JP3471285B2 - Thermally assisted magnetic recording head and thermally assisted magnetic recording device - Google Patents

Thermally assisted magnetic recording head and thermally assisted magnetic recording device

Info

Publication number
JP3471285B2
JP3471285B2 JP2000095530A JP2000095530A JP3471285B2 JP 3471285 B2 JP3471285 B2 JP 3471285B2 JP 2000095530 A JP2000095530 A JP 2000095530A JP 2000095530 A JP2000095530 A JP 2000095530A JP 3471285 B2 JP3471285 B2 JP 3471285B2
Authority
JP
Japan
Prior art keywords
recording
slider
heat source
heat
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000095530A
Other languages
Japanese (ja)
Other versions
JP2001283403A (en
Inventor
勝太郎 市原
一石 谷本
田中  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000095530A priority Critical patent/JP3471285B2/en
Publication of JP2001283403A publication Critical patent/JP2001283403A/en
Application granted granted Critical
Publication of JP3471285B2 publication Critical patent/JP3471285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気的に情報の記
録再生を行う磁気記録装置に搭載される熱アシスト磁気
記録ヘッドと、それを用いた熱アシスト磁気記録装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-assisted magnetic recording head mounted on a magnetic recording device for magnetically recording and reproducing information, and a heat-assisted magnetic recording device using the same.

【0002】[0002]

【従来の技術】磁気的に情報の記録再生を行う磁気記録
装置は、大容量、高速、安価な情報記憶手段として発展
を続けている。特に近年のハードディスクドライブ(H
DD)の進展は著しく、製品レベルで記録密度は10G
b/inを、内部データ転送速度は100Mbpsを
超え、メガバイト単価は数円/MBに低価格化してい
る。HDDの高密度化は、信号処理、メカサーボ、ヘッ
ド、媒体、HDIなど複数の要素技術の集大成として進
展してきているが、近年、媒体の熱擾乱問題がHDDの
高密度化の阻害要因として顕在化しつつある。
2. Description of the Related Art A magnetic recording device for magnetically recording and reproducing information continues to develop as a large-capacity, high-speed, inexpensive information storage means. Especially in recent years hard disk drive (H
The progress of DD) is remarkable, and the recording density is 10G at the product level.
The internal data transfer rate of b / in 2 exceeds 100 Mbps, and the cost per megabyte is reduced to several yen / MB. The densification of HDD is progressing as a culmination of several elemental technologies such as signal processing, mechanical servo, head, medium, HDI, etc., but in recent years, the thermal agitation problem of the medium has been revealed as an obstacle to densification of HDD. It's starting.

【0003】磁気記録の高密度化は、記録セルの微細化
により実現するが、記録セルの微細化により媒体からの
信号磁界が減少する為、所定の信号対雑音比(S/N)
を確保する上では、媒体ノイズの低減化が必須となる。
媒体ノイズの主因は、磁化転移部の乱れであり、乱れの
大きさは媒体の磁化反転単位に比例する。磁気媒体には
多結晶磁性粒子からなる薄膜(多粒子系薄膜)が用いら
れているが、多粒子系薄膜の磁化反転単位は、粒子間に
磁気的な交換相互作用が作用する場合は、交換結合され
た複数の磁性粒子から構成される。従来、例えば数10
0Mb/in から数Gb/inの記録密度において
は、媒体の低ノイズ化は主に、磁性粒子間の交換相互作
用を低減し磁化反転単位を小さくする事で実現してき
た。最新の10Gb/in級の磁気媒体では、磁化反
転単位は磁性粒子2−3個分にまで縮小されており、近
い将来、磁化反転単位は磁性粒子一つに相当するまで縮
小するものと予測される。
Higher magnetic recording density means finer recording cells
However, due to the miniaturization of recording cells,
Since the signal magnetic field is reduced, the specified signal-to-noise ratio (S / N)
In order to secure the above, it is essential to reduce the medium noise.
The main cause of medium noise is the disorder of the magnetic transition,
The size is proportional to the magnetization reversal unit of the medium. For magnetic media
If a thin film composed of polycrystalline magnetic particles (multi-particle thin film) is used
However, the magnetization reversal unit of the multi-particle thin film is
When the magnetic exchange interaction works, it is exchange-coupled.
It is composed of a plurality of magnetic particles. Conventionally, for example,
0 Mb / in TwoTo several Gb / inTwoAt the recording density of
The main reason for the low noise in the medium is the exchange interaction between magnetic particles.
This is achieved by reducing
It was Latest 10Gb / inTwoIn magnetic media of the class,
The conversion unit has been reduced to 2-3 magnetic particles.
In the future, the magnetization reversal unit will shrink until it corresponds to one magnetic particle.
It is expected to be smaller.

【0004】従って今後さらに磁化反転単位を縮小して
所定のS/Nを確保する為には、磁性粒子の大きさ自身
を小さくする必要がある。磁性粒子の体積をVとおくと
粒子の持つ磁気的エネルギーはKuVで表わされる。こ
こでKuは粒子の磁気異方性エネルギー密度である。低
ノイズ化の為にVを小さくするとKuVが小さくなり室
温付近の熱エネルギーによって記録情報が乱れる、とい
う熱擾乱問題が顕在化する。Shallok等の解析に
よれば、粒子の磁気的エネルギーと熱エネルギー(k
T;k:ボルツマン定数、T:絶対温度)の比、KuV
/kTは100程度の値でないと記録寿命の信頼性を損
ねる。従来から媒体磁性膜に用いられてきたCoCr基
合金のKu(2−3×10erg/cc)では、低ノ
イズ化の為に粒径微細化を進めると熱擾乱耐性の確保が
困難な状況に至りつつある。
Therefore, in order to further reduce the magnetization reversal unit and secure a predetermined S / N in the future, it is necessary to reduce the size of the magnetic particles. If the volume of the magnetic particles is V, the magnetic energy of the particles is represented by KuV. Here, Ku is the magnetic anisotropy energy density of the particles. When V is decreased to reduce noise, KuV decreases, and thermal energy near the room temperature disturbs recorded information, which causes a thermal disturbance problem. According to the analysis of Shallok et al., The magnetic energy and thermal energy (k
T; k: Boltzmann constant, T: absolute temperature ratio, KuV
If / kT is not a value of about 100, the reliability of the recording life will be impaired. With the CoCr-based alloy Ku (2-3 × 10 6 erg / cc) that has been conventionally used for the medium magnetic film, it is difficult to secure thermal agitation resistance if the grain size is reduced for noise reduction. Is approaching.

【0005】そこで近年、CoPt,FePdなど10
erg/cc以上のKuを示す磁性膜材料が注目を浴
びてきているが、粒径微細化と熱擾乱耐性を両立する為
に、単純にKuを上げると別の問題が顕在化する。それ
は記録感度の問題である。媒体磁性膜のKuを上げると
媒体の記録保磁力(Hc0=Ku/Isb;Isb:媒
体磁性膜の正味の磁化)が上昇し、Hc0に比例して飽
和記録に必要な磁界が増加する。記録ヘッドから発生し
媒体に印加されるの記録磁界は記録コイルへの通電電流
の他に、記録磁極材料、磁極形状、スペーシング、媒体
の種類、膜厚などに依存するが、高密度化に伴い記録磁
極先端部のサイズが縮小する事を考慮すると、発生磁界
の大きさには限界がある。例えば最も発生磁界の大きな
単磁極ヘッドと軟磁性裏打ち垂直媒体の組合せでも、記
録磁界の大きさは高々10kOe程度が限界である。一
方で将来の高密度・低ノイズ媒体に必要な5nm程度の
粒径で、十分な熱擾乱耐性を得る上では、10erg
/cc以上のKuを示す磁性膜材料を採用する必要があ
るが、その場合、室温付近における媒体の記録に必要な
磁界は10kOeを軽く上回る為、記録が出来なくな
る。従って単純に媒体のKuを増加させてしまうと、記
録自体が出来ないという問題が顕在化するのである。
Therefore, in recent years, 10 such as CoPt and FePd
Magnetic film materials exhibiting a Ku of 7 erg / cc or more have been attracting attention, but another problem becomes apparent when Ku is simply increased in order to achieve both grain size reduction and thermal agitation resistance. It is a matter of recording sensitivity. When Ku of the medium magnetic film is increased, the recording coercive force (Hc0 = Ku / Isb; Isb: net magnetization of the medium magnetic film) of the medium increases, and the magnetic field required for saturation recording increases in proportion to Hc0. The recording magnetic field generated from the recording head and applied to the medium depends not only on the current supplied to the recording coil but also on the recording magnetic pole material, magnetic pole shape, spacing, type of medium, film thickness, etc. Considering that the size of the tip of the recording magnetic pole is reduced, the magnitude of the generated magnetic field is limited. For example, even with a combination of a single magnetic pole head having the largest generated magnetic field and a soft magnetic backing perpendicular medium, the magnitude of the recording magnetic field is limited to about 10 kOe at most. On the other hand, with a particle size of about 5 nm, which is required for future high-density, low-noise media, to obtain sufficient thermal disturbance resistance, 10 7 erg
It is necessary to employ a magnetic film material having a Ku of at least / cc, but in that case, the magnetic field required for recording on the medium at room temperature is slightly higher than 10 kOe, and recording cannot be performed. Therefore, if the Ku of the medium is simply increased, the problem that the recording itself cannot be performed becomes apparent.

【0006】上記した様に、従来の多粒子系媒体を用い
た磁気記録では、低ノイズ化、熱擾乱耐性の確保、記録
感度の確保がトレードオフの関係に有り、これが記録密
度の限界を与える。この問題を解決する提案として、熱
アシスト磁気記録方式がある。
As described above, in the magnetic recording using the conventional multi-particle type medium, there is a trade-off relationship between the reduction of noise, the assurance of thermal agitation resistance and the assurance of recording sensitivity, which gives a limit to the recording density. . As a proposal for solving this problem, there is a heat-assisted magnetic recording system.

【0007】多粒子系媒体を用いる熱アシスト磁気記録
方式では、十分にノイズが低くなる程度に微細な磁性粒
子を用い、熱擾乱耐性を確保する為に室温付近で高いK
uを示す記録層を用いる。この様な大きなKuを有する
媒体は、室温付近では記録に必要な磁界が記録ヘッドの
発生磁界を上回り記録不能である。記録磁極の近傍に光
ビーム、電子ビーム等の媒体加熱手段を配し、記録時に
局所的に媒体を加熱し加熱部のHc0をヘッド磁界以下
に低下させて記録する。この基本コンセプトを実現する
上での重要なポイントは、加熱中もしくは加熱直後の媒
体が冷却する前のタイミングで記録磁界を供給して記録
を完了する事、記録完了後、媒体が十分に冷却するまで
に熱擾乱の影響で記録磁化が再反転するのを防止する
事、隣接トラックを加熱して隣接磁化転移を熱擾乱で破
壊する事の無い様に、記録磁極の幅程度の微小領域のみ
を選択的に加熱する事である。
In the heat-assisted magnetic recording method using a multi-particle type medium, fine magnetic particles having a sufficiently low noise are used, and a high K value is obtained near room temperature in order to secure thermal agitation resistance.
A recording layer exhibiting u is used. In the medium having such a large Ku, the magnetic field required for recording exceeds the magnetic field generated by the recording head and recording is impossible near room temperature. A medium heating means such as a light beam or an electron beam is arranged in the vicinity of the recording magnetic pole, and the medium is locally heated at the time of recording so that Hc0 of the heating portion is lowered to a head magnetic field or less for recording. An important point in realizing this basic concept is to supply the recording magnetic field at the timing before the medium is cooled during or immediately after heating to complete the recording, and after the recording is completed, the medium is cooled sufficiently. In order to prevent re-inversion of the recording magnetization due to the influence of thermal agitation, and to prevent the adjacent magnetic transition from being destroyed by thermal agitation, only a small area of the width of the recording magnetic pole should be prevented so as to prevent the adjacent magnetic transition from being destroyed. It is to heat selectively.

【0008】[0008]

【発明が解決しようとする課題】熱アシスト磁気記録に
おいては、熱源は媒体を十分に加熱するに足る程度の熱
線を発生する必要が有るが、この程度の出力の熱線を放
出させた場合、熱源自体の発熱による熱源の出力低下、
劣化が解決すべき重要な課題となる。実用的な熱源とし
てはレーザビーム、電子ビームが挙げられるが、特に熱
源としてレーザを用いる場合は、発振閾値電流までの領
域は全て発熱に消費されるので、レーザ自身の発熱はか
なり大きい。この発熱は、発振出力の低下、レーザに近
接して配置される記録磁極の昇温による記録磁界の低下
などの問題を招く。
In heat-assisted magnetic recording, it is necessary for the heat source to generate sufficient heat rays to heat the medium sufficiently. Output reduction of heat source due to heat generation of itself,
Degradation becomes an important issue to be solved. Laser beams and electron beams are examples of practical heat sources. Particularly when a laser is used as a heat source, the region up to the oscillation threshold current is entirely consumed for heat generation, and the heat generation of the laser itself is considerably large. This heat generation causes problems such as a decrease in oscillation output and a decrease in the recording magnetic field due to a temperature rise of the recording magnetic pole arranged close to the laser.

【0009】レーザ光の利用効率、加熱位置と記録磁界
印加位置の近接配置などの為には、光ビームをファイバ
ー等で導いてくるよりも、光源をスライダーに薄膜プロ
セスで直接形成するか、もしくはスライダーに貼り付け
るかするのが良い。この場合、光源の発熱の一部はスラ
イダー側に逃げるが、スライダーの熱容量が小さく、熱
放散効率が低い事から、スライダーは効率の良いヒート
シンクとしては作用しない。
In order to use the laser beam efficiently and to arrange the heating position and the recording magnetic field applying position close to each other, the light source is formed directly on the slider by a thin film process rather than guiding the light beam by a fiber or the like, or It is better to stick it on the slider. In this case, a part of the heat generated by the light source escapes to the slider side, but the slider does not act as an efficient heat sink because the heat capacity of the slider is small and the heat dissipation efficiency is low.

【0010】本発明は、掲記した従来の熱アシスト磁気
記録の課題に鑑みて為されたものであり、熱アシスト磁
気記録ヘッド及び熱アシスト磁気記録装置において、熱
源自身の発熱による諸問題を解決する目的で提供される
ものである。
The present invention has been made in view of the above-mentioned problems of the conventional heat-assisted magnetic recording, and solves various problems in the heat-assisted magnetic recording head and the heat-assisted magnetic recording device due to heat generation of the heat source itself. It is provided for the purpose.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、記録磁極を有する記録素子部と、この
記録素子部に近接配置され、記録媒体の前記記録磁極の
幅程度の微小な領域を選択的に加熱する為の熱源と、再
生素子部と、これらの記録素子部、熱源、および再生素
子部を支持するスライダーと、このスライダーの前記記
録媒体に対向する下面を高熱伝導率の部材で被覆し、少
なくとも前記部材の一部が前記熱源に熱的に連結される
ヒートシンクとを具備し、前記下面に流入する空気流に
より前記熱源を冷却することを特徴とする熱アシスト磁
気記録ヘッドを提供するものである。
In order to solve the above problems, the present invention provides a recording element section having a recording magnetic pole, and
The recording magnetic pole of the recording medium is disposed close to the recording element section.
A heat source for selectively heating a small area of about
Raw element part, and these recording element part, heat source, and reproducing element
The slider that supports the child part and the above description of this slider.
The lower surface facing the recording medium is covered with a material with high thermal conductivity,
At least a portion of the member is thermally coupled to the heat source
A heat sink is provided to prevent the air flow entering the lower surface.
The heat-assisted magnet is characterized by further cooling the heat source.
An air recording head is provided.

【0012】また、本発明では、記録磁極を有する記録
素子部と、この記録素子部に近接配置され、記録媒体の
前記記録磁極の幅程度の微小な領域を選択的に加熱する
為の熱源と、再生素子部と、これらの記録素子部、熱
源、および再生素子部を支持するスライダーと、このス
ライダーの後端上部にマイクロファンを備えてチップマ
ウントされた圧電バイモルフ素子とを具備し、前記圧電
バイモルフ素子の作動により前記マイクロファンが、前
記スライダーの後端部に備える前記熱源へ空気流を送る
ことを特徴とする熱アシスト磁気記録ヘッドを提供す
る。
Further, according to the present invention, a recording having a recording magnetic pole is provided.
The element section and the recording element section are arranged close to each other, and
Selectively heating a minute region of the width of the recording magnetic pole
For heat source, reproducing element section, these recording element section, heat
This slider and the slider that supports the source and playback element
A chip fan is equipped with a micro fan on the upper rear end of the rider.
And a piezoelectric bimorph element,
Due to the operation of the bimorph element,
Sending an air flow to the heat source provided at the rear end of the slider
A thermally assisted magnetic recording head is provided.

【0013】また、本発明では、記録磁極を有する記録
素子部と、この記録素子部に近接配置され、記録媒体の
前記記録磁極の幅程度の微小な領域を選択的に加熱する
為の熱源と、再生素子部と、これらの記録素子部、熱
源、および再生素子部を支持するスライダーと、このス
ライダーの後端面に貼着された空気流の方向を変更する
空気流制御板とを具備し、前記空気流制御板が、前記ス
ライダーに流入する空気流を、前記スライダーの後端部
に備える前記熱源へ導くことを特徴とする熱アシスト磁
気記録ヘッドを提供する。
Further , according to the present invention, recording having a recording magnetic pole
The element section and the recording element section are arranged close to each other, and
Selectively heating a minute region of the width of the recording magnetic pole
For heat source, reproducing element section, these recording element section, heat
This slider and the slider that supports the source and playback element
Change the direction of the air flow attached to the rear end of the rider
An air flow control plate, wherein the air flow control plate is
The airflow flowing into the rider is controlled by the rear end of the slider.
Of heat-assisted magnetism, which is guided to the heat source provided in
Provide an air recording head.

【0014】また、本発明では、記録磁極を有する記録
素子部と、この記録素子部に近接配置され、記録媒体の
前記記録磁極の幅程度の微小な領域を選択的に加熱する
為の熱源と、再生素子部と、これらの記録素子部、熱
源、および再生素子部を支持するスライダーと、このス
ライダーの前記記録媒体に対向する下面から、前記熱源
とこのスライダーとの接合面部まで達し、さらに前記下
面の反対側の面へ貫通する少なくとも1つの孔穴とを具
備し、前記孔穴に流入した空気流により前記熱源を冷却
することを特徴とする熱アシスト磁気記録ヘッドを提供
する
Further , in the present invention, recording having a recording magnetic pole
The element section and the recording element section are arranged close to each other, and
Selectively heating a minute region of the width of the recording magnetic pole
For heat source, reproducing element section, these recording element section, heat
This slider and the slider that supports the source and playback element
From the lower surface of the rider facing the recording medium, the heat source
To the joint surface with this slider,
At least one hole penetrating to the surface opposite the surface.
The heat source is cooled by the airflow flowing into the hole.
Providing a heat-assisted magnetic recording head characterized by
To do .

【0015】また、本発明では、記録磁極を有する記録
素子部と、この記録素子部に近接配置され、記録媒体の
前記記録磁極の幅程度の微小な領域を選択的に加熱する
為の熱源と、再生素子部と、これらの記録素子部、熱源
および再生素子部を支持する負圧スライダーとを具備
し、前記負圧スライダーに備えられたパッド部の下面に
揃えて形成された前記熱源の下端部が、前記記録媒体の
潤滑層上を滑走し、前記熱源を冷却することを特徴とす
る熱アシスト磁気記録ヘッドを提供する。
Further , in the present invention, recording having a recording magnetic pole
The element section and the recording element section are arranged close to each other, and
Selectively heating a minute region of the width of the recording magnetic pole
Heat source for reproducing, reproducing element section, recording element section, heat source
And a negative pressure slider for supporting the reproducing element section
On the lower surface of the pad part provided on the negative pressure slider.
The lower ends of the heat sources formed in alignment are the same as those of the recording medium.
It is characterized by sliding on a lubricating layer to cool the heat source.
A thermally assisted magnetic recording head is provided.

【0016】また、本発明では、上記した熱アシスト磁
気記録ヘッドと、前記熱源により微小な領域が選択的に
加熱され、この加熱部の保磁力が前記記録素子部から発
生する記録磁界よりも低下する記録媒体とを具備するこ
とを特徴とする熱アシスト磁気記録装置を提供する。
Further, according to the present invention, the above-mentioned heat-assisted magnetic recording head and the heat source selectively allow a minute area to be formed.
A heat-assisted magnetic recording apparatus comprising: a recording medium which is heated and whose coercive force of the heating portion is lower than the recording magnetic field generated from the recording element portion.

【0017】[0017]

【0018】[0018]

【発明の実施の形態】本発明の実施形態について、図面
を参照しつつ詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to the drawings.

【0019】本発明は、基本的には熱源を具備する熱ア
シスト磁気記録ヘッドにおいて、熱源自身の昇温を防止
する手段を有していれば良く、又、その様な手段を有す
る熱アシスト磁気ヘッドを搭載する熱アシスト磁気記録
装置で有れば良い。
The present invention basically requires a heat-assisted magnetic recording head having a heat source as long as it has a means for preventing the temperature rise of the heat source itself, and the heat-assisted magnetic recording head having such means. It may be a heat-assisted magnetic recording device equipped with a head.

【0020】熱源自身の昇温を防止する具体的手段とし
ては、大きく四通りの手段を挙げる事が出来る。一つ目
は、熱源と熱的に接触するヒートシンク部材を具備する
事、二つ目は、熱源を圧電バイモルフファンなどによる
空冷により強制冷却する事、三つ目は、スライダー形状
に工夫してスライダーを通過する空気流の一部を熱源に
導き熱源を空冷する事、四つ目は巨大なヒートシンクと
しての媒体に熱源を熱的に接触させる事である。上記し
た四つの手段各々もしくはそれらを適当に組合せて本発
明は構成されるものである。
There are roughly four means for preventing the temperature rise of the heat source itself. The first is to have a heat sink member that is in thermal contact with the heat source, the second is to forcibly cool the heat source by air cooling with a piezoelectric bimorph fan, and the third is to devise a slider shape to make it a slider. Introduce a part of the air flow passing through to the heat source to cool the heat source by air, and the fourth is to bring the heat source into thermal contact with the medium as a huge heat sink. The present invention is constituted by each of the above-mentioned four means or by appropriately combining them.

【0021】一つ目のヒートシンク部材を具備する形態
においては、熱伝導率、熱放散効率の良い材料からなる
ヒートシンクを用い、ヒートシンクをスライダーのAB
S面に導いて空気流により空冷する態様、ヒートシンク
をスライダーの側壁に導いて空気流により空冷する態
様、ヒートシンクをスライダーのジンバル側の面に導い
てジンバルを介し比較的大きなヒートシンクであるサス
ペンションの放熱を利用する態様等が挙げられる。ま
た、二つ目との併用に近いが、ヒートシンクを圧電バイ
モルフファンなどで空冷する態様が挙げられる。三つ目
のスライダー形状に工夫して空気流の一部を熱源に導く
手段においては、スライダー側壁もしくは熱源の設けら
れるスライダー後端部付近のスライダー形状を工夫して
空気流を滑らかに熱源側に導く態様、スライダーに貫通
孔を配して、貫通孔のパスを熱源に近接させると共に、
貫通孔に空気流の一部を導き流す態様等が挙げられる。
スライダー形状に工夫する手段においては、スライダー
の浮上特性、薄膜素子部へのパーティクルの付着防止対
策なども考慮して形状が決められる。四つ目の媒体をヒ
ートシンクとする手段はコンタクト記録を意味し、例え
ば熱源部先端が媒体潤滑層上を滑走する態様を意味す
る。潤滑層自体の熱伝導率は低いが層厚はnmもしくは
サブnmなので大きな熱抵抗にはならない。潤滑層の下
部には高熱伝導率のDLC保護膜、さらにその下にはや
はり高熱伝導率の金属磁性層が配されているので、熱源
の昇温を効果的に防止する事が可能である。 (実施例)以下、上記した熱源の昇温を防止する主要手
段毎に、図面を参照しつつ、その実施例を説明する。本
発明に直接関係する実施例を説明する前に、先ず本発明
に関わる熱アシスト磁気記録装置の概要を説明してお
く。
In the embodiment including the first heat sink member, a heat sink made of a material having a high thermal conductivity and a high heat dissipation efficiency is used, and the heat sink is a slider AB.
A mode in which the heat sink is guided to the S surface and air-cooled, a heat sink is guided to the side wall of the slider and air-cooled by the air flow, and a heat sink is guided to the gimbal side surface of the slider and the heat radiation of the suspension, which is a relatively large heat sink, is performed through the gimbal. And the like. In addition, although it is similar to the combined use with the second, there is an aspect in which the heat sink is air-cooled by a piezoelectric bimorph fan or the like. In devising the third slider shape to guide part of the air flow to the heat source, devise the slider shape near the slider side wall or the slider rear end where the heat source is provided to smoothly move the air flow to the heat source side. A manner of guiding, arranging a through hole in the slider to bring the path of the through hole close to the heat source,
Examples include a mode in which a part of the air flow is introduced into the through hole.
In the means for devising the slider shape, the shape is determined in consideration of the flying characteristics of the slider, measures for preventing particles from adhering to the thin film element portion, and the like. The means for using the fourth medium as a heat sink means contact recording, for example, a mode in which the tip of the heat source portion slides on the medium lubricating layer. The thermal conductivity of the lubricating layer itself is low, but the layer thickness is nm or sub-nm, so that the thermal resistance does not become large. Since the DLC protective film having a high thermal conductivity is arranged below the lubricating layer and the metallic magnetic layer having a high thermal conductivity is further arranged below the lubricating layer, it is possible to effectively prevent the temperature rise of the heat source. (Embodiment) An embodiment will be described below with reference to the drawings for each of the main means for preventing the temperature rise of the heat source. Before describing the embodiments directly related to the present invention, an outline of the heat-assisted magnetic recording apparatus according to the present invention will be first described.

【0022】図1は磁気ディスク装置の主要構成図であ
り、1は磁気ヘッド、2は媒体、3はメカサーボ系と電
気系などが収納されたケーシング、4はシャーシーであ
る。実際の磁気ディスク装置においては、図1に示すよ
うに筐体で密閉した形態で用いられる。
FIG. 1 is a main configuration diagram of a magnetic disk device. Reference numeral 1 is a magnetic head, 2 is a medium, 3 is a casing accommodating a mechanical servo system and an electric system, and 4 is a chassis. In an actual magnetic disk device, as shown in FIG. 1, it is used in a form sealed with a housing.

【0023】図2は磁気ヘッド1の拡大図であり、11
はスライダー、12はジンバル部、13はサスペンショ
ン、14はリード線、15はヘッドの回転中心部であ
る。記録再生薄膜素子部は、図2においてスライダーの
手前側の面もしくは側面に設けられる。図2の構成の磁
気ヘッドは、例えばアルチックウェファー基板(最終的
にはスライダー11になる)上に薄膜工程で記録再生素
子を形成した後、列切断、チップ切断を行い、スライダ
ー形状加工してスライダー11をサスペンションアーム
13先端のジンバル部12に取付け、薄膜素子部のコン
タクトパッド部にリード線14を接続すれば作成する事
が出来る。サスペンション部13は図2の様な一体型で
も多段式でも良く、又、多段式の場合には一段目(ロー
タに取付け)と二段目の間に圧電素子を設けて、スライ
ダー位置の微調整を可能とする構成でも良い。又、ジン
バル部12を圧電素子から組み、スライダー位置の微調
整を可能とする構成を用いても良い。
FIG. 2 is an enlarged view of the magnetic head 1.
Is a slider, 12 is a gimbal portion, 13 is a suspension, 14 is a lead wire, and 15 is a center of rotation of the head. The recording / reproducing thin film element portion is provided on the front surface or side surface of the slider in FIG. The magnetic head having the configuration shown in FIG. 2 is formed by, for example, forming a recording / reproducing element on a Altic wafer substrate (finally becoming the slider 11) by a thin film process, then performing row cutting, chip cutting, and slider shape processing. It can be prepared by attaching the slider 11 to the gimbal portion 12 at the tip of the suspension arm 13 and connecting the lead wire 14 to the contact pad portion of the thin film element portion. The suspension unit 13 may be an integrated type as shown in FIG. 2 or a multi-stage type. In the case of the multi-stage type, a piezoelectric element is provided between the first stage (attached to the rotor) and the second stage to finely adjust the slider position. A configuration that enables Alternatively, the gimbal portion 12 may be composed of a piezoelectric element to allow fine adjustment of the slider position.

【0024】図3はスライダー11と媒体2の相対位置
関係を示す図であり、媒体2に対してスライダー11は
薄膜素子部(スライダー右端の面)が最も媒体と近接す
る様に配置される。図3では媒体移動方向は左側から右
側であり、空気流は媒体移動方向に生じ、スライダーの
薄膜素子の設けられる面とは反対側の面(スライダーの
左端の面)からスライダーに吹付ける。本発明の熱アシ
スト磁気記録装置を特徴付けるのは、スライダー上に設
けられる薄膜素子部であり、特には記録素子部である。
FIG. 3 is a view showing a relative positional relationship between the slider 11 and the medium 2. The slider 11 is arranged so that the thin film element portion (the right end surface of the slider) of the medium 2 is closest to the medium. In FIG. 3, the medium moving direction is from the left side to the right side, and the air flow is generated in the medium moving direction and blows on the slider from the surface opposite to the surface of the slider on which the thin film element is provided (the left end surface of the slider). What characterizes the thermally-assisted magnetic recording device of the present invention is the thin film element portion provided on the slider, and particularly the recording element portion.

【0025】図4は記録素子部の主要構成を示す図であ
り、図3のスライダー右端部を拡大した図に相当する。
図4において、5は熱源としての端面発光レーザ素子、
6は記録素子部、7は再生素子部、8は保護部材であ
り、熱源5は第一のクラッド層51、活性層52、第二
のクラッド層53、及び光学開口54から構成され、記
録素子部6は主磁極61、リターンパス62、コイル6
3から構成され、再生素子部7は記録素子のリターンパ
スと兼用で用いられる第一シールド62、GMR再生素
子71、第二シールド72から構成される。
FIG. 4 is a diagram showing the main structure of the recording element portion, which corresponds to an enlarged view of the slider right end portion of FIG.
In FIG. 4, 5 is an edge emitting laser device as a heat source,
6 is a recording element section, 7 is a reproducing element section, 8 is a protective member, and the heat source 5 is composed of a first cladding layer 51, an active layer 52, a second cladding layer 53, and an optical aperture 54. The part 6 includes a main magnetic pole 61, a return path 62, and a coil 6.
The reproducing element section 7 is composed of a first shield 62, a GMR reproducing element 71, and a second shield 72 which are also used as the return path of the recording element.

【0026】図4の構成の熱アシスト磁気記録ヘッドは
モノリシックもしくはハイブリッドに形成する事が出
来、例えば、GaAs基板上にMOCVD法で第一クラ
ッド層51、活性層52、第二クラッド層53を成長さ
せ(図示しないが上下に電極膜を配する)た後、壁開
し、共振器両面(図4のレーザ素子の上下面)に適当な
反射率の膜を形成して閑静したレーザ素子5を必要に応
じてGaAs基板を薄く研磨した後、アルチックウェフ
ァー11に等間隔に多数接合する。その後、薄膜工程に
より先ずレーザ素子出射端(図4では活性層の下端面)
と最終的に光学開口の設けられる面の間を透明膜で埋め
込み所定の形状に加工する。ここで所定の形状とは例え
ば光学開口と主磁極が近接して配置する様な形状に加工
する事を意味する。続いてフレームメッキプロセスを繰
り返して、主磁極61、コイル63、リターンパス62
を順次形成し、必要に応じて表面平坦化処理を施す。次
に第一ギャップ膜、GMR再生膜、バイアス膜、リード
膜、第二ギャップ膜、第二シールド膜72を所定の形状
に加工しながら積層し最後に保護膜8をコートし、基板
11を切断してスライダー加工する。列切断もしくはチ
ップ切断後にABS面に反射膜をコートした後、レーザ
素子活性層中央部付近にFIBで光学開口54を開けれ
ば、図4の熱アシスト磁気記録ヘッドを得る事が出来
る。図4の素子は、レーザ素子部、記録素子部、再生素
子部共に二端子であり、全部で六本のリード線14が実
装される。リード線14はケーシング3中に収納され
た、レーザ駆動源、記録電流源、再生信号検出系と各々
接続される。
The heat-assisted magnetic recording head having the structure shown in FIG. 4 can be formed monolithically or hybridly. For example, a first clad layer 51, an active layer 52 and a second clad layer 53 are grown on a GaAs substrate by MOCVD. After that (although not shown, the electrode films are arranged on the upper and lower sides), the wall is opened, and the laser device 5 which is quiet by forming films of appropriate reflectances on both surfaces of the resonator (upper and lower surfaces of the laser device of FIG. 4) is formed. After thinly polishing the GaAs substrate as needed, a large number of them are bonded to the Altic wafer 11 at equal intervals. After that, a thin film process is performed to first emit the laser element (the lower end surface of the active layer in FIG. 4).
Finally, a space between the surfaces where the optical apertures are provided is filled with a transparent film and processed into a predetermined shape. Here, the predetermined shape means, for example, processing into a shape such that the optical aperture and the main pole are arranged close to each other. Then, the frame plating process is repeated to repeat the main magnetic pole 61, the coil 63, and the return path 62.
Are sequentially formed, and the surface is flattened as necessary. Next, the first gap film, the GMR reproducing film, the bias film, the lead film, the second gap film, and the second shield film 72 are laminated while being processed into a predetermined shape, and finally the protective film 8 is coated, and the substrate 11 is cut. And process the slider. After coating a reflective film on the ABS surface after row cutting or chip cutting, and opening an optical aperture 54 by FIB near the central portion of the laser element active layer, the heat-assisted magnetic recording head of FIG. 4 can be obtained. The element of FIG. 4 has two terminals for the laser element section, the recording element section, and the reproducing element section, and a total of six lead wires 14 are mounted. The lead wire 14 is connected to a laser drive source, a recording current source, and a reproduction signal detection system housed in the casing 3.

【0027】図1−図4の構成を用いて、本発明に関わ
る熱アシスト磁気記録は例えば以下の手順で実施可能で
ある。媒体記録層には、例えば室温保磁力Hc0が30
kOeのものが用いられ、室温では記録素子から発生す
る記録磁界(約10kOe)よりもHc0が高く記録不
能である。この媒体を例えば10m/sで移動し、レー
ザ素子5を駆動して光学開口54から光ビームを放出さ
せて、近接配置されている媒体に照射して加熱する。例
えば250℃程度の加熱でHc0は10kOe未満に低
下し、主磁極54から発生する記録磁界によって記録さ
れる。再生は通常のGMR再生を行えば良い。レーザ素
子は数から数10mWの光を放出し、素子自身も発熱す
る。素子の発熱の度合いは用いるレーザの種類、波長に
よって異なるが、数10mW級レーザにおいては100
mW程度の発熱を伴う。熱はスライダーに流入するが、
スライダーの熱容量が小さい為にスライダー温度が直ぐ
に上がってしまい、レーザ温度は上昇してしまう。以下
に本発明に直接関わる熱源の昇温を防止する実施例を順
次説明する。 [実施例1]この実施例1では熱源にヒートシンク部材
を取付ける例を説明する。
The thermally assisted magnetic recording according to the present invention can be carried out, for example, by the following procedure using the configuration shown in FIGS. The medium recording layer has, for example, a room temperature coercive force Hc0 of 30.
The one with kOe is used, and Hc0 is higher than the recording magnetic field (about 10 kOe) generated from the recording element at room temperature, and recording is impossible. This medium is moved at, for example, 10 m / s, the laser element 5 is driven to emit a light beam from the optical aperture 54, and the medium arranged in proximity is irradiated and heated. For example, heating at about 250 ° C. lowers Hc0 to less than 10 kOe, and recording is performed by the recording magnetic field generated from the main magnetic pole 54. For reproduction, normal GMR reproduction may be performed. The laser element emits light of several to several tens of mW, and the element itself also generates heat. The degree of heat generation of the element depends on the type of laser used and the wavelength, but it is 100 in the tens of mW class laser.
It is accompanied by heat generation of about mW. Heat flows into the slider,
Since the slider has a small heat capacity, the slider temperature rises immediately and the laser temperature rises. Examples for preventing the temperature rise of the heat source directly related to the present invention will be sequentially described below. [Embodiment 1] In this embodiment 1, an example of attaching a heat sink member to a heat source will be described.

【0028】図5は本発明に係る第一の実施例の構成を
示す図であり、図5(a)はスライダーをABS面から
見込んだ図、(b)はスライダーを横から見た図であ
る。スライダー形状には各種のものが挙げられるが図5
では所謂トライパッド形状の正圧タイプのものを例示し
た。図5において11はスライダー、111はスキー
部、112はパッド部、113は本発明に関わるヒート
シンク部材である。薄膜素子部は図5の右端面に設けら
れ、パッド112が媒体面と近接する。
5A and 5B are views showing the configuration of the first embodiment according to the present invention. FIG. 5A is a view of the slider as seen from the ABS surface, and FIG. 5B is a view of the slider as seen from the side. is there. There are various types of slider shapes, but FIG.
Then, a so-called tripad-shaped positive pressure type is exemplified. In FIG. 5, 11 is a slider, 111 is a ski portion, 112 is a pad portion, and 113 is a heat sink member according to the present invention. The thin film element portion is provided on the right end surface in FIG. 5, and the pad 112 is close to the medium surface.

【0029】図5のスライダーは例えば以下の手順で作
成する事が可能である。先ず図4においてレーザ素子の
電極に連結する高熱伝導のヒートシンク膜113を11
の右端面にメッキ法もしくはスパッタ法などで形成す
る。続いて前記したプロセスに従って記録再生素子部を
薄膜工程を用いて積層し図5の形状にスライダー加工す
る。その後、スライダーABS面の凹部にメッキ法など
で高熱伝導のヒートシンク膜113を形成する。高熱伝
導膜としては、Au,Cu,Ag,Alなどを用いる事
が出来、単元素では十分な耐食性を持たない場合には、
熱伝導率を低下させない程度に添加元素を加えるか、ヒ
ートシンク膜上に安定な金属化合物膜を設けるなどすれ
ば良い。添加元素を用いる例としてはCuAl,AgP
dCu,AlTi,AlMoなどを挙げる事が出来る。
又、ヒートシンク膜113はスライダーのABS面側に
設ける他、スライダー側壁、スライダー上面のいずれに
設けても良い。ABS面に設けた場合には、ヒートシン
ク膜に吹付ける空気流が最も速いので放熱効果が大き
い。スライダー上面にヒートシンク膜を設ける場合に
は、ジンバル部12まで連結させて、比較的大きなヒー
トシンク効果を有するサスペンションを介して放熱させ
るのが良い。 [実施例2]この実施例2では、圧電バイモルフファン
をスライダー上にチップマウントし、レーザ素子もしく
はヒートシンク部材を空冷する実施例を説明する。
The slider shown in FIG. 5 can be created by the following procedure, for example. First, in FIG. 4, the heat sink film 113 of high heat conduction connected to the electrode of the laser element
Is formed on the right end surface of the substrate by plating or sputtering. Then, according to the above-mentioned process, the recording / reproducing element portion is laminated using a thin film process, and slider processing is performed into the shape of FIG. After that, a heat sink film 113 having a high thermal conductivity is formed in the concave portion of the slider ABS surface by a plating method or the like. As the high thermal conductive film, Au, Cu, Ag, Al or the like can be used, and when a single element does not have sufficient corrosion resistance,
It suffices to add an additional element to the extent that thermal conductivity is not lowered or to provide a stable metal compound film on the heat sink film. Examples of using additional elements are CuAl, AgP
Examples thereof include dCu, AlTi and AlMo.
The heat sink film 113 may be provided not only on the ABS surface side of the slider but also on the slider side wall or the slider upper surface. When it is provided on the ABS surface, the airflow blown to the heat sink film is the fastest, so that the heat dissipation effect is large. When a heat sink film is provided on the upper surface of the slider, it is preferable that the gimbal portion 12 is connected and heat is radiated via a suspension having a relatively large heat sink effect. [Embodiment 2] In Embodiment 2, an embodiment will be described in which a piezoelectric bimorph fan is chip-mounted on a slider and a laser element or a heat sink member is air-cooled.

【0030】図6は本実施例に採用したスライダーの構
造を示す図であり、(a)はスライダーをABS面から
見込んだ図、(b)はスライダーを横から見た図であ
る。図6の形状のスライダーは、所謂Shaped−R
ail型の正圧タイプであり、低浮上動作におけるピッ
チ角を確保するタイプのものである。図6において、1
1はスライダー本体、12はジンバル部、13はサスペ
ンション、111はスキー部、5はレーザ素子に代表さ
れる熱源、6は記録素子、7は再生素子、114は圧電
バイモルフファンチップ、115はマイクロファンであ
る。
6A and 6B are views showing the structure of the slider used in the present embodiment. FIG. 6A is a view of the slider viewed from the ABS surface, and FIG. 6B is a view of the slider viewed from the side. The slider having the shape shown in FIG. 6 is a so-called Shaped-R.
It is an ail type positive pressure type that secures a pitch angle in a low flying operation. In FIG. 6, 1
1 is a slider body, 12 is a gimbal portion, 13 is a suspension, 111 is a ski portion, 5 is a heat source represented by a laser element, 6 is a recording element, 7 is a reproducing element, 114 is a piezoelectric bimorph fan chip, and 115 is a microfan. Is.

【0031】図6のスライダーは例えば以下の手順で作
成する事が出来る。この例では、薄膜素子部はスライダ
ー上面から下側にリセスして形成する。前記実施例と同
様な手段で、薄膜素子部の形成、切断、スライダー加工
を施した後、別に作成した圧電バイモルフファンをスラ
イダー上にチップマウントする。マイクロファンはレー
ザ素子に風を送り込む位置にセットされる。圧電素子
(二端子で良い)に電圧を印加すると、PZTなどで作
られた圧電素子が振動し、素子に取付けられたマイクロ
ファンが作動してレーザ素子側に風を送り込み冷却す
る。
The slider shown in FIG. 6 can be created by the following procedure, for example. In this example, the thin film element portion is formed by recessing from the upper surface of the slider to the lower side. The thin film element portion is formed, cut, and processed into a slider by the same means as in the above-mentioned embodiment, and then a separately prepared piezoelectric bimorph fan is chip-mounted on the slider. The micro fan is set at a position where air is blown into the laser element. When a voltage is applied to the piezoelectric element (two terminals are sufficient), the piezoelectric element made of PZT or the like vibrates, and a microfan attached to the element operates to blow air to the laser element side for cooling.

【0032】圧電素子は図6の様にレーザ素子を直接冷
却する位置に取付けても良いが、前記実施例で説明した
ヒートシンク部材に風を吹付ける様に配置されていても
良い。但しABS面側にはチップマウントは困難なの
で、スライダーの側面もしくは上面にマウントしてヒー
トシンク部材を冷却するのが良い。又、ヒートシンク部
材をジンバル部に導き、ジンバルと熱的に接触させる形
態では、ジンバル部に風を吹付けて冷却しても良い。 [実施例3]実施例3では、スライダー形状に工夫を施
して、熱源に空気流を導く実施例を説明する。
The piezoelectric element may be attached at a position for directly cooling the laser element as shown in FIG. 6, but it may be arranged so as to blow air on the heat sink member described in the above embodiment. However, since it is difficult to mount the chip on the ABS side, it is preferable to mount it on the side surface or the upper surface of the slider to cool the heat sink member. Further, in a mode in which the heat sink member is guided to the gimbal portion and is brought into thermal contact with the gimbal portion, air may be blown to the gimbal portion to cool it. [Third Embodiment] In a third embodiment, an embodiment will be described in which a slider shape is devised to guide an air flow to a heat source.

【0033】図7は試作したスライダーの一例であり、
(a)はABS面から見込んだ図、(b)は横から見た
図である。この実施例では、従来型の所謂Two−Ra
il Taper−Flat型の正圧タイプのスライダ
ー形状を用いた。薄膜素子部はスキーの後端部に形成さ
れる。図7において、11はスライダー本体、111は
スキー部、5はレーザ素子部、6は記録素子部、7は再
生素子部、116は空気流制御板である。
FIG. 7 shows an example of a prototype slider,
(A) is the figure seen from the ABS surface, (b) is the figure seen from the side. In this embodiment, the conventional so-called Two-Ra is used.
A positive taper type slider shape of il Taper-Flat type was used. The thin film element part is formed at the rear end of the ski. In FIG. 7, 11 is a slider body, 111 is a ski part, 5 is a laser element part, 6 is a recording element part, 7 is a reproducing element part, and 116 is an air flow control plate.

【0034】図7のスライダーは例えば以下の手段で作
成する事が可能である。薄膜素子の形成、切断、スライ
ダー加工は前記実施例と同様に実施し、最後にスライダ
ーの後端部中央に空気流制御板を貼り付ける。スライダ
ーのABS面を媒体線速と同程度の速さで流れてきた空
気流は制御板116に当たり、薄膜素子部に導かれ、素
子を空冷する。この場合、空気流によってスライダーは
後方(図7の右方向)に力を受けるが、上下方向には特
に力を受けないので、浮上特性に対する影響は少ない。
The slider of FIG. 7 can be created by the following means, for example. The formation of the thin film element, the cutting, and the processing of the slider are carried out in the same manner as in the above embodiment, and finally, the air flow control plate is attached to the center of the rear end portion of the slider. The airflow that has flowed at the same speed as the medium linear velocity on the ABS surface of the slider hits the control plate 116 and is guided to the thin film element portion to air-cool the element. In this case, although the slider receives a force backward (to the right in FIG. 7) by the air flow, it does not receive a force particularly in the up-down direction, and therefore has little influence on the flying characteristics.

【0035】スライダー形状に工夫を施す他の実施形態
としては、スライダーの熱源素子近傍に貫通する微小孔
を設けて、この孔に空気流を流す態様が挙げられる。貫
通孔は、例えば図7に示した形状のスライダーにおいて
は、ABS面のスキー部以外の凹部の熱源素子付近から
熱源素子方向に、例えば斜めに配され、アルチック基板
を熱源素子基板面まで貫通している第一の孔部と、例え
ばABS面と反対側の面の熱源素子上部から前記第一の
孔部終端に連結する第二の孔部とからなる。このような
構造にする事で、ABS面に流入する空気流の一部は貫
通孔の第1の孔部に導かれ、熱源素子基板を空冷しなが
ら、第二の孔部を通じてABS面と反対側の面へ流出す
る。上記した孔の開け方は一例であって、要するに熱源
素子を空冷する孔が設けられていれば良い。 [実施例4]本実施例では、熱源を積極的に媒体に押し
付ける接触記録の実施態様を説明する。
As another embodiment in which the slider shape is devised, there is a mode in which a minute hole penetrating in the vicinity of the heat source element of the slider is provided and an air flow is made to flow through this hole. For example, in the slider having the shape shown in FIG. 7, the through holes are arranged obliquely from the vicinity of the heat source element in the recess other than the ski portion on the ABS surface toward the heat source element, and penetrate the AlTiC substrate to the heat source element substrate surface. And a second hole portion that is connected to the end of the first hole portion from the upper portion of the heat source element on the surface opposite to the ABS surface, for example. With such a structure, a part of the airflow flowing into the ABS surface is guided to the first hole of the through hole, and the heat source element substrate is air-cooled, while being opposed to the ABS surface through the second hole. Spill to the side surface. The above-described method of forming the holes is an example, and in short, it is sufficient that the holes for cooling the heat source element are provided. [Embodiment 4] In this embodiment, an embodiment of contact recording in which a heat source is positively pressed against a medium will be described.

【0036】図8は試作した負圧スライダーの一実施例
であり、(a)はABS面から見込んだ図、(b)は横
から見た図で媒体も併せて記載してある。本実施例で採
用したのは、所謂Sub−Ambient型の負圧スラ
イダーで、空気流により負圧を生じ、薄膜素子部は積極
的に媒体面へ接触する。
FIGS. 8A and 8B show an example of a negative pressure slider manufactured as a prototype. FIG. 8A is a view seen from the ABS surface, and FIG. 8B is a side view showing the medium. A so-called Sub-Ambient type negative pressure slider is adopted in the present embodiment, and a negative pressure is generated by the air flow, and the thin film element portion positively contacts the medium surface.

【0037】図8のスライダーの作成手順は、前記実施
例と同様であり、薄膜素子部の形成、切断、スライダー
加工である。動作によってレーザ素子部は媒体の潤滑層
上を滑走する形態を示し、素子の発熱の一部は巨大なヒ
ートシンクとして作用する媒体側に導かれ、レーザ素子
の昇温を防止する。 [実施例5]上記した実施例1−4の効果を定量的に明
らかにする目的で、記録動作の安定性を比較評価した。
即ち、図4に示した本発明に関わる熱アシスト磁気記録
ヘッドを、図3に示したヘッドジンバルアセンブリに供
し、図1に示した磁気記録装置に装着し、記録実験を実
施した。記録実験の概要は実施例1の前に記載した通り
である。使用したスライダーは本発明に従って図5−8
のレーザ素子昇温防止対策を施したものと、比較用の昇
温防止対策を施さないものを用いた。媒体線速は10m
/sとし、光学開口サイズを200nm(トラック幅方
向)、500nm(トラック方向)として、開口からの
光放出パワーの初期値は5mW程度とした。媒体の熱解
析の結果、この程度のパワー照射で媒体温度はHc0が
記録磁界未満に低下する温度に昇温される事を確認し
た。記録はレーザ光をDC的に照射しながら記録磁界を
高周波で振って行った。線記録密度は200kfciと
300kfciの二通りを選び、一方の記録周波数で記
録後、GMRで再生信号を読み取り、残るもう一方の記
録周波数でオーバライトして再度信号読み取りという動
作を繰り返して行った。再生信号は再生回路系にスペア
ナを取付けて読み取った。レーザ素子は発熱すると、閾
値電流が増加し光出力が低下するので、ここでは十分な
記録する為のレーザ駆動電流が変化するかどうかを調べ
た。ちなみにレーザ素子単体の特性は、動作環境温度が
30℃の場合、閾値電流は50mA、5mWの光出力を
得る為の動作電流は60mAであった。又、動作環境温
度特性は、温度が80℃以下の範囲では、環境温度の1
0℃の増加に対して光出力特性は、5mA程度動作電流
の高い方向にシフト、温度が80℃を越すと、閾値以上
の動作電流に対する光出力の立ち上りが緩慢になると共
に出力が飽和する傾向を呈し、温度が100℃を越すと
発振しなくなった。前記した実施例1−4に説明した本
発明の熱源の昇温防止対策を施した場合と、従来技術に
従って特に熱源の昇温防止対策を施さなかった場合につ
いて、動作環境温度を30℃に制御した雰囲気で、熱源
(この場合はレーザ素子)の動作を開始した直後の再生
信号を維持する様に、レーザ動作電流を制御しながら記
録動作を継続し、記録電流の時間変化をモニターした。
実験に用いたスライダーは、サンプル1−1:熱源にヒ
ートシンクを取付けABS面にヒートシンクを導いた構
成、サンプル1−2:熱源にヒートシンクを取付けスラ
イダー上面にヒートシンクを導きジンバルに接続した構
成、サンプル2−1:スライダー後端部に圧電バイモル
フファンを取付け熱源を空冷する構成、サンプル2−
2:サンプル1−2に加え、ジンバルを空冷する圧電バ
イモルフファンを取付けた構成、サンプル3−1:スラ
イダー後端部面に空気流制御板を取りつけた構成、サン
プル3−2:スライダーに貫通孔を設けた構成、サンプ
ル4−1:負圧スライダーにより熱源を媒体に積極的に
熱接触させた構成、及びサンプルC:従来技術に従って
特に熱源の昇温防止対策を施さない構成、を用意した。
表1に動作電流が85mWを超えた連続動作時間を示
す。初期と同一の再生信号を得る為には、略5mWの光
出力が必要と考えられるので、動作電流が85mWに至
るという事は、実質的なレーザ素子の動作環境温度が8
0℃に至った事を意味する。
The procedure for producing the slider shown in FIG. 8 is the same as that in the above-described embodiment, and is the formation, cutting and slider processing of the thin film element portion. The laser element portion slides on the lubricating layer of the medium by the operation, and a part of the heat generated by the element is guided to the medium side that acts as a huge heat sink to prevent the temperature rise of the laser element. [Embodiment 5] For the purpose of quantitatively clarifying the effects of Embodiments 1-4 described above, the stability of recording operation was comparatively evaluated.
That is, the heat-assisted magnetic recording head according to the present invention shown in FIG. 4 was provided to the head gimbal assembly shown in FIG. 3 and mounted on the magnetic recording apparatus shown in FIG. 1 to perform a recording experiment. The outline of the recording experiment is as described before Example 1. The slider used is shown in FIG.
The laser device for which temperature rise prevention measures were taken and the laser device for comparison which did not take temperature rise prevention measures were used. Medium linear velocity is 10m
/ S, the optical aperture size was 200 nm (track width direction) and 500 nm (track direction), and the initial value of the light emission power from the aperture was about 5 mW. As a result of thermal analysis of the medium, it has been confirmed that the medium temperature is raised to a temperature at which Hc0 falls below the recording magnetic field by such power irradiation. The recording was performed by irradiating the laser beam in a DC manner while shaking the recording magnetic field at a high frequency. Two linear recording densities, 200 kfci and 300 kfci, were selected. After recording at one recording frequency, a reproduction signal was read by GMR, overwriting was performed at the other recording frequency, and signal reading was repeated again. The reproduced signal was read by attaching a spectrum analyzer to the reproducing circuit system. When the laser element generates heat, the threshold current increases and the optical output decreases, so it was investigated here whether the laser drive current for sufficient recording changes. By the way, regarding the characteristics of the laser element alone, when the operating environment temperature was 30 ° C., the threshold current was 50 mA, and the operating current for obtaining an optical output of 5 mW was 60 mA. In addition, the operating environment temperature characteristic is 1
The optical output characteristic shifts toward a higher operating current by about 5 mA with an increase of 0 ° C. When the temperature exceeds 80 ° C., the rising of the optical output with respect to the operating current above the threshold becomes slow and the output tends to be saturated. And when the temperature exceeded 100 ° C, it stopped oscillating. The operating environment temperature is controlled to 30 ° C. in the case where the heat source temperature rise prevention measure of the present invention described in the above-mentioned Examples 1-4 is taken and in the case where the heat source temperature rise prevention measure is not particularly taken according to the prior art. In this atmosphere, the recording operation was continued while controlling the laser operating current so as to maintain the reproduction signal immediately after the operation of the heat source (in this case, the laser element) was started, and the time change of the recording current was monitored.
The slider used in the experiment is sample 1-1: a structure in which a heat sink is attached to the heat source and the heat sink is guided to the ABS surface, sample 1-2: a structure in which the heat sink is attached to the heat source and the heat sink is led to the upper surface of the slider and connected to a gimbal, sample 2 -1: A structure in which a piezoelectric bimorph fan is attached to the rear end of the slider to cool the heat source by air, Sample 2-
2: Sample 1-2, configuration in which a piezoelectric bimorph fan for air cooling the gimbal is attached, sample 3-1: configuration in which an airflow control plate is attached to the rear end surface of the slider, sample 3-2: through hole in the slider Was prepared, Sample 4-1: a structure in which the heat source was positively brought into thermal contact with the medium by a negative pressure slider, and Sample C: a structure in which no heat source temperature rise prevention measures were taken according to the conventional technique.
Table 1 shows the continuous operation time when the operation current exceeds 85 mW. It is considered that an optical output of about 5 mW is required to obtain the same reproduction signal as in the initial stage. Therefore, the fact that the operating current reaches 85 mW means that the operating environment temperature of the laser element is substantially 8
This means that the temperature reached 0 ° C.

【表1】 表1から明らかな様に、熱源の昇温防止対策を施さない
サンプルCでは、高々2Hの連続記録動作で動作電流が
85mAに至ったのに対し、本発明に従って、熱源の昇
温防止対策を施した場合は全て大幅な改善が見られ、動
作安定性の向上が実証された。
[Table 1] As is clear from Table 1, in the sample C in which the heat source temperature rising prevention measure is not applied, the operating current reached 85 mA in the continuous recording operation of 2H at the most, whereas according to the present invention, the heat source temperature rise prevention measure was taken. When applied, all showed significant improvements, demonstrating improved operational stability.

【0038】上記した実施例では、熱源として発熱が最
も顕著な半導体レーザ素子を用いた場合を例示したが、
本発明は特に熱源の形態に限定されず、電子ビーム源も
しくは他の熱源を採用する熱アシスト磁気記録装置全般
に対して有用である。
In the above-mentioned embodiment, the case where the semiconductor laser device that generates the most heat is used as the heat source is illustrated.
The present invention is not particularly limited to the form of a heat source, and is useful for all heat-assisted magnetic recording devices that employ an electron beam source or another heat source.

【0039】[0039]

【発明の効果】本発明に依れば、現行の室温磁気記録再
生系の記録密度限界を打破する、熱アシスト磁気記録方
式において、熱源の動作安定性を格段に向上する事が出
来るので、将来的に磁気記録の高密度化に寄与する所多
大である。
According to the present invention, the operation stability of the heat source can be remarkably improved in the heat-assisted magnetic recording system which breaks the recording density limit of the existing room temperature magnetic recording / reproducing system. It greatly contributes to high density magnetic recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱アシスト磁気記録装置の一実施
例の全体構成を示す図。
FIG. 1 is a diagram showing the overall configuration of an embodiment of a heat-assisted magnetic recording device according to the present invention.

【図2】本発明に係る熱アシスト磁気記録装置に搭載さ
れるヘッドジンバルアセンブリの一実施例を示す図。
FIG. 2 is a diagram showing an embodiment of a head gimbal assembly mounted on the heat-assisted magnetic recording apparatus according to the present invention.

【図3】本発明に係る熱アシスト磁気記録におけるスラ
イダーと媒体の相対位置関係を示す図。
FIG. 3 is a diagram showing a relative positional relationship between a slider and a medium in heat-assisted magnetic recording according to the present invention.

【図4】本発明に係る熱アシスト磁気記録装置に搭載さ
れる薄膜素子部の一実施例を示す図。
FIG. 4 is a diagram showing an example of a thin film element portion mounted in the thermally-assisted magnetic recording device according to the present invention.

【図5】本発明に係る熱アシスト磁気記録装置に搭載さ
れるスライダーの第一実施例を示す図。
FIG. 5 is a diagram showing a first embodiment of a slider mounted in the heat-assisted magnetic recording device according to the present invention.

【図6】本発明に係る熱アシスト磁気記録装置に搭載さ
れるスライダーの第二実施例を示す図。
FIG. 6 is a diagram showing a second embodiment of a slider mounted in the heat-assisted magnetic recording device according to the present invention.

【図7】本発明に係る熱アシスト磁気記録装置に搭載さ
れるスライダーの第三実施例を示す図。
FIG. 7 is a diagram showing a third embodiment of a slider mounted in the heat-assisted magnetic recording device according to the present invention.

【図8】本発明に係る熱アシスト磁気記録装置に搭載さ
れるスライダーの第四実施例を示す図。
FIG. 8 is a diagram showing a fourth embodiment of a slider mounted in the heat-assisted magnetic recording device according to the present invention.

【符号の説明】[Explanation of symbols]

1 磁気ヘッド 2 媒体 3 ケーシング 4 シャーシー 5 端面発光レーザ素子 6 記録素子部 7 再生素子部 8 保護部材 11 スライダー 12 ジンバル部 13 サスペンション 14 リード線 15 ヘッドの回転中心部 1 magnetic head 2 medium 3 casing 4 chassis 5 Edge emitting laser device 6 Recording element section 7 Playback element section 8 protective member 11 slider 12 Gimbal part 13 suspension 14 lead wire 15 Head rotation center

フロントページの続き (56)参考文献 特開 平9−305903(JP,A) 特開 平8−212617(JP,A) 特開 平5−342595(JP,A) 特開 平3−58303(JP,A) 特開 平2−66701(JP,A) 特開 平13−283403(JP,A) 特開2001−216673(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/02 Continuation of front page (56) Reference JP-A-9-305903 (JP, A) JP-A-8-212617 (JP, A) JP-A-5-342595 (JP, A) JP-A-3-58303 (JP , A) JP-A-2-66701 (JP, A) JP-A-13-283403 (JP, A) JP-A-2001-216673 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) ) G11B 5/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 記録磁極を有する記録素子部と、この記
録素子部に近接配置され、記録媒体の前記記録磁極の幅
程度の微小な領域を選択的に加熱する為の熱源と、再生
素子部と、これらの記録素子部、熱源、および再生素子
部を支持するスライダーと、このスライダーの前記記録
媒体に対向する下面を高熱伝導率の部材で被覆し、少な
くとも前記部材の一部が前記熱源に熱的に連結されるヒ
ートシンクとを具備し、前記下面に流入する空気流によ
り前記熱源を冷却することを特徴とする熱アシスト磁気
記録ヘッド。
1. A recording element portion having a recording magnetic pole, and
The width of the recording magnetic pole of the recording medium, which is arranged close to the recording element section.
Heat source for selectively heating a minute area and regeneration
Element part, and these recording element part, heat source, and reproducing element
Slider that supports the section and the recording of this slider
The lower surface facing the medium is covered with a member with high thermal conductivity,
At least a portion of the member is thermally coupled to the heat source.
A heat sink, and is provided by an air flow flowing into the lower surface.
Heat-assisted magnetism characterized by cooling the heat source
Recording head.
【請求項2】 記録磁極を有する記録素子部と、この記
録素子部に近接配置され、記録媒体の前記記録磁極の幅
程度の微小な領域を選択的に加熱する為の熱源と、再生
素子部と、これらの記録素子部、熱源、および再生素子
部を支持するスライダーと、このスライダーの後端上部
にマイクロファンを備えてチップマウントされた圧電バ
イモルフ素子とを具備し、前記圧電バイモルフ素子の作
動により前記マイクロファンが、前記スライダーの後端
部に備える前記熱源へ空気流を送ることを特徴とする熱
アシスト磁気記録ヘッド。
2. A recording element portion having a recording magnetic pole, and
The width of the recording magnetic pole of the recording medium, which is arranged close to the recording element section.
Heat source for selectively heating a minute area and regeneration
Element part, and these recording element part, heat source, and reproducing element
And the upper part of the rear end of this slider
Chip-mounted piezoelectric bar with micro fan
And a piezoelectric bimorph element.
Movement causes the micro fan to move to the rear end of the slider.
Heat characterized by sending an air flow to the heat source provided in the section
Assisted magnetic recording head.
【請求項3】 記録磁極を有する記録素子部と、この記
録素子部に近接配置され、記録媒体の前記記録磁極の幅
程度の微小な領域を選択的に加熱する為の熱源と、再生
素子部と、これらの記録素子部、熱源、および再生素子
部を支持するスライダーと、このスライダーの後端面に
貼着された空気流の方向を変更する空気流制御板とを具
備し、前記空気流制御板が、前記スライダーに流入する
空気流を、前記スライダーの後端部に備える前記熱源へ
導くことを特徴とする熱アシスト磁気記録ヘッド。
3. A recording element portion having a recording magnetic pole, and
The width of the recording magnetic pole of the recording medium, which is arranged close to the recording element section.
Heat source for selectively heating a minute area and regeneration
Element part, and these recording element part, heat source, and reproducing element
The slider that supports the part and the rear end surface of this slider
And an air flow control plate that changes the direction of the attached air flow.
The air flow control plate flows into the slider.
Airflow to the heat source at the rear end of the slider
A thermally assisted magnetic recording head characterized by leading.
【請求項4】 記録磁極を有する記録素子部と、この記
録素子部に近接配置され、記録媒体の前記記録磁極の幅
程度の微小な領域を選択的に加熱する為の熱源と、再生
素子部と、これらの記録素子部、熱源、および再生素子
部を支持するスライダーと、このスライダーの前記記録
媒体に対向する下面から、前記熱源とこのスライダーと
の接合面部まで達し、さらに前記下面の反対側の面へ貫
通する少なくとも1つの孔穴とを具備し、前記孔穴に流
入した空気流により前記熱源を冷却することを特徴とす
る熱アシスト磁気記録ヘッド。
4. A recording element portion having a recording magnetic pole, and
The width of the recording magnetic pole of the recording medium, which is arranged close to the recording element section.
Heat source for selectively heating a minute area and regeneration
Element part, and these recording element part, heat source, and reproducing element
Slider that supports the section and the recording of this slider
From the lower surface facing the medium, the heat source and this slider
Reach the joint surface of the
At least one hole through which the fluid flows.
Characterized in that the heat source is cooled by an incoming air flow.
Thermally assisted magnetic recording head.
【請求項5】 記録磁極を有する記録素子部と、この記
録素子部に近接配置され、記録媒体の前記記録磁極の幅
程度の微小な領域を選択的に加熱する為の熱源と、再生
素子部と、これらの記録素子部、熱源および再生素子部
を支持する負圧スライダーとを具備し、前記負圧スライ
ダーに備えられたパッド部の下面に揃えて形成された前
記熱源の下端部が、前記記録媒体の潤滑層上を滑走し、
前記熱源を冷却することを特徴とする熱アシスト磁気記
録ヘッド。
5. A recording element portion having a recording magnetic pole, and
The width of the recording magnetic pole of the recording medium, which is arranged close to the recording element section.
Heat source for selectively heating a minute area and regeneration
Element part and recording element part, heat source and reproducing element part
And a negative pressure slider for supporting the negative pressure slider.
Front formed on the bottom surface of the pad provided on the dar
The lower end of the heat source slides on the lubricating layer of the recording medium,
Thermally assisted magnetic recording characterized by cooling the heat source
Recording head.
【請求項6】 請求項1乃至5のいずれか一項に記載の
熱アシスト磁気記録ヘッドと、前記熱源により微小な領
域が選択的に加熱され、この加熱部の保磁力が前記記録
素子部から発生する記録磁界よりも低下する記録媒体と
を具備することを特徴とする熱アシスト磁気記録装置。
6. The method according to any one of claims 1 to 5.
The heat-assisted magnetic recording head and the heat source cause
The area is selectively heated, and the coercive force of this heating section is recorded as above.
A recording medium that is lower than the recording magnetic field generated from the element part
A heat-assisted magnetic recording device comprising:
JP2000095530A 2000-03-30 2000-03-30 Thermally assisted magnetic recording head and thermally assisted magnetic recording device Expired - Lifetime JP3471285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095530A JP3471285B2 (en) 2000-03-30 2000-03-30 Thermally assisted magnetic recording head and thermally assisted magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095530A JP3471285B2 (en) 2000-03-30 2000-03-30 Thermally assisted magnetic recording head and thermally assisted magnetic recording device

Publications (2)

Publication Number Publication Date
JP2001283403A JP2001283403A (en) 2001-10-12
JP3471285B2 true JP3471285B2 (en) 2003-12-02

Family

ID=18610424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095530A Expired - Lifetime JP3471285B2 (en) 2000-03-30 2000-03-30 Thermally assisted magnetic recording head and thermally assisted magnetic recording device

Country Status (1)

Country Link
JP (1) JP3471285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538978B2 (en) 2004-12-28 2009-05-26 Tdk Corporation Heat assisted magnetic recording head and heat assisted magnetic recording apparatus for heating a recording region in a magnetic recording medium during magnetic recording
US8203804B2 (en) 2010-10-14 2012-06-19 Kabushiki Kaisha Toshiba Head gimbal assembly and disk drive with the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992052B2 (en) * 2005-06-28 2007-10-17 Tdk株式会社 Thin-film magnetic head with a heat-dissipating part
JP2008130106A (en) 2006-11-16 2008-06-05 Hitachi Ltd Thermally assisted magnetic recording head support mechanism
JP2009043338A (en) * 2007-08-08 2009-02-26 Sharp Corp Heat assist information recording device and heat assist information recording method
JP5134310B2 (en) 2007-08-31 2013-01-30 エイチジーエスティーネザーランドビーブイ Magnetic head slider
US8374062B2 (en) 2010-09-23 2013-02-12 Tdk Corporation Heat assist magnetic write head, head gimbals assembly, head arm assembly, and magnetic disk device
US8578593B2 (en) 2010-10-12 2013-11-12 Tdk Corporation Method of manufacturing thermal assisted magnetic write head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538978B2 (en) 2004-12-28 2009-05-26 Tdk Corporation Heat assisted magnetic recording head and heat assisted magnetic recording apparatus for heating a recording region in a magnetic recording medium during magnetic recording
US8203804B2 (en) 2010-10-14 2012-06-19 Kabushiki Kaisha Toshiba Head gimbal assembly and disk drive with the same

Also Published As

Publication number Publication date
JP2001283403A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
US8077559B1 (en) Thermally-assisted magnetic recording head including plasmon generator
US8023225B2 (en) Thermally assisted magnetic head with optical waveguide
US8089831B2 (en) Heat-assisted magnetic recording head including plasmon generator
JP2001189002A (en) Heat assisted magnetic recording method and heat assisted magnetic recorded
US8116175B2 (en) Heat-assisted magnetic recording head including plasmon generator
US20090225636A1 (en) Components and assembly procedure for thermal assisted recording
US9042209B2 (en) E-antenna near field transducer with thermal shunt to return pole
US20090052077A1 (en) Thermally assisted magnetic head with optical waveguide and light shield
JP3471285B2 (en) Thermally assisted magnetic recording head and thermally assisted magnetic recording device
US11790944B2 (en) Heat-assisted magnetic recording head near-field transducer with a plasmonic disk
US8437237B2 (en) Light source unit including a photodetector, and thermally-assisted magnetic recording head
US9153267B1 (en) Thermally-assisted magnetic recording head, head gimbals assembly, head arm assembly and magnetic recording unit
US8760979B1 (en) Thermally-assisted magnetic recording head having gap layers between magnetic pole and plasmon generator
US8767348B1 (en) Thermally-assisted magnetic recording head including first and second cladding sections having different characteristics
US10978102B1 (en) Thermally assisted magnetic head, head gimbal assembly and hard disk drive
US9013967B1 (en) Heat-dissipating stepped slider for a heat-assisted magnetic recording head
JP3827939B2 (en) Thermally assisted magnetic recording head and thermally assisted magnetic recording apparatus equipped with the same
JP4030264B2 (en) Thermally assisted magnetic recording device, thermally assisted magnetic reproducing device, electron beam recording device
US20140233361A1 (en) Thermally-assisted magnetic recording head and method of manufacturing the same
US8503270B1 (en) Thermally-assisted magnetic recording head including a plasmon generator and a magnetic pole
US10943613B1 (en) Thermally assisted magnetic head, head gimbal assembly, hard disk drive and method of manufacturing the thermally assisted magnetic head
US11127424B1 (en) Thermally-assisted magnetic recording head having active layer with quantum dot structure
JP2001283404A (en) Heat-assisted magnetic recording head, its manufacturing method, and heat-assisted magnetic recording device
US10622783B1 (en) Thermally-assisted magnetic recording head capable of preventing solder overflow during manufacturing
US11626133B1 (en) Method of manufacturing head gimbal assembly, head gimbal assembly and hard disk drive

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3471285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 10

EXPY Cancellation because of completion of term