JP3470332B2 - Water quality management system - Google Patents
Water quality management systemInfo
- Publication number
- JP3470332B2 JP3470332B2 JP2000246786A JP2000246786A JP3470332B2 JP 3470332 B2 JP3470332 B2 JP 3470332B2 JP 2000246786 A JP2000246786 A JP 2000246786A JP 2000246786 A JP2000246786 A JP 2000246786A JP 3470332 B2 JP3470332 B2 JP 3470332B2
- Authority
- JP
- Japan
- Prior art keywords
- filtration
- divided
- water
- pond
- basin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Filtration Of Liquid (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、浄水場の水質を管
理する水質管理システムに関するものである。
【0002】
【従来の技術】浄水場は、河川等から取水した原水を浄
化し、水道水にして家庭等に供給する施設である。浄水
場がどのような手順で水を浄化するかについて説明す
る。
【0003】図2は浄水場の概略構成図である。図2
で、取水ポンプ40は、河川等から原水を取り入れる。
取り入れた原水はフロック形成池41に導かれる。フロ
ック形成池41の前で凝集剤が投入され、投入した凝集
剤が原水中の塵埃等とともに粒子を形成する。この粒子
をフロックという。フロック形成池41では、フロキュ
レータという水車が回っている。フロック形成池41を
通過した水は、沈殿池に導かれる。沈殿池42では、フ
ロックが沈殿する。沈殿池42の上澄みがろ過池43に
供給される。これによって、原水中に混入された塵埃等
が除去される。ろ過池43では、沈殿池42で仕分けた
上澄みがフィルタ44でろ過される。ろ過後の水は、滅
菌処理を経た後、一般家庭等に供給される。
【0004】このようにして、浄水場では、いくつかの
処理を経て原水が水道水へ浄化される。浄水場では、供
給される水の水質を常時管理し、汚染した水が配水され
ることを未然に食い止めなければならない。
【0005】浄水場が取水する原水の中には、クリプト
スポリジウム(以下、クリプトとする)やジアルジアと
いう原虫が存在することがある。これらの原虫が水道水
に混入していると、水道水の利用者に激しい病害をもた
らすことになる。平成8年10月の厚生省暫定指針で
は、ろ過池出口の濁度を0.1度以下に維持するように
定められている。
【0006】ろ過池の中の一つにブレイクスルーという
亀裂がろ過層に発生し、ろ過池全体としてろ過機能が低
下することがある。このときに、従来は機能低下したの
がろ過池のどの部分であるかを突き止めることができな
かった。
【0007】
【発明が解決しようとする課題】本発明はこのような問
題点を解決するためになされたものであり、ろ過池を複
数の分割ろ過池に区分けし、分割ろ過池毎に個別に粒子
除去率を求めることによって、ろ過池の機能が低下した
ときに、機能低下したのがろ過池のどの部分であるかを
突き止めることができる水質管理システムを実現するこ
とを目的とする。
【0008】
【課題を解決するための手段】本発明は、ろ過池が複数
の分割ろ過池に区分けされていて、ろ過池に流入した水
は各分割ろ過池に振り分けられ、各分割ろ過池を通過し
た水は合流してろ過池から流出するとともに、ろ過池へ
の単位時間当たりの水の流入量は定量に保持されてい
て、ろ過池の入り口、ろ過池の出口及び各分割ろ過池の
出口にそれぞれ設けられ、設けた位置の水の単位体積当
たりに含まれる粒子の数を粒径別に検出し、検出粒径の
範囲には原虫の寸法が含まれる粒子カウンタと、
{(ろ過池の入口にある粒子カウンタの検出値)−(分
割ろ過池の出口にある粒子カウンタの検出値)}/(ろ
過池の入口にある粒子カウンタの検出値)
から分割ろ過池毎に個別に粒子除去率を求める除去率算
出手段と、この除去率算出手段で求めた粒子除去率が所
定の基準値よりも小さくなった分割ろ過池をフィルタ機
能が低下した分割ろ過池と特定する特定手段と、を具備
したことを特徴とする水質管理システムである。
【0009】
【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明の一実施例を示す構成図であ
る。図1で、ろ過池50は複数の分割ろ過池に区分けさ
れている。図の例では6個の分割ろ過池501〜506
に区分けされている。ろ過池に流入した水は各分割ろ過
池501〜506に振り分けられ、各分割ろ過池501
〜506を経た水は合流してろ過池から流出する。粒子
カウンタ51,52,531〜536は、ろ過池の入り
口、ろ過池の出口及び各分割ろ過池の出口にそれぞれ設
けられている。これらの粒子カウンタは、設けた位置の
水の単位体積当たりに含まれる粒子の数を粒径別に検出
し、検出粒径の範囲には原虫の寸法が含まれる。
【0010】粒子カウンタ51,52,531〜536
は、測定管を挟んでレーザ光源と受光素子を対向配置さ
せ、測定管に測定対象の水を流す構成になっている。測
定対象の水に粒子が混入していれば、レーザ光が粒子に
遮られて受光素子で検出されない。遮られた光の寸法を
検出することにより、粒径を検出し、遮られた回数をカ
ウントすることにより粒子数をカウントする。粒子カウ
ンタの測定ポイントにおける水の流量(体積流量)を定
量に保持し、所定時間にわたって粒子数をカウントする
ことによって、粒子カウンタは水の単位体積当たりに含
まれる粒子の数を検出する。このようにして、レーザ光
遮断方式により粒子を検出する。
【0011】除去率算出手段54は、
{(粒子カウンタ51の検出値)−(粒子カウンタ53
1〜536の検出値)}/(粒子カウンタ51の検出
値)
から分割ろ過池501〜506の粒子除去率を個別に求
める。特定手段55は、除去率算出手段54で求めた粒
子除去率が所定の基準値よりも小さくなった分割ろ過池
をフィルタ機能が低下した分割ろ過池と特定する。これ
によって、分割ろ過池の中の一つにブレイクスルーとい
う亀裂がろ過層に発生し、ろ過池全体としてろ過機能が
低下したときに、機能低下したのがろ過池のどの部分で
あるかを突き止めることができる。
【0012】
【発明の効果】本発明によれば、ろ過池を複数の分割ろ
過池に区分けし、分割ろ過池毎に個別に粒子除去率を求
めているため、ろ過池の一部でろ過機能が低下したとき
に、機能低下した部分を特定できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality management system for managing water quality in a water purification plant. [0002] A water purification plant is a facility for purifying raw water taken from a river or the like and supplying the purified water to households or the like as tap water. The procedure for purifying water by a water treatment plant will be described. FIG. 2 is a schematic configuration diagram of a water purification plant. FIG.
The intake pump 40 takes in raw water from a river or the like.
The taken-in raw water is guided to the floc formation pond 41. The flocculant is charged in front of the floc forming pond 41, and the charged flocculant forms particles together with dust and the like in the raw water. These particles are called flocs. In the floc formation pond 41, a water wheel called a flocculator is running. The water that has passed through the floc formation pond 41 is guided to the sedimentation pond. In the sedimentation basin 42, the flocs settle. The supernatant of the settling basin 42 is supplied to the filtration basin 43. As a result, dust and the like mixed in the raw water are removed. In the filtration pond 43, the supernatant sorted in the sedimentation pond 42 is filtered by the filter 44. The water after filtration is supplied to ordinary households after sterilization. [0004] In the water purification plant, raw water is purified into tap water through several processes. In a water treatment plant, the quality of the supplied water must be constantly managed and the distribution of contaminated water must be stopped before it occurs. [0005] In the raw water taken by the water purification plant, there may be protozoa such as Cryptosporidium (hereinafter referred to as Crypto) and Giardia. If these protozoa are mixed into tap water, it will cause severe illness to tap water users. The provisional guidelines of the Ministry of Health and Welfare of October 1996 stipulate that the turbidity at the outlet of the filtration pond should be kept at 0.1 degrees or less. [0006] In one of the filtration ponds, a crack called breakthrough is generated in the filtration layer, and the filtration function of the filtration basin as a whole may be reduced. At this time, it has not been possible to determine which part of the filter pond has deteriorated its function. SUMMARY OF THE INVENTION [0007] The present invention has been made to solve such a problem. The present invention divides a filtration pond into a plurality of divided filtration ponds, and individually separates each divided filtration basin. It is an object of the present invention to realize a water quality management system capable of determining which part of a filter pond has deteriorated in function when the function of the filter pond has deteriorated by obtaining the particle removal rate. According to the present invention, a filtration pond is divided into a plurality of divided filtration ponds, and water flowing into the filtration basin is distributed to each divided filtration basin. The passed water merges and flows out of the filtration pond, and the amount of water flowing into the filtration pond per unit time is maintained at a constant level.The entrance of the filtration pond, the exit of the filtration pond and the exit of each divided filtration pond. The number of particles contained per unit volume of water at each location is detected for each particle size, and a particle counter that includes the size of the protozoa in the range of the detected particle size, The particle removal rate for each of the divided filtration ponds is calculated from the detection value of the particle counter at)-(the detection value of the particle counter at the exit of the divided filtration basin) / (the detection value of the particle counter at the entrance of the filtration basin). The removal rate calculation means to be obtained and the removal rate calculation Particle removal rate obtained by means of water quality management system characterized by comprising a specifying means for filtering is specified as split filtered pond drops split filtered pond becomes smaller than a predetermined reference value. The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the present invention. In FIG. 1, the filtration pond 50 is divided into a plurality of divided filtration ponds. In the example of the drawing, six divided filtration ponds 501 to 506 are used.
Are divided into The water that has flowed into the filtration basin is distributed to each of the divided filtration basins 501 to 506, and
The water passing through 〜506 merges and flows out of the filtration pond. The particle counters 51, 52, 531 to 536 are provided at the entrance of the filtration basin, the exit of the filtration basin, and the exit of each divided filtration basin, respectively. These particle counters detect the number of particles contained per unit volume of water at the provided position for each particle size, and the range of the detected particle size includes the size of the protozoan. Particle counters 51, 52, 531 to 536
Has a configuration in which a laser light source and a light receiving element are arranged to face each other with a measurement tube interposed therebetween, and water to be measured flows through the measurement tube. If particles are mixed in the water to be measured, the laser light is blocked by the particles and is not detected by the light receiving element. The particle size is detected by detecting the size of the blocked light, and the number of particles is counted by counting the number of times the light is blocked. The particle counter detects the number of particles contained per unit volume of water by keeping the flow rate (volume flow rate) of water at the measurement point of the particle counter constant and counting the number of particles over a predetermined period of time. In this way, particles are detected by the laser light blocking method. The removal rate calculating means 54 calculates {(detected value of the particle counter 51) − (particle counter 53
The particle removal rates of the divided filtration ponds 501 to 506 are individually obtained from the detection values of 1 to 536)} / (the detection value of the particle counter 51). The specifying means 55 specifies a divided filtration pond in which the particle removal rate obtained by the removal rate calculation means 54 is smaller than a predetermined reference value as a divided filtration pond having a reduced filter function. As a result, a crack called breakthrough occurs in one of the divided filtration ponds in the filtration layer, and when the filtration function is reduced as a whole, it is possible to determine which part of the filtration basin has deteriorated. be able to. According to the present invention, since the filtration basin is divided into a plurality of divided filtration ponds and the particle removal rate is individually obtained for each divided filtration basin, a filtering function is provided in a part of the filtration basin. When the value has decreased, the portion where the function has decreased can be specified.
【図面の簡単な説明】 【図1】本発明の一実施例を示す構成図である。 【図2】浄水場の概略構成図である。 【符号の説明】 50 ろ過池 51,52,531〜536 粒子カウンタ 501〜506 分割ろ過池 54 除去率算出手段 55 特定手段[Brief description of the drawings] FIG. 1 is a configuration diagram showing one embodiment of the present invention. FIG. 2 is a schematic configuration diagram of a water purification plant. [Explanation of symbols] 50 Filtration pond 51,52,531-536 particle counter 501-506 Split filtration pond 54 Removal rate calculation means 55 Identifying means
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G06M 7/00 - 11/04 G01N 15/00 - 15/14 B01D 23/00 - 23/28 B01D 29/00 - 29/48 B01D 53/34 C02F 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G06M 7 /00-11/04 G01N 15/00-15/14 B01D 23/00-23/28 B01D 29 / 00-29/48 B01D 53/34 C02F 1/00
Claims (1)
ていて、ろ過池に流入した水は各分割ろ過池に振り分け
られ、各分割ろ過池を通過した水は合流してろ過池から
流出するとともに、ろ過池への単位時間当たりの水の流
入量は定量に保持されていて、 ろ過池の入り口、ろ過池の出口及び各分割ろ過池の出口
にそれぞれ設けられ、設けた位置の水の単位体積当たり
に含まれる粒子の数を粒径別に検出し、検出粒径の範囲
には原虫の寸法が含まれる粒子カウンタと、 {(ろ過池の入口にある粒子カウンタの検出値)−(分
割ろ過池の出口にある粒子カウンタの検出値)}/(ろ
過池の入口にある粒子カウンタの検出値) から分割ろ過池毎に個別に粒子除去率を求める除去率算
出手段と、 この除去率算出手段で求めた粒子除去率が所定の基準値
よりも小さくなった分割ろ過池をフィルタ機能が低下し
た分割ろ過池と特定する特定手段と、を具備したことを
特徴とする水質管理システム。(57) [Claims] [Claim 1] The filtration pond is divided into a plurality of divided filtration ponds, and water flowing into the filtration basin is distributed to each divided filtration basin and passed through each divided filtration basin. The water merges and flows out of the filtration basin, and the amount of water flowing into the filtration basin per unit time is maintained at a constant level. The number of particles contained per unit volume of water at the provided location is detected for each particle size. The range of the detected particle size includes a particle counter that includes the size of the protozoan, and {(at the entrance of the filtration pond. Calculate the particle removal rate individually for each divided filtration tank from (detection value of particle counter)-(detection value of particle counter at exit of divided filtration tank) / (detection value of particle counter at entrance of filtration tank) Rate calculating means, and the particles obtained by the removal rate calculating means. A water quality management system comprising: a specifying unit that specifies a divided filtration pond having a water removal rate smaller than a predetermined reference value as a divided filtration pond with reduced filter function.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000246786A JP3470332B2 (en) | 1998-12-07 | 2000-08-16 | Water quality management system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34690398A JP3442301B2 (en) | 1998-12-07 | 1998-12-07 | Water quality management system |
JP2000246786A JP3470332B2 (en) | 1998-12-07 | 2000-08-16 | Water quality management system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34690398A Division JP3442301B2 (en) | 1998-12-07 | 1998-12-07 | Water quality management system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001104937A JP2001104937A (en) | 2001-04-17 |
JP3470332B2 true JP3470332B2 (en) | 2003-11-25 |
Family
ID=30002133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000246786A Expired - Fee Related JP3470332B2 (en) | 1998-12-07 | 2000-08-16 | Water quality management system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3470332B2 (en) |
-
2000
- 2000-08-16 JP JP2000246786A patent/JP3470332B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001104937A (en) | 2001-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nieminski et al. | Removing Giardia and Cryptosporidium by conventional treatment and direct filtration | |
US20160318785A1 (en) | Compact scalable modular system and method for treatment of water | |
Ding et al. | Characteristics of meso-particles formed in coagulation process causing irreversible membrane fouling in the coagulation-microfiltration water treatment | |
AU2009308383A1 (en) | Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance | |
CN103708666A (en) | Method and equipment for desulfurization waste water reuse and zero discharge treatment | |
ES2947939T3 (en) | A method and system for the control of hydrophobic and fouling conditions in water intensive processes | |
Puig-Bargués et al. | Filtration of effluents for microirrigation systems | |
JP3470332B2 (en) | Water quality management system | |
JP2015136648A (en) | Flocculation method | |
Schuler et al. | Diatomaceous earth filtration of cysts and other particulates using chemical additives | |
Edzwald et al. | Evaluation of the effect of recycle of waste filter backwash water on plant removals of Cryptosporidium | |
Tobiason et al. | Full‐Scale Assessment of waste filter backwash recycle | |
Kus et al. | Performance of granular medium filtration and membrane filtration in treating stormwater for harvesting and reuse | |
JP2000042307A (en) | Water purification plant water treatment system | |
Hilmoe et al. | Comparing constant‐rate and declining‐rate direct filtration of a surface water | |
JP3442301B2 (en) | Water quality management system | |
JP2002282623A (en) | Method and apparatus for monitoring water filtrate in quick filtration | |
JP3187778B2 (en) | Water quality management system | |
CN205011542U (en) | Electroplate processing apparatus again of high salt waste water | |
Łaskawiec et al. | Treatment of pool water installation washings in a flocculation/ultrafiltration integrated system | |
JP5972068B2 (en) | Monitoring device for irreversible membrane fouling substances | |
Nagy et al. | Application of Compact Piping Sedimentation Unit as Pretreatment for Ultrafiltration Plant | |
KR101351354B1 (en) | Water purification system with improved adsorbing ability of pollution source and purification method | |
JPH0357938A (en) | Floc formation controller | |
CN209759200U (en) | Multifunctional deionized water equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080912 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080912 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090912 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100912 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130912 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140912 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |