JP3467755B2 - Manufacturing method of metallic graphite brush - Google Patents
Manufacturing method of metallic graphite brushInfo
- Publication number
- JP3467755B2 JP3467755B2 JP02919098A JP2919098A JP3467755B2 JP 3467755 B2 JP3467755 B2 JP 3467755B2 JP 02919098 A JP02919098 A JP 02919098A JP 2919098 A JP2919098 A JP 2919098A JP 3467755 B2 JP3467755 B2 JP 3467755B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- graphite
- added
- granulated
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Motor Or Generator Current Collectors (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、電動機等に用いら
れる電刷子に関し、特に電刷子の組成物である金属黒鉛
質の潤滑特性を向上させることで、電動機等より発生す
る電刷子の摺動騒音を低減させることができるようにし
た電刷子に関するものである。
【0002】
【従来の技術】例えば、小型電動機等のように低電圧・
高電流密度の環境において用いられる電刷子は、一般に
金属粉末と黒鉛粉末とを主成分とした材料を加圧成形
後、焼成することで得るようにされている。すなわち、
この種の金属黒鉛電刷子においては、銅、銀等の金属粉
末と黒鉛粉末に合成樹脂、コールタール、ピッチ等のバ
インダーを添加して混練造粒した造粒黒鉛を乾式で混合
し、成形、焼成して製造している。
【0003】この場合、前記黒鉛粉末100重量%に対
して、前記バインダーを10乃至30重量%程度の割合
で添加し、混練、造粒した造粒黒鉛を用いるようにして
いる。さらに、電刷子の耐摩耗性を向上させるために二
硫化モリブデン(MoS2 )、二硫化タングステン(W
S2 )、窒化ホウ素(BN)などの固体潤滑剤のいずれ
か1つ、またはこれらを混合したものを上記金属粉末と
造粒黒鉛に添加するようにしている。
【0004】
【発明が解決しようとする課題】ところで、前記したM
oS2 ,WS2 ,BNなどの固体潤滑剤は、電刷子の摩
耗対策としては優れた特性を有しているものの、電刷子
では、その主成分である黒鉛粉末をバインダーによって
造粒しているために、これが潤滑性を悪化させる原因と
なっている。この潤滑性の悪化は、特に電動機等に組み
込んだ場合に、電動機等のコンミュテータもしくは、ブ
ラシホルダーと電刷子との間で発生する摺動騒音を増大
させるという技術的課題を招来し、この種の電動機等を
用いた製品の商品価値を低下させるという課題を抱えて
いる。
【0005】本発明は前記したような技術的課題を解決
するためになされたものであり、特に、電刷子潤滑特性
を向上させることで、電動機等より発生する摺動騒音を
低減させることができるようにした電刷子を提供するこ
とを目的とするものである。
【0006】
【課題を解決するための手段】前記課題を解決するため
になされた本発明にかかる金属黒鉛質電刷子は、黒鉛粉
末100重量%に対し10〜30重量%のバインダーを
添加し混練・造粒した造粒黒鉛を10〜75重量%と、
未造粒黒鉛5〜20重量%及び金属粉末20〜70重量
%を混合し、成形及び焼成することを特徴とする。
【0007】ここで使用する金属粉末としては前記した
銅粉末以外に、銀、アルミニューム、錫、鉛、マンガ
ン、鉄、ニッケルなどの金属粉末を用いることができる
が、特に銅粉末が好ましい。銅粉末を用いた場合には、
特に導電性、熱伝導性に優れているという特質をいかす
ことができる。金属粉末として銅粉末を用いる場合にお
いては、その粒度分布は、1μm乃至300μmのもの
(または50メッシュパス)が用いられ、より好ましく
は、10μm乃至100μmのものが用いられる。銅粉
末の粒度分布が300μmを越える場合においては、銅
の塊が大きくなるため摺動騒音が高くなるという問題点
が発生し、一方、1μm未満の場合においては、成型性
が悪くなるという不都合が発生する。
【0008】またバインダーにより造粒される黒鉛粉
末、およびバインダー未使用の未造粒黒鉛粉末として
は、例えば燐片状黒鉛、土状黒鉛などの天然黒鉛粉末、
カーボンブラック、コークス粉末などの人造黒鉛を挙げ
ることができるが、特に天然黒鉛粉末を使用することが
好ましい。天然黒鉛粉末を用いた場合には、人造黒鉛よ
りも潤滑性に優れているために、電刷子の摺動特性を向
上させることができ、電刷子より発生する摺動騒音を低
減させることに寄与できる。この場合、バインダーによ
り造粒される造粒黒鉛は、混練造粒後に粉砕して粒径1
0μm乃至1000μmの粉体とされる。(または15
メッシュパスの粉体とされる。)
【0009】その粉砕後の粒径はより好ましくは、50
μm乃至300μmとされる。造粒黒鉛の粉砕後の粒径
が1000μmを越える場合においては、機械的強度が
低くなるという問題点が発生し、一方、造粒黒鉛の粉砕
後の粒径が10μm未満の場合においては、固有抵抗が
高くなるという不都合が発生する。また、例えば銅粉末
と造粒黒鉛に対して添加される未造粒の黒鉛粉末の粒度
分布は、1μm乃至300μmのもの(または150メ
ッシュパス)が用いられ、より好ましくは、10μm乃
至100μmのものが用いられる。未造粒黒鉛粉末の粒
度分布が300μmを越える場合においては、機械的強
度が低くなるという問題点が発生し、一方、5μm未満
の場合においては、固有抵抗が高くなるという不都合が
発生する。
【0010】前記金属粉末と、造粒黒鉛との配合割合に
ついては、金属含有量が増加すると、電刷子本体の導電
率を増大させることができるものの、電刷子の潤滑性が
低下し、モータの騒音低減特性に悪影響を及ぼすことに
なる。このために金属粉末として銅粉末を用いる場合に
は、前記したとおり銅粉末が20乃至70重量%、前記
造粒黒鉛が10乃至75重量%の範囲とされるが、より
好ましくは銅粉末が40乃至50重量%、前記造粒黒鉛
が20重量%乃至45重量%の範囲が適切である。
【0011】さらに、金属粉末と造粒黒鉛からなる組成
物に対して添加される未造粒黒鉛の添加量が5重量%未
満であっては、後述する実施例の測定結果に示すよう
に、刷子の摺動騒音特性を満足することができず、また
未造粒黒鉛の添加量が20重量%を越える場合において
は、機械的強度が低くなり、また固有抵抗が高くなり、
さらには皮膜むらによるカッパーピッキングやチャタリ
ングを生じるという問題が発生する。未造粒黒鉛の添加
量のより好ましい範囲は、後述する実施例の測定結果に
示すように、5乃至20重量%である。
【0012】また、固体潤滑剤として、二硫化モリブデ
ン(MoS2 )、二硫化タングステン(WS2 )、窒化
ホウ素(BN)のいずれか1つまたは複数を同時に用い
ることができる。特に、前記固体潤滑剤としては、高温
時の潤滑性に優れているという理由によりMoS2 を用
いるのが好ましい。
【0013】さらにまた、前記した素材に対して添加さ
れるバインダーとしては、常温においては粉末状であ
り、加熱によって液状となる例えば、フェノール樹脂、
エポキシ樹脂などの熱硬化性樹脂を使用するのが望まし
い。また前記バインダーの添加量は成型後、焼成により
必要充分な結合強度を得られる量とし、それ以上の量の
添加は電刷子の導電率を低下させるという問題が発生す
る。好ましくはバインダーの添加量は10〜30重量%
である。前記した素材にバインダーを混練した後の加圧
成型および焼成の条件については特に制限はなく、通常
の公知の方法で行うものとし、例えば成型圧力は2乃至
4トン/cm2 、焼成温度は600乃至800℃で行う
のが好ましい。
【0014】
【発明の実施の形態】本発明にかかる電刷子の製造プロ
セスの概要については、以下のとおりである。まず、電
刷子を構成する素材として、金属粉末としてその平均粒
径が40〜50μmの電解銅粉末を用意する。また、天
然黒鉛粉末はバインダーとしてフェノール樹脂を用いる
ことにより造粒黒鉛になされる。そしてこの造粒黒鉛
は、混練造粒後に粉砕されて平均粒径200〜300μ
mの粉体とされる。前記電解銅粉末と造粒黒鉛に対し
て、固体潤滑剤としてMoS2 が添加される。これらの
電刷子組成物に対して、さらにその平均粒径が50〜1
50μmの未造粒の天然黒鉛が添加されて混練される。
そして、混練された素材をプレス機によって3トン/c
m2 の成型圧力で成型し、これを800℃以下で15時
間以下焼成する電刷子を得ることができる。
【0015】
【実施例】ここで、バインダ−の混合割合を変化させた
造粒黒鉛と、各電解銅粉末と、未造粒黒鉛の混合割合を
変え、前記した製法に基づいて各種の電刷子を得た。
(実施例1〜7、比較例1〜6)
また、比較のために未造粒黒鉛を添加しない状態、およ
び未造粒黒鉛の添加量が所定よりも大となるように添加
し、前記した製法に基づいて各種の電刷子を得た。(比
較例3、比較例4)
【0016】(実施例1)天然黒鉛100重量%に対
し、バインダ−を10重量%添加し混練造粒して得た造
粒黒鉛40重量%に、電解銅粉末50重量%及び未造粒
黒鉛10重量%を添加し混練した。この混練した素材を
用いて、前記した製法に基づいて電刷子を得た。
(実施例2)天然黒鉛100重量%に対し、バインダ−
を20重量%添加し混練造粒して得た造粒黒鉛40重量
%に、電解銅粉末50重量%及び未造粒黒鉛10重量%
を添加し混練した。この混練した素材を用いて、前記し
た製法に基づいて電刷子を得た。
【0017】(実施例3)天然黒鉛100重量%に対
し、バインダ−を30重量%添加し混練造粒して得た造
粒黒鉛40重量%に、電解銅粉末50重量%及び未造粒
黒鉛10重量%を添加し混練した。この混練した素材を
用いて、前記した製法に基づいて電刷子を得た。
(実施例4)天然黒鉛100重量%に対し、バインダ−
を20重量%添加し混練造粒して得た造粒黒鉛45重量
%に、電解銅粉末50重量%及び未造粒黒鉛5重量%を
添加し混練した。この混練した素材を用いて、前記した
製法に基づいて電刷子を得た。
【0018】(実施例5)天然黒鉛100重量%に対
し、バインダ−を20重量%添加し混練造粒して得た造
粒黒鉛30重量%に、電解銅粉末50重量%及び未造粒
黒鉛20重量%を添加し混練した。この混練した素材を
用いて、前記した製法に基づいて電刷子を得た。
(実施例6)天然黒鉛100重量%に対し、バインダ−
を20重量%添加し混練造粒して得た造粒黒鉛70重量
%に、電解銅粉末を20重量%及び未造粒黒鉛10重量
%を添加し混練した。この混練した素材を用いて、前記
した製法に基づいて電刷子を得た。
(実施例7)天然黒鉛100重量%に対し、バインダ−
を20重量%添加し混練造粒して得た造粒黒鉛20重量
%に、電解銅粉末70重量%及び未造粒黒鉛を10重量
%を添加し混練した。この混練した素材を用いて、前記
した製法に基づいて電刷子を得た。
【0019】(比較例1)天然黒鉛100重量%に対
し、バインダ−を5重量%添加し混練造粒して得た造粒
黒鉛40重量%に、電解銅粉末を50重量%及び未造粒
黒鉛10重量%を添加し混練した。この混練した素材を
用いて、前記した製法に基づいて電刷子を得た。
(比較例2)天然黒鉛100重量%に対し、バインダ−
を35重量%添加し混練造粒して得た造粒黒鉛40重量
%に、電解銅粉末50重量%及び未造粒黒鉛10重量%
を添加し混練した。この混練した素材を用いて、前記し
た製法に基づいて電刷子を得た。
【0020】(比較例3)天然黒鉛100重量%に対
し、バインダ−を20重量%添加し混練造粒して得た造
粒黒鉛50重量%に、電解銅粉末50重量%を(未造粒
黒鉛を添加することなく)添加し混練した。この混練し
た素材を用いて、前記した製法に基づいて電刷子を得
た。
(比較例4)天然黒鉛100重量%に対し、バインダ−
を20重量%添加し混練造粒して得た造粒黒鉛25重量
%に、電解銅粉末50重量%及び未造粒黒鉛25重量%
を添加し混練した。この混練した素材を用いて、前記し
た製法に基づいて電刷子を得た。
【0021】(比較例5)天然黒鉛100重量%に対
し、バインダ−を20重量%添加し混練造粒して得た造
粒黒鉛80重量%に、電解銅粉末10重量%及び未造粒
黒鉛10重量%を添加し混練した。この混練した素材を
用いて、前記した製法に基づいて電刷子を得た。
(比較例6)天然黒鉛100重量%に対し、バインダ−
を20重量%添加し混練造粒して得た造粒黒鉛10重量
%に、電解銅粉末80重量%及び未造粒黒鉛10重量%
を添加し混練した。この混練した素材を用いて、前記し
た製法に基づいて電刷子を得た。
【0022】以上の実施例1乃至実施例7、および比較
例1乃至比較例6によって得られた電刷子をそれぞれ直
流モータに組み込み、5A−12Vで15000rpm
の条件で直流モータを駆動させた。そして、摺動開始か
ら30分後に直流モータより発生する摺動騒音(初期摺
動音)を、それぞれ実施例1乃至実施例7、および比較
例1乃至比較例6について測定した。また摺動開始から
500時間後に直流モータより発生する摺動騒音(末期
摺動音)を、それぞれ実施例1乃至実施例7、および比
較例1乃至比較例6について測定した。これらの結果を
表1に示す。
【0023】
【表1】
【0024】表1の測定結果に示すように、未造粒黒鉛
を添加した実施例1乃至実施例7においては、未造粒黒
鉛を添加しない比較例3に対して電刷子の摺動騒音が遥
かに低下することが明らかである。なお、比較例1、4
は実質的に使用できる程度の曲げ強度が得られなかった
ため、摺動音の測定は行わなかった。これは、比較例1
の場合は、バインダ−の添加量が少ないため、また比較
例4の場合は未造粒黒鉛の添加量が多いため、機械的強
度が弱くなったものと考えられる。また、比較例2、比
較例5にあっては、固有抵抗値が極端に高くなり、モ−
タ特性(回転数等)に不具合が生じた。比較例2の場合
は、バインダ−の添加量が多いため、また比較例5の場
合は金属粉末の添加量が少ないため、固有抵抗値が極端
に高くなり、モ−タ特性(回転数等)に不具合が生じた
ものと考えられる。更に、比較例6にあっては、摺動騒
音が高いという不具合が生じた。これは、金属粉末の添
加量が多いため、電刷子の潤滑性が低下したものと考え
られる。
【0025】上記表1の実施例1乃至実施例7に示すよ
うに、黒鉛粉末100重量%に対し10〜30重量%の
バインダーを添加し混練・造粒した造粒黒鉛を10〜7
5重量%と、未造粒黒鉛5〜20重量%及び金属粉末2
0〜70重量%とを混合し、成形及び焼成して得られた
金属黒鉛質電刷子は、機械的強度を低下させることな
く、摺動騒音をより低下させることが認められた。
【0026】
【発明の効果】以上の説明で明らかなように、本発明に
かかる金属黒鉛質電刷子は、黒鉛粉末100重量%に対
し10〜30重量%のバインダーを添加し混練・造粒し
た造粒黒鉛を10〜75重量%と、未造粒黒鉛5〜20
重量%及び金属粉末20〜70重量%とを混合し、成形
及び焼成して得ることができ、この金属黒鉛質電刷子
は、電刷子の摺動特性を改善することができる。したが
って、これを電動機などに用いた場合において、その摺
動騒音を低下させることが可能であり、その商品価値を
向上させることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric brush used for an electric motor and the like, and more particularly, to improving the lubricating property of metallic graphite as a composition of the electric brush. The present invention relates to an electric brush capable of reducing the sliding noise of the electric brush generated from an electric motor or the like. 2. Description of the Related Art For example, a low-voltage,
An electric brush used in an environment with a high current density is generally obtained by subjecting a material mainly composed of a metal powder and a graphite powder to pressure molding and then firing. That is,
In this type of metallic graphite brush, a synthetic resin, coal tar, a binder such as pitch is added to a metal powder such as copper and silver, and a binder such as coal tar is mixed and granulated graphite is dry-mixed, molded, It is manufactured by firing. In this case, the binder is added at a ratio of about 10 to 30% by weight with respect to 100% by weight of the graphite powder, and the kneaded and granulated graphite is used. Further, in order to improve the wear resistance of the electric brush, molybdenum disulfide (MoS 2 ), tungsten disulfide (W
Any one of solid lubricants such as S 2 ) and boron nitride (BN), or a mixture thereof is added to the metal powder and the granulated graphite. [0004] By the way, the aforementioned M
Solid lubricants such as oS 2 , WS 2 , and BN have excellent properties as a measure against abrasion of the electric brush, but in the electric brush, graphite powder, which is a main component thereof, is granulated with a binder. For this reason, this is a cause of deterioration in lubricity. This deterioration in lubricity leads to the technical problem of increasing the sliding noise generated between the commutator of the motor or the like, or the brush holder and the electric brush, especially when incorporated in the motor or the like. There is a problem that the commercial value of a product using an electric motor or the like is reduced. The present invention has been made to solve the above-mentioned technical problems, and in particular, by improving the electric brush lubrication characteristics, it is possible to reduce the sliding noise generated from an electric motor or the like. It is an object of the present invention to provide an electric brush as described above. [0006] The metallic graphite electric brush according to the present invention, which has been made to solve the above-mentioned problem, is kneaded by adding a binder of 10 to 30% by weight to 100% by weight of graphite powder. -10% to 75% by weight of the granulated graphite,
It is characterized in that 5 to 20% by weight of ungranulated graphite and 20 to 70% by weight of metal powder are mixed, molded and fired. As the metal powder used here, metal powders such as silver, aluminum, tin, lead, manganese, iron and nickel can be used in addition to the above-mentioned copper powder, and copper powder is particularly preferable. When using copper powder,
In particular, it can make use of its characteristic of being excellent in electrical conductivity and thermal conductivity. When copper powder is used as the metal powder, the particle size distribution is 1 μm to 300 μm (or 50 mesh pass), and more preferably 10 μm to 100 μm. When the particle size distribution of the copper powder exceeds 300 μm, there is a problem that the copper lump is large and the sliding noise is increased. On the other hand, when the particle size distribution is less than 1 μm, there is a disadvantage that the moldability is deteriorated. appear. The graphite powder granulated by a binder and the non-granulated graphite powder without a binder include, for example, natural graphite powder such as flake graphite and earth graphite.
Although artificial graphite such as carbon black and coke powder can be used, it is particularly preferable to use natural graphite powder. When natural graphite powder is used, it has better lubricity than artificial graphite, so it can improve the sliding characteristics of the electric brush and contribute to reducing the sliding noise generated by the electric brush. it can. In this case, the granulated graphite granulated by the binder is kneaded and granulated and then pulverized to a particle size of 1%.
It is a powder of 0 μm to 1000 μm. (Or 15
It is a powder of mesh pass. The particle size after the pulverization is more preferably 50
μm to 300 μm. When the particle size of the granulated graphite exceeds 1000 μm, there is a problem that the mechanical strength is reduced. On the other hand, when the particle size of the granulated graphite is less than 10 μm, The disadvantage that the resistance becomes high occurs. Further, for example, the particle size distribution of ungranulated graphite powder added to copper powder and granulated graphite is 1 μm to 300 μm (or 150 mesh pass), and more preferably 10 μm to 100 μm. Is used. When the particle size distribution of the ungranulated graphite powder exceeds 300 μm, there is a problem that the mechanical strength is low. On the other hand, when the particle size distribution is less than 5 μm, there is a problem that the specific resistance increases. With respect to the mixing ratio of the metal powder and the granulated graphite, as the metal content increases, the electrical conductivity of the electric brush main body can be increased, but the lubricity of the electric brush is reduced and the motor brush is not used. This will adversely affect the noise reduction characteristics. For this reason, when copper powder is used as the metal powder, as described above, the copper powder is in the range of 20 to 70% by weight, and the granulated graphite is in the range of 10 to 75% by weight. It is appropriate that the range of from about 50% by weight to about 50% by weight and the amount of the granulated graphite be from 20% by weight to 45% by weight. Further, when the amount of the ungranulated graphite added to the composition comprising the metal powder and the granulated graphite is less than 5% by weight, as shown in the measurement results of Examples described later, If the sliding noise characteristics of the brush cannot be satisfied and the amount of ungranulated graphite exceeds 20% by weight, the mechanical strength decreases and the specific resistance increases,
Further, there is a problem that copper picking and chattering due to uneven film are caused. A more preferable range of the added amount of the non-granulated graphite is 5 to 20% by weight as shown in the measurement results of Examples described later. Further, as the solid lubricant, any one or more of molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ) and boron nitride (BN) can be used simultaneously. In particular, MoS 2 is preferably used as the solid lubricant because of its excellent lubricity at high temperatures. Further, the binder added to the above-mentioned material is a powder at room temperature and becomes liquid by heating, for example, phenol resin,
It is desirable to use a thermosetting resin such as an epoxy resin. Further, the amount of the binder to be added is set to an amount capable of obtaining a necessary and sufficient bonding strength by firing after molding, and the addition of an amount larger than that causes a problem of lowering the electric conductivity of the electric brush. Preferably, the amount of the binder added is 10 to 30% by weight.
It is. The conditions for pressure molding and baking after kneading the binder to the above-mentioned material are not particularly limited, and may be performed by a usual known method. For example, the molding pressure is 2 to 4 ton / cm 2 , and the baking temperature is 600. It is preferably performed at a temperature of from about 800 ° C. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The outline of the manufacturing process of an electric brush according to the present invention is as follows. First, an electrolytic copper powder having an average particle diameter of 40 to 50 μm is prepared as a material constituting an electric brush as a metal powder. The natural graphite powder is formed into granulated graphite by using a phenol resin as a binder. This granulated graphite is pulverized after kneading and granulation to obtain an average particle size of 200 to 300 μm.
m powder. MoS 2 is added as a solid lubricant to the electrolytic copper powder and the granulated graphite. The average particle size of these electrobrush brush compositions is 50 to 1
Ungranulated natural graphite of 50 μm is added and kneaded.
And the kneaded material is 3 tons / c by a press machine.
An electric brush which is molded at a molding pressure of m 2 and fired at 800 ° C. or less for 15 hours or less can be obtained. Examples Here, the mixing ratio of the granulated graphite in which the mixing ratio of the binder was changed, each electrolytic copper powder, and the non-granulated graphite was changed, and various types of electric brushes were prepared based on the above-mentioned manufacturing method. I got
(Examples 1 to 7, Comparative Examples 1 to 6) In addition, for comparison, a state in which ungranulated graphite was not added, and an amount of ungranulated graphite added so as to be larger than a predetermined amount, were described above. Various electric brushes were obtained based on the manufacturing method. (Comparative Example 3 and Comparative Example 4) (Example 1) 40% by weight of granulated graphite obtained by adding 10% by weight of a binder to 100% by weight of natural graphite and kneading and granulating the mixture was mixed with electrolytic copper 50% by weight of powder and 10% by weight of non-granulated graphite were added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Example 2) A binder was used with respect to 100% by weight of natural graphite.
Is added to 20% by weight of kneaded and granulated graphite, and 50% by weight of electrolytic copper powder and 10% by weight of non-granulated graphite are added to 40% by weight of granulated graphite.
Was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. Example 3 100% by weight of natural graphite, 30% by weight of a binder were added, and 40% by weight of granulated graphite obtained by kneading and granulation were mixed with 50% by weight of electrolytic copper powder and 50% by weight of ungranulated graphite. 10% by weight was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. Example 4 100% by weight of natural graphite and binder
Was added and kneaded and granulated to obtain 45% by weight of granulated graphite, to which 50% by weight of electrolytic copper powder and 5% by weight of ungranulated graphite were added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Example 5) 20% by weight of a binder was added to 100% by weight of natural graphite, and 30% by weight of granulated graphite obtained by kneading and granulating was added to 50% by weight of electrolytic copper powder and 50% by weight of ungranulated graphite. 20% by weight was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Example 6) 100% by weight of natural graphite and binder
Was added to 20% by weight of kneaded and granulated graphite, and 20% by weight of electrolytic copper powder and 10% by weight of non-granulated graphite were added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Example 7) A binder was used with respect to 100% by weight of natural graphite.
Was added to 20% by weight of granulated graphite obtained by kneading and granulating, and 70% by weight of electrolytic copper powder and 10% by weight of non-granulated graphite were added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. Comparative Example 1 50% by weight of electrolytic copper powder and 50% by weight of non-granulated graphite were added to 40% by weight of granulated graphite obtained by adding and mixing 5% by weight of a binder to 100% by weight of natural graphite and kneading and granulating. 10% by weight of graphite was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Comparative Example 2) A binder was used with respect to 100% by weight of natural graphite.
Is added to 35% by weight of kneaded and granulated graphite, and 50% by weight of electrolytic copper powder and 10% by weight of non-granulated graphite
Was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. Comparative Example 3 50% by weight of electrolytic copper powder was added to 50% by weight of granulated graphite obtained by adding 20% by weight of a binder to 100% by weight of natural graphite and kneading and granulating (ungranulated). (Without adding graphite) and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Comparative Example 4) 100% by weight of natural graphite and binder
Was added to 25% by weight of granulated graphite obtained by kneading and granulating, and 50% by weight of electrolytic copper powder and 25% by weight of non-granulated graphite.
Was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Comparative Example 5) 20% by weight of a binder was added to 100% by weight of natural graphite, and 80% by weight of granulated graphite obtained by kneading and granulating was added to 10% by weight of electrolytic copper powder and 10% by weight of ungranulated graphite. 10% by weight was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. (Comparative Example 6) A binder was used with respect to 100% by weight of natural graphite.
Was added to 10% by weight of granulated graphite obtained by kneading and granulating, and 80% by weight of electrolytic copper powder and 10% by weight of non-granulated graphite.
Was added and kneaded. Using this kneaded material, an electric brush was obtained based on the above-mentioned manufacturing method. Each of the brushes obtained in Examples 1 to 7 and Comparative Examples 1 to 6 was incorporated into a DC motor, and 15000 rpm at 5 A to 12 V.
The DC motor was driven under the following conditions. Then, sliding noise (initial sliding noise) generated from the DC motor 30 minutes after the start of sliding was measured for Examples 1 to 7 and Comparative Examples 1 to 6, respectively. The sliding noise (end-stage sliding noise) generated by the DC motor 500 hours after the start of sliding was measured for Examples 1 to 7 and Comparative Examples 1 to 6, respectively. Table 1 shows the results. [Table 1] As shown in the measurement results in Table 1, in Examples 1 to 7 in which ungranulated graphite was added, the sliding noise of the electric brush was lower than in Comparative Example 3 in which ungranulated graphite was not added. It is clear that it is much lower. Comparative Examples 1 and 4
The sliding noise was not measured because no sufficient bending strength could be obtained. This is comparative example 1.
In the case of No. 4, it is considered that the mechanical strength was weak because the amount of the binder added was small, and in the case of Comparative Example 4, the amount of the non-granulated graphite was large. In Comparative Examples 2 and 5, the specific resistance was extremely high, and
Data characteristics (rotational speed, etc.). In the case of Comparative Example 2, since the amount of the binder added is large, and in the case of Comparative Example 5, the amount of the metal powder added is small, the specific resistance value becomes extremely high, and the motor characteristics (rotation speed, etc.) It is considered that a defect occurred. Further, in Comparative Example 6, there was a problem that sliding noise was high. This is presumably because the lubricating properties of the electric brush were reduced due to the large amount of the metal powder added. As shown in Examples 1 to 7 in Table 1, 10 to 30% by weight of a binder was added to 100% by weight of graphite powder, and kneaded and granulated.
5% by weight, 5-20% by weight of non-granulated graphite and metal powder 2
It has been found that the metal-graphitic electric brush obtained by mixing with 0 to 70% by weight, shaping and sintering further reduces the sliding noise without lowering the mechanical strength. As is apparent from the above description, the metallic graphite electric brush according to the present invention was kneaded and granulated by adding 10 to 30% by weight of a binder to 100% by weight of graphite powder. 10 to 75% by weight of granulated graphite and 5 to 20% of non-granulated graphite
% Of the metal powder and 20 to 70% by weight of the metal powder, and then molded and fired. This metal graphite electric brush can improve the sliding characteristics of the electric brush. Therefore, when this is used for an electric motor or the like, the sliding noise can be reduced, and the commercial value can be improved.
フロントページの続き (72)発明者 渡辺 栄稔 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社 小国製 造所内 (56)参考文献 特開 平3−74159(JP,A) 特開 平6−302370(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01R 39/26 H01R 43/12 H02K 13/00 Continuation of the front page (72) Inventor, Eminori Watanabe 378, Oguni-machi, Oguni-machi, Nishiokitama-gun, Yamagata Pref. Hei 6-302370 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01R 39/26 H01R 43/12 H02K 13/00
Claims (1)
重量%のバインダーを添加し混練・造粒した造粒黒鉛を
10〜75重量%と、未造粒黒鉛5〜20重量%及び金
属粉末20〜70重量%とを混合し、成形及び焼成する
ことを特徴とする金属黒鉛質電刷子の製造方法。(57) [Claims 1] 10 to 30 with respect to 100% by weight of graphite powder
10% to 75% by weight of granulated graphite kneaded and granulated by adding a binder by weight, 5 to 20% by weight of ungranulated graphite and 20 to 70% by weight of metal powder, and molding and firing. A method for producing a metallic graphite brush.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02919098A JP3467755B2 (en) | 1998-01-27 | 1998-01-27 | Manufacturing method of metallic graphite brush |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02919098A JP3467755B2 (en) | 1998-01-27 | 1998-01-27 | Manufacturing method of metallic graphite brush |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11214109A JPH11214109A (en) | 1999-08-06 |
JP3467755B2 true JP3467755B2 (en) | 2003-11-17 |
Family
ID=12269292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02919098A Expired - Lifetime JP3467755B2 (en) | 1998-01-27 | 1998-01-27 | Manufacturing method of metallic graphite brush |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3467755B2 (en) |
-
1998
- 1998-01-27 JP JP02919098A patent/JP3467755B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11214109A (en) | 1999-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5447681A (en) | Method for manufacturing metal graphite brush | |
JP3467755B2 (en) | Manufacturing method of metallic graphite brush | |
JP2641695B2 (en) | Manufacturing method of metallic graphite brush | |
JPH0651894B2 (en) | Manufacturing method of metallic graphite brush | |
JP2001327127A (en) | Copper-carbon brush and its manufacturing method | |
CN111244713B (en) | Electric brush | |
JP2570888B2 (en) | Electric brush | |
KR960011512B1 (en) | Brush manufacturing method | |
KR0147192B1 (en) | Method of manufacturing metal graphite brush | |
JP7516341B2 (en) | Electric brush | |
JP3316029B2 (en) | Brush for rotating electric machine | |
JPS5829586B2 (en) | Densatsushiyoyobisono Seizouhouhou | |
CN111244724B (en) | Preparation method of electric brush | |
JP2007097244A (en) | Electric brush and its manufacturing method | |
CN111244712B (en) | Electric brush material for motor | |
KR950004631B1 (en) | Brush manufacturing method | |
JP2005176492A (en) | Brush for dc motor | |
KR100226634B1 (en) | Manufacturing method of metallic black-lead brush | |
JPH077892A (en) | Metal graphite brush | |
CN111244723B (en) | Preparation method of electric brush | |
JPH06153459A (en) | Metal graphite brush | |
JPS63143770A (en) | Metal graphite brush | |
JP3045268B2 (en) | Method for producing metallic graphite unfired brush | |
KR100229408B1 (en) | Metal graphite brush and method of making it | |
CN113872002A (en) | Preparation method of electric brush |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |