12および多孔板14を貫通する溢
流管15と、仕切板12と多孔板14との間に冷却気体
を流入させる流入管16と、仕切板12に形成されたド
レイン孔17とを有する構成にされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the fluid mixing and cooling device of the present invention will be described below with reference to FIGS. As shown in FIG. 1, reference numeral 10 is a fluid mixing and cooling device,
The fluid mixing / cooling device 10 is arranged between the reaction stages of the multi-stage reactor 11, and has a partition plate 12 for partitioning the fluid mixing / cooling device 10 into an upper part and a lower part, and an upper part of the partition plate 12. Perforated plates 1 arranged in parallel with each other and holding a liquid reaction fluid
4, an overflow pipe 15 penetrating the partition plate 12 and the perforated plate 14, an inflow pipe 16 for allowing cooling gas to flow between the partition plate 12 and the perforated plate 14, and a gate formed on the partition plate 12.
It is configured to have a rain hole 17 .

【0019】多段反応器11は、反応流体を上部から下
部に下降させ、この反応流体に並行させて冷却気体を上
昇させる下降並行流型固定床に形成されている。この多
段反応器11には、該多段反応器11の各反応段の間に
配設された流体混合冷却装置10を上部と下部とに区画
する仕切板12が配設されている。この仕切板12は、
多段反応器11の立設方向に直交する略水平方向に配設
されている。この仕切板12には、多孔板14から仕切
板12上に漏洩した液体を該仕切板12の下部に流出さ
せるドレイン孔17が形成されている。この仕切板12
の上方に多孔板14が並設され、これら仕切板12と多
孔板14とは流入管16の直径以上の長さの間隔をあけ
て並設されている。ここで、仕切板12と多孔板14と
の間隔を必要以上に大きく形成する場合、流体混合冷却
装置10の容積が大きく形成されるので好ましくない。
The multi-stage reactor 11 is formed in a descending parallel flow type fixed bed for descending the reaction fluid from the upper portion to the lower portion and raising the cooling gas in parallel with the reaction fluid. The multi-stage reactor 11 is provided with a partition plate 12 that divides the fluid mixing and cooling device 10 arranged between the reaction stages of the multi-stage reactor 11 into an upper part and a lower part. This partition plate 12
They are arranged in a substantially horizontal direction orthogonal to the standing direction of the multi-stage reactor 11. The partition plate 12 is provided with a drain hole 17 for allowing the liquid leaking from the porous plate 14 onto the partition plate 12 to flow out to the lower part of the partition plate 12. This partition plate 12
A perforated plate 14 is juxtaposed above each other, and the partition plate 12 and the perforated plate 14 are juxtaposed with a distance equal to or larger than the diameter of the inflow pipe 16. Here, if the space between the partition plate 12 and the perforated plate 14 is formed to be larger than necessary, the volume of the fluid mixing and cooling device 10 is formed to be large, which is not preferable.

【0020】多孔板14には、図2に示すように、該多
孔板14を貫通する噴出孔18が複数形成されている。
この噴出孔18は、多孔板14全体にわたって均等に形
成されており、流入管16から流入された冷却気体を噴
出させることにより、この冷却気体を反応流体全体にわ
たって流出させる構成にされている。この噴出孔18
は、図3に示すように、多孔板14の一方の面に直交す
る軸(ここでは、略鉛直方向の軸)に対して斜めに形成
されている。ここで、噴出孔18は、多孔板14の一方
の面に直交する軸に対して平行に形成してもよいが、斜
めに形成することにより、多孔板14上の反応流体にお
ける水平方向の攪拌が冷却気体の噴出エネルギーにより
促進される。また、噴出孔18の形状は、円形に形成し
たが、特に限定するものでなく、三角形、四角形等の多
角形でもよい。
As shown in FIG. 2, the perforated plate 14 has a plurality of ejection holes 18 penetrating the perforated plate 14.
The ejection holes 18 are formed uniformly over the entire perforated plate 14, and the cooling gas that has flowed in from the inflow pipe 16 is ejected so that the cooling gas flows out over the entire reaction fluid. This spout 18
3 is formed obliquely with respect to an axis (here, a substantially vertical axis) orthogonal to one surface of the porous plate 14, as shown in FIG. Here, the ejection holes 18 may be formed parallel to an axis orthogonal to one surface of the perforated plate 14, but by forming them obliquely, the reaction fluid on the perforated plate 14 is stirred in the horizontal direction. Are accelerated by the jetting energy of the cooling gas. Further, although the shape of the ejection hole 18 is formed in a circular shape, it is not particularly limited and may be a polygonal shape such as a triangle or a quadrangle.

【0021】溢流管15は、図1に示すように、仕切板
12と多孔板14との中央部をそれぞれ貫通して該多孔
板14の上方に突出配設されたパイプ本体20と、この
パイプ本体20の上端部の開口部分を覆う蓋部21とか
ら構成されている。パイプ本体20は、上部が多孔板1
4から20mm〜400mm突出形成され、この突出す
上端部近傍の側壁に側面開口となる吸引口22が複数
形成され、下端部が仕切板12の中央部に固定され、こ
の仕切板12の下部の空間に連通された構成にされてい
る。すなわち、蓋部21で反応流体が直接パイプ本体2
0に流入されるのを防止し、多孔板14上で混合・冷却
された反応流体が上層から吸引口22に流入される。こ
の吸引口22には反応流体と該反応流体内に噴出された
冷却気体とが流入され、これら反応流体および冷却気体
はパイプ本体20内を通して仕切板12の下部に流出さ
れる。なお、パイプ本体20に吸引口22を形成した
が、蓋部21を別個に支柱等で支持させ、パイプ本体2
0の上端部を開口させて、パイプ本体20の外周壁上端
と蓋部21との間に側面開口となる吸引口を形成しても
よい。
As shown in FIG. 1, the overflow pipe 15 penetrates through the central portions of the partition plate 12 and the perforated plate 14, respectively, and a pipe main body 20 projectingly arranged above the perforated plate 14, It is composed of a lid portion 21 that covers an opening portion of the upper end portion of the pipe body 20. The upper part of the pipe body 20 is the perforated plate 1
4 to 20 mm to 400 mm projectingly formed, a plurality of suction ports 22 serving as side surface openings are formed on the side wall near the projecting upper end part , and the lower end part is fixed to the central part of the partition plate 12, and the lower part of the partition plate 12 It is configured to communicate with the space. That is, the reaction fluid directly flows into the pipe body 2 at the lid portion 21.
The reaction fluid mixed and cooled on the perforated plate 14 is prevented from flowing into 0 and flows into the suction port 22 from the upper layer. The reaction fluid and the cooling gas jetted into the reaction fluid flow into the suction port 22, and the reaction fluid and the cooling gas flow out through the pipe body 20 to the lower portion of the partition plate 12. Although the suction port 22 is formed in the pipe body 20, the lid part 21 is separately supported by a support or the like, and
0 is opened at the upper end of the outer peripheral wall of the pipe body 20
Even if a suction port that becomes a side opening is formed between the lid 21 and the lid 21.
Good.

【0022】溢流管15の開口部の面積(パイプ本体2
0の断面積)を、多孔板14の面積の0.5%から10
%に設定することが好ましい。溢流管15の開口部の面
積を0.5%以下に設定すると、通常の操作条件の場
合、溢流管15の開口部を流れる反応流体の単位断面積
当りの流量が大きくなり、圧力損失が増大し、脈流が発
生するおそれを有しているので好ましくない。また、溢
流管15の開口部の面積が10%を越えても問題は少な
いが、溢流管15の開口部の面積を必要以上に大きく設
定すると、冷却気体の分散面積が減少するため、必要以
上に溢流管15の開口部の面積を大きく設定するのは好
ましくない。
The area of the opening of the overflow pipe 15 (the pipe body 2
0 cross section area) is 0.5% to 10% of the area of the perforated plate 14.
It is preferably set to%. If the area of the opening of the overflow pipe 15 is set to 0.5% or less, under normal operating conditions, the flow rate of the reaction fluid flowing through the opening of the overflow pipe 15 per unit cross-sectional area becomes large, resulting in a pressure loss. Is increased and there is a risk of pulsating flow, which is not preferable. Also, although there is little problem if the area of the opening of the overflow pipe 15 exceeds 10%, if the area of the opening of the overflow pipe 15 is set larger than necessary, the dispersion area of the cooling gas decreases, It is not preferable to set the area of the opening of the overflow pipe 15 larger than necessary.

【0023】また、溢流管15のパイプ本体20が多孔
板14から突出する高さは、多段反応器11の断面積当
りの反応流体の流速と、冷却気体の供給速度に関係さ
れ、反応流体から除去する熱量と、反応流体の多段反応
器11に内径方向の混合状態等を考慮して決められる。
例えば、単位断面積当りの反応流体の流量が少なく、反
応流体から除去する熱量も少ない場合には、溢流管15
の突出高さは、20mm程度に設定すればよい。一方、
反応流体の流量が多く、反応流体から除去する熱量も多
い場合には、溢流管15の突出高さを高く設定するのが
好ましい。しかし、通常の操作条件では、400mm付
近の高さで熱交換および反応流体の多段反応器11の内
径方向の混合はほぼ完結されるため、溢流管15の突出
高さが400mmを越えると、冷却気体の噴出に要する
圧力が増大し、反応流体を冷却する容積が増大し、流体
混合冷却装置10が大型化される等の点で好ましくな
い。
The height at which the pipe body 20 of the overflow pipe 15 projects from the perforated plate 14 is related to the flow velocity of the reaction fluid per cross-sectional area of the multi-stage reactor 11 and the supply rate of the cooling gas. It is determined in consideration of the amount of heat removed from the reactor and the mixed state of the reaction fluid in the multistage reactor 11 in the inner diameter direction.
For example, when the flow rate of the reaction fluid per unit cross-sectional area is small and the amount of heat removed from the reaction fluid is small, the overflow pipe 15
The projecting height of may be set to about 20 mm. on the other hand,
When the flow rate of the reaction fluid is large and the amount of heat removed from the reaction fluid is also large, it is preferable to set the protruding height of the overflow pipe 15 to be high. However, under normal operating conditions, heat exchange and mixing of the reaction fluid in the inner diameter direction of the multi-stage reactor 11 are almost completed at a height of about 400 mm, so that when the protruding height of the overflow pipe 15 exceeds 400 mm, It is not preferable in that the pressure required for jetting the cooling gas increases, the volume for cooling the reaction fluid increases, and the fluid mixing and cooling device 10 becomes large.

【0024】蓋部21は、多孔板14より上部から流下
する反応流体が直接溢流管15のパイプ本体20に侵入
するのを防止できる大きさに形成すればよい。このた
め、蓋部21の形状は、特に限定するものでなく、好ま
しくはパイプ本体20と相似形であればよい。そして、
蓋部21の面積は、パイプ本体20の断面積以上で、パ
イプ本体20の断面積の四倍以下に形成するのが好まし
い。蓋部21の面積がパイプ本体20の断面積以下に形
成すると、多孔板14の上部からパイプ本体20に直接
反応流体が流下されるので好ましくない。そして、蓋部
21の面積を四倍以上に形成すると、多孔板14に流下
する反応流体の流路を阻害するので好ましくない。
The lid portion 21 may be formed in such a size that the reaction fluid flowing down from above the perforated plate 14 can be prevented from directly entering the pipe body 20 of the overflow pipe 15. Therefore, the shape of the lid portion 21 is not particularly limited, and preferably has a shape similar to the pipe body 20. And
The area of the lid portion 21 is preferably not less than the cross-sectional area of the pipe body 20 and not more than four times the cross-sectional area of the pipe body 20. When the area of the lid portion 21 is formed to be equal to or smaller than the cross-sectional area of the pipe body 20, the reaction fluid flows directly from the upper part of the porous plate 14 to the pipe body 20, which is not preferable. If the area of the lid portion 21 is formed four times or more, the flow path of the reaction fluid flowing down the perforated plate 14 is obstructed, which is not preferable.

【0025】流入管16は、一方の端部がガス供給装置
等に接続され、他方の端部が仕切板12と多孔板14と
の間の多段反応器11に固定され、冷却気体を仕切板1
2と多孔板14との間の空間に流入させる構成にされて
いる。なお、流入管16は、一つに限定するものでな
く、複数でもよい。流入管16を複数設けることによ
り、各流入管16を流れる冷却気体の流量を低減できる
から、流入管16の直径を小さく形成することができ、
仕切板12と多孔板14との間隔を狭めることができ
る。このため、流体混合冷却装置10の容積を小さくで
き、流体混合冷却装置10を小型化できる。
The inflow pipe 16 has one end connected to a gas supply device or the like and the other end fixed to the multi-stage reactor 11 between the partition plate 12 and the perforated plate 14 for cooling gas. 1
2 and the perforated plate 14 are made to flow into the space. The inflow pipe 16 is not limited to one, and may be plural. By providing a plurality of inflow pipes 16, the flow rate of the cooling gas flowing through each inflow pipe 16 can be reduced, so that the diameter of the inflow pipe 16 can be made small.
The distance between the partition plate 12 and the perforated plate 14 can be narrowed. Therefore, the volume of the fluid mixing and cooling device 10 can be reduced, and the fluid mixing and cooling device 10 can be downsized.

【0026】一方、仕切板12と多孔板14と多段反応
器11の内壁とで冷却気体を滞留させる冷却チャンバ2
3が構成され、多孔板14と多段反応器11の内壁と溢
流管15のパイプ本体20の外周壁とで反応流体を滞留
させる滞留槽24が構成されている。この滞留槽24
は、溢流管15の吸引口22を設けた側面開口位置によ
って高さが規定され、滞留槽24では、反応流体が冷却
されるとともに、多段反応器11の内径方向の混合に必
要な時間に滞留される。
On the other hand, the cooling chamber 2 in which the cooling gas is retained by the partition plate 12, the porous plate 14 and the inner wall of the multi-stage reactor 11.
3, the porous plate 14, the inner wall of the multi-stage reactor 11 and the outer peripheral wall of the pipe body 20 of the overflow pipe 15 constitute a retention tank 24 for retaining the reaction fluid. This retention tank 24
At the side opening position where the suction port 22 of the overflow pipe 15 is provided.
The height of the reaction fluid is regulated in the retention tank 24, and the reaction fluid is cooled and retained in the retention tank 24 for a time required for mixing in the inner diameter direction of the multi-stage reactor 11.

【0027】一方、多孔板14の噴出孔18の数、各噴
出孔18の断面積、流入管16に導入される冷却気体の
圧力等を考慮し、多孔板14に対する噴出孔18全体の
開口面積を以下のように調整するのが好ましい。多孔板
14を、冷却気体を噴出孔18から噴出させるときの圧
力損失が5mm水柱以上に設定される開口面積に形成す
る。多孔板14における冷却気体の圧力損失が5mm水
柱以下に設定されると、多孔板14を通過する冷却気体
の流量が時間的に変動し始め、冷却気体の均一分散に支
障する。冷却気体の分散という観点からは圧力損失の上
限は規定できないが、多孔板14における圧力損失が必
要以上に大きいときは、冷却気体の導入にともなう動力
が多大に消費される。このため、多孔板14における圧
力損失は40mm水柱以下に設定するのが好ましい。多
孔板14を、噴出孔18を噴出する冷却気体の線流速が
20m/秒以下に設定される開口面積に形成する。この
冷却気体の線流速を20m/秒以上に設定すると、フラ
ッディング現象などにより冷却気体を反応流体にきめ細
かく分散できず、反応流体と冷却気体との接触効率が低
下する。
On the other hand, in consideration of the number of ejection holes 18 of the perforated plate 14, the cross-sectional area of each ejection hole 18, the pressure of the cooling gas introduced into the inflow pipe 16, etc., the opening area of the ejection holes 18 with respect to the perforated plate 14 as a whole. Is preferably adjusted as follows. The porous plate 14 is formed in an opening area in which the pressure loss when the cooling gas is ejected from the ejection hole 18 is set to 5 mm or more of the water column. When the pressure loss of the cooling gas in the perforated plate 14 is set to 5 mm water column or less, the flow rate of the cooling gas passing through the perforated plate 14 starts to fluctuate with time, which hinders the uniform dispersion of the cooling gas. Although the upper limit of the pressure loss cannot be specified from the viewpoint of the dispersion of the cooling gas, when the pressure loss in the perforated plate 14 is larger than necessary, the power required for introducing the cooling gas is greatly consumed. Therefore, it is preferable to set the pressure loss in the perforated plate 14 to 40 mm or less of water column. The perforated plate 14 is formed in an opening area in which the linear velocity of the cooling gas ejected from the ejection holes 18 is set to 20 m / sec or less. If the linear velocity of the cooling gas is set to 20 m / sec or more, the cooling gas cannot be finely dispersed in the reaction fluid due to a flooding phenomenon or the like, and the contact efficiency between the reaction fluid and the cooling gas decreases.

【0028】このような流体混合冷却装置10では、
体である反応流体が該流体混合冷却装置10の上部から
多孔板14上の滞留槽24に流れ込む。ここで、反応流
体中の気体が分離され、この気体が多孔板14上の反応
流体と該多孔板14に噴出された冷却気体と合一して溢
流管15の吸引口22から下部に流下する。一方、滞留
槽24では、空気等からなる冷却気体が冷却チャンバ2
3から多孔板14の噴出孔18を通って反応流体中に噴
出される。このとき、反応流体と冷却気体の気泡とが接
触され、反応流体の熱が冷却気体に伝達され、反応流体
が冷却される。この反応流体中に多孔板14で冷却気体
が分散されるから、反応流体と冷却気体との接触面積が
増大され、反応流体が冷却気体で冷却される。
In such a fluid mixing and cooling device 10, the liquid
The reaction fluid as a body flows into the retention tank 24 on the perforated plate 14 from the upper part of the fluid mixing and cooling device 10. Here, the gas in the reaction fluid is separated, and this gas is combined with the reaction fluid on the perforated plate 14 and the cooling gas ejected on the perforated plate 14 and flows down from the suction port 22 of the overflow pipe 15 to the lower part. To do. On the other hand, in the retention tank 24, the cooling gas such as air is supplied to the cooling chamber 2.
3 is ejected into the reaction fluid through the ejection holes 18 of the porous plate 14. At this time, the reaction fluid and the bubbles of the cooling gas are brought into contact with each other, the heat of the reaction fluid is transferred to the cooling gas, and the reaction fluid is cooled. Since the cooling gas is dispersed in the reaction fluid by the porous plate 14, the contact area between the reaction fluid and the cooling gas is increased, and the reaction fluid is cooled by the cooling gas.

【0029】また、冷却気体を多孔板14の下方から上
方に噴出させることにより、反応流体中に含まれる固体
状物質が多孔板14の噴出孔18に詰まるのを防止で
き、多孔板14の噴出孔18が閉塞されるのを回避でき
る。そして、反応流体は冷却気体の噴出エネルギーで攪
拌されるため、気体(冷却気体)ー液体(反応流体)の
接触効率を向上させることができ、反応流体の混合が促
進されることにより、滞留槽24内の反応流体の温度の
均一化を図ることができる。
By jetting the cooling gas upward from below the perforated plate 14, it is possible to prevent solid substances contained in the reaction fluid from clogging the ejection holes 18 of the perforated plate 14, and to eject the perforated plate 14. The hole 18 can be prevented from being blocked. Since the reaction fluid is agitated by the jet energy of the cooling gas, the contact efficiency of the gas (cooling gas) -liquid (reaction fluid) can be improved, and the mixing of the reaction fluid is promoted, so that the retention tank The temperature of the reaction fluid in 24 can be made uniform.

【0030】さらに、溢流管15から反応流体が流下す
るときに、溢流管15のパイプ本体20の周囲の反応流
体に旋回流が生じる。このため、反応流体を略水平方向
に混合することができ、反応流体の混合における温度の
均一化を促進することができる。このうえ、溢流管15
を多孔板14の中央部に配したことにより、滞留槽24
の中央部に旋回流を生じさせることができ、滞留槽24
内の反応流体の混合をさらに促進することができる。
Furthermore, when the reaction fluid flows down from the overflow pipe 15, a swirl flow is generated in the reaction fluid around the pipe body 20 of the overflow pipe 15. Therefore, the reaction fluids can be mixed in a substantially horizontal direction, and the temperature uniformity in the mixing of the reaction fluids can be promoted. In addition, the overflow pipe 15
Since the perforated plate 14 is arranged at the center of the perforated plate 14, the retention tank 24
A swirling flow can be generated in the central part of the
Mixing of the reaction fluids within can be further facilitated.

【0031】(実験例1)直径1000mmの円筒状の
多段反応器に流体混合冷却装置を設置した。この流体混
合冷却装置の多孔板の内径方向の混合状態を調べた。こ
こで、多孔板に、孔径が6mmΦ、孔数が156個の噴
出孔を形成させた。また、溢流管は、多孔板に対する突
出高さを60mmに設定し、この多孔板の中央部に一本
配置した。
Experimental Example 1 A fluid mixing and cooling device was installed in a cylindrical multi-stage reactor having a diameter of 1000 mm. The mixed state in the inner diameter direction of the perforated plate of this fluid mixing and cooling device was examined. Here, ejection holes having a hole diameter of 6 mmΦ and a number of holes of 156 were formed on the perforated plate. Further, the overflow pipe was set to have a protruding height of 60 mm with respect to the perforated plate, and one overflow pipe was arranged at the center of the perforated plate.

【0032】そして、多孔板の下方から空気(冷却気
体)を送り出しつつ、滞留槽内に水(反応流体)を溢流
管の吸引口から流出するまで張り込み、滞留槽内に水を
約45l充填した。このように空気を流通させた状態
で、トレーサ注入管より食塩水を矩形波的に注入し、多
孔板上の各測定部で食塩水の導電率の変化を測定した。
ここで、図4に示す多孔板は、〜は多孔板上の三つ
の測定部を示し、Xはトレーサ注入位置を示す。これら
の測定結果を図5に示した。
Then, while feeding air (cooling gas) from below the perforated plate, water (reaction fluid) is poured into the retention tank until it flows out from the suction port of the overflow pipe, and about 45 liters of water is filled in the retention tank. did. With the air thus circulated, saline was injected in a rectangular wave form from the tracer injecting tube, and the change in conductivity of the saline was measured at each measuring portion on the perforated plate.
Here, the perforated plate shown in FIG. 4 indicates three measurement parts on the perforated plate, and X indicates the tracer injection position. The results of these measurements are shown in FIG.

【0033】図5は、導電率と経過時間との関係を表
し、の測定結果を△でプロットし、の測定結果を○
でプロットし、の測定結果を◇でプロットした。図5
の測定結果から明らかなように、食塩水を注入後、約3
0秒で滞留槽内の食塩水の濃度が一定になることが判明
した。
FIG. 5 shows the relationship between the conductivity and the elapsed time. The measurement result of is plotted by Δ and the measurement result of is indicated by ○.
Is plotted, and the measurement result of is plotted with ◇. Figure 5
As is clear from the measurement results of about 3,
It was found that the concentration of saline solution in the retention tank became constant at 0 seconds.

【0034】(実験例2)実験例2では、実験例1に対
して多孔板から突出する溢流管の高さが異なり、他の装
置および方法は同一である。ここで、溢流管の突出高さ
を30mmから300mmまで変え、各溢流管の突出高
さにおいて、食塩水の濃度が一定になる時間(液混合時
間)を測定した。これらの測定結果を図6に示した。
(Experimental Example 2) In Experimental Example 2, the height of the overflow pipe protruding from the perforated plate is different from that of Experimental Example 1, and the other devices and methods are the same. Here, the protrusion height of the overflow pipe was changed from 30 mm to 300 mm, and the time (concentration of liquid mixing) during which the concentration of the saline solution became constant at the protrusion height of each overflow pipe was measured. The results of these measurements are shown in FIG.

【0035】図6は、液混合時間と溢流管の高さとの関
係を表している。図6から明らかなように、溢流管の高
さが高くなるのにともなって、液混合時間が短くなるこ
とが判明した。この測定結果により、滞留槽内の滞留液
量と均一混合に必要な滞留時間から処理能力が算出さ
れ、溢流管の高さが30mmの場合、2.7kl/時
間、溢流管の高さが300mmの場合、75kl/時間
となり、通常の反応器で要求される処理能力を満たすも
のである。
FIG. 6 shows the relationship between the liquid mixing time and the height of the overflow pipe. As is clear from FIG. 6, it was found that the liquid mixing time became shorter as the height of the overflow pipe became higher. From this measurement result, the processing capacity was calculated from the amount of staying liquid in the staying tank and the residence time required for uniform mixing. When the height of the overflow pipe was 30 mm, 2.7 kl / hour, the height of the overflow pipe was calculated. Of 300 mm is 75 kl / hour, which satisfies the processing capacity required in a normal reactor.

【0036】しかし、溢流管の高さが低くなると、液混
合時間が急激に長くなる傾向にあるため、溢流管の高さ
が20mm以上であることが好ましい。また、溢流管の
高さが高くなると、液混合時間が短くなるが、溢流管の
高さが400mmを越えると、滞留層の容積が大きくな
り、空気(冷却気体)を挿入するときの圧力の損失が増
大するので好ましくない。
However, when the height of the overflow pipe is lowered, the liquid mixing time tends to be drastically lengthened, so that the height of the overflow pipe is preferably 20 mm or more. Further, when the height of the overflow pipe becomes high, the liquid mixing time becomes short, but when the height of the overflow pipe exceeds 400 mm, the volume of the retention layer becomes large, and when the air (cooling gas) is inserted. This is not preferable because pressure loss increases.

【0037】(実験例3)実験例1の装置を使用し、多
孔板の上方から50℃の温水を90l/分で連続的に流
下するとともに、多孔板を通して常温の空気を14m3
/分、または57m3/分で導入した。このときに、溢
流管の下方に設けた液受け容器中の水温と、気相空気と
の温度差を測定した。この測定結果は、何れの場合も水
温と空気の温度は誤差範囲で一致しており、温水と空気
との熱交換が十分達成されていることを示した。
(Experimental Example 3) Using the apparatus of Experimental Example 1, hot water at 50 ° C. was continuously flowed down from above the perforated plate at 90 l / min, and 14 m 3 of room temperature air was passed through the perforated plate.
/ Min, or 57 m 3 / min. At this time, the temperature difference between the water temperature in the liquid receiving container provided below the overflow pipe and the vapor phase air was measured. This measurement result showed that the water temperature and the air temperature were in the same error range in all cases, and that heat exchange between the hot water and the air was sufficiently achieved.

【0038】〈他の実施例〉本発明の流体混合冷却装置
の他の実施例について、図7を参照しながら説明する。
図7に示す他の実施例は、前記実施例と溢流管が異な
り、他の構成は前記実施例と同一である。図5に示すよ
うに、溢流管は、多孔板14の中央部に配設された第一
溢流管31と、該第一溢流管31から均等間隔をあけて
配設され、互いに均等間隔をあけて配設された第二溢流
管32とから構成されている。これら第一溢流管31と
第二溢流管32とはそれぞれ同一形状に形成されてい
る。
<Other Embodiments> Another embodiment of the fluid mixing and cooling device of the present invention will be described with reference to FIG.
The other embodiment shown in FIG. 7 is different from the above embodiment in the overflow pipe, and the other structure is the same as the above embodiment. As shown in FIG. 5, the overflow pipes are arranged at equal intervals from the first overflow pipe 31 arranged in the central portion of the perforated plate 14, and are evenly spaced from each other. The second overflow pipe 32 is arranged at a distance. The first overflow pipe 31 and the second overflow pipe 32 are formed in the same shape.

【0039】このように複数の溢流管31、32を設け
ることにより、溢流管の開口面積を増大させることがで
きるとともに、溢流管内を反応流体が流下するときに溢
流管の周囲の反応流体に生じる旋回流の数を増加させる
ことができ、滞留槽内の反応流体の混合を著しく促進さ
せることができる。
By providing a plurality of overflow pipes 31 and 32 in this way, the opening area of the overflow pipes can be increased and the surrounding area of the overflow pipes when the reaction fluid flows down in the overflow pipes. The number of swirling flows generated in the reaction fluid can be increased, and the mixing of the reaction fluid in the retention tank can be significantly promoted.

【0040】[0040]

【発明の効果】以上説明したように、本発明の流体混合
冷却装置によれば、以下の効果を奏することができる。
請求項1記載の流体混合冷却装置によれば、多段反応器
の各反応段の間に配設された流体混合冷却装置を上部と
下部とに区画する仕切板と、該仕切板の上方に並設さ
れ、液体の反応流体を保持する多孔板と、これら仕切板
と多孔板との間に配設され、冷却気体を流入させる流入
管とを有する構成にしたから、仕切板と多孔板との間に
冷却気体が流入され、この冷却気体の上の多孔板に反応
流体が保持される。そして、多孔板には、冷却気体を噴
出させる噴出孔が複数形成された構成にしたから、これ
ら噴出孔を冷却気体が通過し、この冷却気体が反応流体
内に噴出されることにより、この反応流体に冷却気体が
接触し、この冷却気体が、反応流体を冷却するととも
に、反応流体を混合する。このように多孔板に噴出孔を
複数形成したから、冷却気体が多孔板を通過するときの
冷却気体の圧力損失を低減させることができるととも
に、反応流体と冷却気体との接触効率を向上させること
ができ、反応流体と冷却気体との熱交換率を向上させる
ことができる。さらに、仕切板には多孔板から漏洩する
液体を流出させるドレイン孔が形成されている構成にし
たから、多孔板から仕切板上に漏洩した液体の反応流体
をドレイン孔から流出させることができる。このため、
多孔板と仕切板との間に液体が充満されるのを防止で
き、多孔板と仕切板との間に冷却気体を確実に流入で
き、冷却気体の流通性を維持できる。
As described above, according to the fluid mixing and cooling device of the present invention, the following effects can be obtained.
According to the fluid mixing and cooling device of claim 1, a partition plate that divides the fluid mixing and cooling device between the reaction stages of the multi-stage reactor into an upper part and a lower part, and a partition plate arranged above the partition plate. Since it is provided with a perforated plate which holds a liquid reaction fluid, and an inflow pipe which is arranged between these partition plate and the perforated plate and into which a cooling gas flows, a partition plate and a perforated plate are provided. A cooling gas is flown in between, and the reaction fluid is retained in the perforated plate above the cooling gas. Since the porous plate has a plurality of ejection holes for ejecting the cooling gas, the cooling gas passes through these ejection holes, and the cooling gas is ejected into the reaction fluid. A cooling gas contacts the fluid, which cools the reaction fluid and mixes the reaction fluid. Since a plurality of ejection holes are formed in the perforated plate in this way, it is possible to reduce the pressure loss of the cooling gas when the cooling gas passes through the perforated plate and to improve the contact efficiency between the reaction fluid and the cooling gas. Therefore, the heat exchange rate between the reaction fluid and the cooling gas can be improved. Furthermore, the partition plate leaks from the perforated plate.
Use a structure with a drain hole that allows the liquid to flow out.
Therefore, the reaction fluid of the liquid that leaked from the porous plate to the partition plate
Can flow out through the drain hole. For this reason,
Prevents liquid from filling between the perforated plate and the partition plate.
The cooling gas between the perforated plate and the partition plate.
Therefore, the flowability of the cooling gas can be maintained.

【0041】さらに、仕切板および多孔板を貫通して該
多孔板の上方に突出配設され、該多孔板の上方に位置す
る反応流体を上端部付近の側面開口から導入して下部に
流出させる一本または複数本の溢流管を有し、側面開口
位置が反応流体の冷却及び混合を行う滞留槽の高さを規
定する構成にしたから、反応流体は、側面開口位置の設
定により反応流体の冷却時間及び冷却気体の噴出圧力を
最適化した滞留槽を通過し、効率のよい冷却及び混合が
なされる。この後、反応流体は溢流管に流下するので、
この反応流体が多孔板と仕切板とを通過する。ここで、
溢流管の周囲の反応流体に旋回流を生じさせることがで
きるため、反応流体をさらに混合でき、反応流体の温度
の均一化を促進することができる。一方、流体混合冷却
装置を、仕切板、多孔板、溢流管、流入管及びドレイン
で構成したから、流体混合冷却装置の構造を簡単にで
きる。
Further, the reaction fluid located above the perforated plate and penetrating through the partition plate and the perforated plate is located above the perforated plate, and the reaction fluid is introduced from the side opening near the upper end and discharged to the lower part. One or more overflow tubes with side openings
The position controls the height of the holding tank that cools and mixes the reaction fluid.
The reaction fluid is placed at the side opening position.
The cooling time of the reaction fluid and the jet pressure of the cooling gas
Efficient cooling and mixing through the optimized retention tank
Done. After this, the reaction fluid flows down into the overflow pipe,
This reaction fluid passes through the perforated plate and the partition plate. here,
Since the swirl flow can be generated in the reaction fluid around the overflow pipe, the reaction fluid can be further mixed and the temperature of the reaction fluid can be made uniform. On the other hand, the fluid mixing and cooling device is equipped with a partition plate, a perforated plate, an overflow pipe, an inflow pipe and a drain.
Since the holes are formed, the structure of the fluid mixing and cooling device can be simplified.

【0042】請求項2記載の流体混合冷却装置によれ
ば、請求項1記載の効果を奏することができるととも
に、噴出孔は、多孔板に直交する軸に対して斜めに形成
された構成にしたから、冷却気体が反応流体に対して斜
めに噴出される。このため、反応流体をさらに混合で
き、反応流体中の冷却気体の流路を長くすることができ
るから、反応流体と冷却気体との接触効率を向上させる
ことができ、反応流体の温度の均一化を促進することが
できる。
According to the fluid mixing and cooling device of the second aspect, the effect of the first aspect can be achieved, and the ejection holes are formed obliquely with respect to the axis orthogonal to the perforated plate. From, the cooling gas is jetted obliquely to the reaction fluid. Therefore, the reaction fluid can be further mixed and the flow path of the cooling gas in the reaction fluid can be lengthened, so that the contact efficiency between the reaction fluid and the cooling gas can be improved, and the temperature of the reaction fluid can be made uniform. Can be promoted.

【0043】請求項3記載の流体混合冷却装置によれ
ば、請求項1記載の効果を奏することができるととも
に、多孔板は、冷却気体を噴出孔から噴出させるときの
圧力損失が5mm水柱以上に設定される開口面積に形成
されている構成にしたから、反応流体内に流出させる冷
却気体の圧力が高められる。このため、多孔板を通過す
る冷却気体の流量が時間的に変動するのを防止でき、冷
却気体を反応流体に均一に分散できる。したがって、冷
却気体を反応流体に確実に流出させることができ、反応
流体を確実に混合でき、反応流体と冷却気体とを確実に
接触できるから、反応流体を確実に冷却できる。
According to the fluid mixing and cooling device of the third aspect, the effect of the first aspect can be obtained, and the porous plate has a pressure loss of 5 mm or more when ejecting the cooling gas from the ejection holes. Since the configuration is such that the opening area is set, the pressure of the cooling gas flowing into the reaction fluid is increased. Therefore, the flow rate of the cooling gas passing through the perforated plate can be prevented from changing with time, and the cooling gas can be uniformly dispersed in the reaction fluid. Therefore, the cooling gas can be surely caused to flow into the reaction fluid, the reaction fluid can be surely mixed, and the reaction fluid and the cooling gas can be surely brought into contact with each other, so that the reaction fluid can be surely cooled.

【0044】請求項4記載の流体混合冷却装置によれ
ば、請求項1記載の効果を奏することができるととも
に、多孔板は、噴出孔を噴出する冷却気体の線流速が2
0m/秒以下に設定される開口面積に形成されている構
成にしたから、冷却気体を反応流体にきめ細かく分散さ
せることができ、これら冷却気体と反応流体との接触効
率を向上させることができる。このため、冷却気体と反
応流体との熱変換効率を向上させることができ、反応流
体を確実に分散することができる。
According to the fluid mixing and cooling device of the fourth aspect, the effect of the first aspect can be obtained, and the perforated plate has a linear flow velocity of the cooling gas ejected from the ejection holes of 2
Since the opening area is set to 0 m / sec or less, the cooling gas can be finely dispersed in the reaction fluid, and the contact efficiency between the cooling gas and the reaction fluid can be improved. Therefore, the heat conversion efficiency between the cooling gas and the reaction fluid can be improved, and the reaction fluid can be reliably dispersed.

【0045】[0045]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流体混合冷却装置を示す側断面図であ
る。
FIG. 1 is a side sectional view showing a fluid mixing and cooling device of the present invention.

【図2】図1の多孔板を示す平面図である。FIG. 2 is a plan view showing the perforated plate of FIG.

【図3】図2の多孔板を示す側断面図である。FIG. 3 is a side sectional view showing the perforated plate of FIG.

【図4】実験例1における多孔板の測定部を示す平面図
である。
FIG. 4 is a plan view showing a measurement part of a perforated plate in Experimental Example 1.

【図5】実験例1における導電率と経過時間との関係を
表したブロック図である。
FIG. 5 is a block diagram showing a relationship between conductivity and elapsed time in Experimental Example 1.

【図6】実験例2における液混合時間と溢流管の高さと
の関係を表したブロック図である。
FIG. 6 is a block diagram showing the relationship between the liquid mixing time and the height of the overflow pipe in Experimental Example 2.

【図7】図1の他の実施例を示す多孔板の平面図であ
る。
FIG. 7 is a plan view of a perforated plate showing another embodiment of FIG.

【符号の説明】[Explanation of symbols]

10 流体混合冷却装置 11 多段反応器 12 仕切板 14 多孔板 15 溢流管 16 流入管 17 ドレイン孔 18 噴出孔 10 Fluid mixing and cooling device 11 multi-stage reactor 12 partition boards 14 Perforated plate 15 Overflow pipe 16 Inflow pipe 17 drain hole 18 ejection holes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 哲哉 神奈川県横浜市南区別所一丁目14番1号 日揮株式会社 横浜事業所内 (56)参考文献 特開 昭55−75901(JP,A) 特公 昭48−20991(JP,B1) 独国特許出願公開1808911(DE,A 1) (58)調査した分野(Int.Cl.7,DB名) B01J 8/00 B01J 10/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Watanabe 1-14-1 Minamikagesho, Yokohama-shi, Kanagawa JGC Corporation Yokohama Works (56) Reference JP-A-55-75901 (JP, A) Publication 48-20991 (JP, B1) German patent application publication 1808911 (DE, A1) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 8/00 B01J 10/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多段反応器の各反応段の間に配設され、
液体の反応流体と該反応流体を冷却する冷却気体とを混
合冷却する流体混合冷却装置において、該流体混合冷却
装置を上部と下部とに区画する仕切板と、該仕切板の上
方に並設され、反応流体を保持する多孔板と、これら仕
切板および多孔板を貫通して該多孔板の上方に突出配設
され、該多孔板の上方に位置する反応流体を上端部付近
の側面開口から導入して下部に流出させる一本または複
数本の溢流管と、前記仕切板と多孔板との間に配設さ
れ、冷却気体が流入される流入管と、前記仕切板に形成
され前記多孔板から漏洩する液体を流出させるドレイン
孔とを有し、前記溢流管の側面開口位置が前記反応流体
の冷却及び混合を行う滞留槽の高さを規定し、前記多孔
板には、冷却気体を噴出させる噴出孔が複数形成されて
いることを特徴とする流体混合冷却装置。
1. Arranged between each reaction stage of a multi-stage reactor,
In a fluid mixing and cooling device that mixes and cools a liquid reaction fluid and a cooling gas that cools the reaction fluid, a partition plate that divides the fluid mixing and cooling device into an upper portion and a lower portion, and a partition plate that is arranged in parallel above the partition plate. , A perforated plate for holding a reaction fluid, and a partition plate and a perforated plate penetrating the perforated plate so as to project above the perforated plate, and the reaction fluid positioned above the perforated plate near the upper end portion.
One or a plurality of overflow pipes which are introduced from the side opening and flow out to the lower part, an inflow pipe which is arranged between the partition plate and the perforated plate and into which a cooling gas flows, and the partition plate. Formation
A drain that drains the liquid leaked from the perforated plate
A hole, and the side opening position of the overflow pipe is the reaction fluid.
The height of a retention tank for cooling and mixing is defined, and a plurality of ejection holes for ejecting a cooling gas are formed in the perforated plate.
【請求項2】 前記噴出孔は、多孔板に直交する軸に対
して斜めに形成されていることを特徴とする請求項1記
載の流体混合冷却装置。
2. The fluid mixing and cooling device according to claim 1, wherein the ejection holes are formed obliquely with respect to an axis orthogonal to the perforated plate.
【請求項3】 前記多孔板は、冷却気体を噴出孔から噴
出させるときの圧力損失が5mm水柱以上に設定される
開口面積に形成されていることを特徴とする請求項1記
載の流体混合冷却装置。
3. The fluid mixture cooling according to claim 1, wherein the perforated plate is formed in an opening area in which a pressure loss when the cooling gas is ejected from the ejection hole is set to 5 mm or more of a water column. apparatus.
【請求項4】 前記多孔板は、噴出孔を噴出する冷却気
体の線流速が20m/秒以下に設定される開口面積に形
成されていることを特徴とする請求項1記載の流体混合
冷却装置。
4. The fluid mixing and cooling device according to claim 1, wherein the perforated plate is formed in an opening area in which the linear velocity of the cooling gas ejected from the ejection holes is set to 20 m / sec or less. .
JP06888193A 1993-03-26 1993-03-26 Fluid mixing cooling device Expired - Fee Related JP3471386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06888193A JP3471386B2 (en) 1993-03-26 1993-03-26 Fluid mixing cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06888193A JP3471386B2 (en) 1993-03-26 1993-03-26 Fluid mixing cooling device

Publications (2)

Publication Number Publication Date
JPH06277496A JPH06277496A (en) 1994-10-04
JP3471386B2 true JP3471386B2 (en) 2003-12-02

Family

ID=13386447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06888193A Expired - Fee Related JP3471386B2 (en) 1993-03-26 1993-03-26 Fluid mixing cooling device

Country Status (1)

Country Link
JP (1) JP3471386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600771B (en) * 2011-01-21 2014-12-24 中国科学院过程工程研究所 Fluidized bed reactor and method for methanation of gas mixture containing H2 and CO
CN114100355A (en) * 2021-11-30 2022-03-01 安徽华塑股份有限公司 Separation and trapping technology for carbon dioxide in lime kiln waste gas

Also Published As

Publication number Publication date
JPH06277496A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US4233269A (en) Gas liquid distributor
KR100770616B1 (en) Device for distributing a poly-phase mixture over a bed of a granular solid, comprising a porous jet disturber element
RU2345830C2 (en) Multiphase liquid distributor for reactor with tubes
JP3493030B2 (en) Apparatus for processing substrates in a fluid container
KR100810976B1 (en) Polyfunctional sub-assembly for contact, material distribution and heat and/or material exchange of at least one gas phase and at least one liquid phase
JP2002532246A (en) Distributor assembly
KR100244169B1 (en) Apparatus and method for improving gas backwash in lateral underdrains
US5403560A (en) Fluids mixing and distributing apparatus
EP0592802A1 (en) Apparatus for mixing concurrently, downwardly flowing fluids
US8017095B2 (en) Mixing device for a down-flow reactor
KR101732409B1 (en) Flow distribution device for downflow catalytic reactors
US7261284B2 (en) Process for effecting mass transfer between a liquid phase and a gaseous phase
KR100315956B1 (en) Liquid Dispenser for Filling Column
US3929421A (en) Tubular catalytic reactor with premixing means for multiple reactants of different densities
JP2004524138A (en) Multiple bed downflow reactor
US5110325A (en) Recycle spray gas-liquid contactor
US5799877A (en) Fluid distribution across a particulate bed
US7074371B2 (en) Multiphase mixing device with improved quench injection
KR20100008339A (en) Treatment or hydrotreatment reactor with a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the bed
RU2466782C2 (en) Tank with granule layer and system of distribution of gas and liquid phases circulating in this tank in upstream
JP3471386B2 (en) Fluid mixing cooling device
EP0472335B1 (en) Compact radial flow distributor
CN205435685U (en) Hybrid system
CN206901767U (en) A kind of production system of hydrogen peroxide
CN219735744U (en) Continuous cooling and purifying device for special isocyanate carbonylation intermediate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees