JP3467076B2 - Refrigerator control device - Google Patents

Refrigerator control device

Info

Publication number
JP3467076B2
JP3467076B2 JP11501994A JP11501994A JP3467076B2 JP 3467076 B2 JP3467076 B2 JP 3467076B2 JP 11501994 A JP11501994 A JP 11501994A JP 11501994 A JP11501994 A JP 11501994A JP 3467076 B2 JP3467076 B2 JP 3467076B2
Authority
JP
Japan
Prior art keywords
compressor
electric motor
chamber
pressure difference
motor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11501994A
Other languages
Japanese (ja)
Other versions
JPH07318174A (en
Inventor
秀喜 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP11501994A priority Critical patent/JP3467076B2/en
Publication of JPH07318174A publication Critical patent/JPH07318174A/en
Application granted granted Critical
Publication of JP3467076B2 publication Critical patent/JP3467076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、横形圧縮機を用いた冷
凍機の制御装置に係り、特に、簡単な構成で、正確に潤
滑油不足を防止する冷凍機の制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a controller for a refrigerator using a horizontal compressor, and more particularly to a controller for a refrigerator that has a simple structure and can accurately prevent a shortage of lubricating oil.

【0002】[0002]

【従来の技術】冷凍機の冷凍サイクルは、圧縮機、凝縮
器、減圧装置及び蒸発器から構成される。この圧縮機に
は、密閉容器内に電動機要素を収容する電動機要素室と
圧縮要素を収容する圧縮要素室とを横に並べて形成し実
開昭61−10992号公報及び特開昭62−2849
76号公報に示すように両要素室間の圧力差で潤滑油を
給油する横形圧縮機が使用される。この種の圧縮機は、
電動機要素の回転数が高まると潤滑油不足を起こすこと
がある。即ち、回転数が高まると両素子室間の圧力差が
大きくなり、一方では潤滑油面の上昇により冷凍サイク
ル内への吐油量が増加し、他方では潤滑油面の低下によ
り機構部の摺動面が油切れし、金属接触による磨耗が増
加する。
2. Description of the Related Art A refrigeration cycle of a refrigerator comprises a compressor, a condenser, a pressure reducing device and an evaporator. In this compressor, an electric motor element chamber for accommodating the electric motor element and a compression element chamber for accommodating the compression element are formed side by side in a hermetically sealed container, which is disclosed in Japanese Utility Model Laid-Open No. 61-10992 and Japanese Patent Laid-Open No. 62-2849.
As shown in Japanese Patent Publication No. 76, a horizontal compressor is used which supplies lubricating oil by the pressure difference between both element chambers. This kind of compressor
When the number of rotations of the electric motor element increases, a shortage of lubricating oil may occur. That is, as the number of revolutions increases, the pressure difference between the two element chambers increases.On the one hand, the amount of oil discharged into the refrigeration cycle increases due to the rise of the lubricating oil surface, and on the other hand, the mechanism part slides due to the decrease of the lubricating oil surface. The moving surface runs out of oil and wear due to metal contact increases.

【0003】従来、圧縮機の潤滑油不足に対する保護策
として、例えば特開平5−203269号の技術のよう
に、圧縮機の側部に潤滑油面検出器を設け、圧縮機内に
溜る潤滑油の量を潤滑油面から検出し、この潤滑油の量
に基づいて電動機要素の回転数を規制し、回転数上昇時
の潤滑油不足を防止するものがある。
Conventionally, as a measure against a lack of lubricating oil in a compressor, a lubricating oil level detector is provided on the side of the compressor to prevent the lubricating oil from accumulating inside the compressor, as in the technique disclosed in Japanese Patent Laid-Open No. 5-203269. There is a method in which the amount is detected from the lubricating oil surface, and the rotation speed of the electric motor element is regulated based on the amount of the lubricating oil to prevent the lack of the lubricating oil when the rotation speed increases.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の方法には以下のような欠点があった。
However, the above-mentioned conventional method has the following drawbacks.

【0005】1)圧縮機の外部に潤滑油面検出器を取り
付けねばならず、冷凍機全体が占める空間が増大する。
1) A lubricating oil level detector must be mounted outside the compressor, which increases the space occupied by the entire refrigerator.

【0006】2)潤滑油面検出器の検出方式がフロート
式であると、圧縮機内の潤滑油の状態がフォーミングさ
れた場合に正しい潤滑油の量を知ることができない。
2) If the detection method of the lubricating oil level detector is the float type, it is not possible to know the correct amount of lubricating oil when the state of the lubricating oil in the compressor is formed.

【0007】そこで、本発明の目的は、上記課題を解決
し、簡単な構成で、正確に潤滑油不足を防止する冷凍機
の制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a refrigerator control device which has a simple structure and accurately prevents a lack of lubricating oil.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の第1の構成は、密閉容器内に電動機要素を収
容する電動機要素室と圧縮要素を収容する圧縮要素室と
を横に並べて形成し両要素室間の圧力差で潤滑油を給油
する圧縮機を用い、この圧縮機に凝縮器、減圧装置及び
蒸発器を加えて冷凍サイクルを構成した冷凍機に設けら
れ、この冷凍サイクルの負荷に基づいて上記電動機要素
の回転数を増減させる冷凍機の制御装置において、上記
圧力差に基づいて上記電動機要素の回転数を規制する制
御部を備えたものである。
In order to achieve the above object, the first structure of the present invention is such that a hermetically sealed container has a motor element chamber for accommodating a motor element and a compression element chamber for accommodating a compression element. A compressor that is formed side by side and supplies lubricating oil by the pressure difference between both element chambers is used, and a condenser, a decompression device and an evaporator are added to this compressor to provide a refrigeration cycle. In the control device for a refrigerator that increases or decreases the rotation speed of the electric motor element based on the load, a control unit that restricts the rotation speed of the electric motor element based on the pressure difference is provided.

【0009】上記制御部は、上記圧力差が設定値を越え
たとき、上記電動機要素の回転数を一定時間維持した
後、低減させてもよい。
When the pressure difference exceeds a set value, the control unit may maintain the rotation speed of the electric motor element for a certain period of time and then reduce the rotation speed.

【0010】また、第2の構成は、上記電動機要素
上記圧縮要素とをバイパス管で結び、上記圧力差に基
づいて上記バイパス管の流量を規制する制御部を備えた
ものである。
In the second configuration, the electric motor element chamber and the compression element chamber are connected by a bypass pipe, and a control unit for regulating the flow rate of the bypass pipe based on the pressure difference is provided.

【0011】[0011]

【作用】上記第1の構成により、制御部は圧力差に基づ
いて電動機要素の回転数を規制する。従って、冷凍サイ
クルの負荷に基づいて電動機要素の回転数が増大し、圧
力差が増大するとき、潤滑油不足が生じる前に回転数が
規制され、回転数が増大しなくなる。これにより潤滑油
不足が生じなくなるので、金属接触による磨耗が抑えら
れる。
With the first configuration, the control section regulates the rotation speed of the electric motor element based on the pressure difference. Therefore, when the rotation speed of the electric motor element increases and the pressure difference increases based on the load of the refrigeration cycle, the rotation speed is regulated before the lack of lubricating oil occurs, and the rotation speed does not increase. As a result, the lack of lubricating oil does not occur, and wear due to metal contact is suppressed.

【0012】冷凍サイクルの運転中には種々の負荷条件
が生じるため、電動機要素の回転数は常時変動し、これ
に応じて圧力差は常時変動する。従って、制御部が頻繁
に働いて回転数が頻繁に変化することになる。ここで圧
力差の設定値を設定し、圧力差が設定値を越えたとき電
動機要素の回転数を一定時間維持した後、低減させる
と、回転数の変化が少なくなり制御が安定する。
Since various load conditions occur during the operation of the refrigeration cycle, the rotation speed of the electric motor element constantly fluctuates, and the pressure difference constantly fluctuates accordingly. Therefore, the control unit frequently operates and the rotation speed frequently changes. If the set value of the pressure difference is set here and the rotational speed of the electric motor element is maintained for a certain period of time when the pressure difference exceeds the set value and then reduced, the change in the rotational speed is reduced and the control is stabilized.

【0013】上記第2の構成にあっては、電動機要素
と圧縮要素との間にバイパス管が有り、この場合、制
御部は圧力差に基づいてバイパス管の流量を規制する。
従って、冷凍サイクルの負荷に基づいて電動機要素の回
転数が増大し、圧力差が増大するとき、潤滑油不足が生
じる前に開度が規制(全閉でなくなる)され、圧力差が
緩和される。これにより潤滑油不足が生じなくなるの
で、金属接触による磨耗が抑えられる。この場合、回転
数は規制されないので圧縮機の能力を変えずに吐油量の
増加を防止できることになる。
In the second structure, there is a bypass pipe between the electric motor element chamber and the compression element chamber, and in this case, the control unit regulates the flow rate of the bypass pipe based on the pressure difference. To do.
Therefore, when the rotation speed of the electric motor element increases based on the load of the refrigeration cycle and the pressure difference increases, the opening degree is regulated (not fully closed) before the lack of lubricating oil occurs, and the pressure difference is reduced. . As a result, the lack of lubricating oil does not occur, and wear due to metal contact is suppressed. In this case, the number of revolutions is not regulated, so that it is possible to prevent an increase in the amount of oil discharged without changing the capacity of the compressor.

【0014】[0014]

【実施例】以下本発明の第1の実施例を図1〜図6に基
づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described in detail below with reference to FIGS.

【0015】図1及び図2に示されるように、本発明に
係る圧縮機1は、横形圧縮機であり、主に、ほぼ円筒形
を呈し回転軸が水平に置かれた圧縮機ケース(密閉容
器)2と、これに併設された横形サクションカップ3と
から構成されている。圧縮機ケース2内は仕切板4を境
に軸方向に区画されている。一方の区画には圧縮要素5
が収容され、他方の区画には電動機要素6が収容されて
いる。圧縮要素5の収容された区画は圧縮要素室(A
室;A)、電動機要素6の収容された区画は電動機要素
室(B室;B)である。A室とB室とは回転軸7の軸方
向に設けられた貫通孔7aで連通されている。A室に
は、ブレード室8、オイルポンプ板9、吐出カバー10
が設けられている。オイルポンプ板9は圧縮要素5と電
動機要素6との間で潤滑油Oを流通させる働きをするも
のである。吐出カバー10は貫通孔7aの開口部の下か
ら開口部の正面を覆うように形成され、上方がA室内に
開放されている。シリンダ20の外周の一側にはA室内
の冷媒を圧縮機外へ導く連絡路が設けられると共に吐出
パイプ11が接続され、シリンダ20の外周の他側には
横形サクションカップ3と連通するパイプ12が接続さ
れている。このパイプ12に接続された横形サクション
カップ3は、その反対側が冷媒を吸込む吸込パイプ14
に接続されている。
As shown in FIGS. 1 and 2, the compressor 1 according to the present invention is a horizontal compressor, and mainly has a substantially cylindrical shape and has a rotary shaft placed horizontally (a hermetically sealed case). It is composed of a container 2 and a horizontal suction cup 3 attached to it. The interior of the compressor case 2 is partitioned in the axial direction by the partition plate 4 as a boundary. Compression element 5 in one compartment
Is accommodated in the other compartment, and the electric motor element 6 is accommodated in the other compartment. The compartment in which the compression element 5 is housed is the compression element chamber (A
The compartment in which the chamber; A) and the motor element 6 are housed is a motor element chamber (room B; B). The chamber A and the chamber B are communicated with each other through a through hole 7a provided in the axial direction of the rotary shaft 7. The chamber A includes a blade chamber 8, an oil pump plate 9, and a discharge cover 10.
Is provided. The oil pump plate 9 serves to circulate the lubricating oil O between the compression element 5 and the electric motor element 6. The discharge cover 10 is formed from below the opening of the through hole 7a so as to cover the front of the opening, and the upper side is open to the A chamber. A communication path for guiding the refrigerant in the chamber A to the outside of the compressor is provided on one side of the outer periphery of the cylinder 20, and a discharge pipe 11 is connected thereto, and a pipe 12 communicating with the horizontal suction cup 3 is provided on the other side of the outer periphery of the cylinder 20. Are connected. The horizontal suction cup 3 connected to the pipe 12 has a suction pipe 14 on the opposite side for sucking the refrigerant.
It is connected to the.

【0016】図1に示され、図2では省略されている構
成として、圧縮要素5を収容する圧縮要素室(A室)
び電動機要素6を収容する電動機要素室(B室)には、
それぞれ感圧管15,16が挿入されており、感圧管1
5,16には低圧側センサ17又は高圧側センサ18が
取り付けられている。低圧側センサ17及び高圧側セン
サ18の出力は制御ユニット19に接続されている。制
御ユニット19は圧縮要素5及び電動機要素6の圧力差
に基づいて電動機要素6の回転数を規制する制御部を構
成している。
As a configuration shown in FIG. 1 and omitted in FIG. 2, the compression element chamber (A chamber) for accommodating the compression element 5 and the motor element chamber (B chamber) for accommodating the electric motor element 6 are
The pressure-sensitive tubes 15 and 16 are respectively inserted, and the pressure-sensitive tube 1
A low-voltage side sensor 17 or a high-voltage side sensor 18 is attached to each of 5 and 16. The outputs of the low voltage side sensor 17 and the high voltage side sensor 18 are connected to the control unit 19. The control unit 19 constitutes a control unit that regulates the rotation speed of the electric motor element 6 based on the pressure difference between the compression element 5 and the electric motor element 6.

【0017】図3にヒートポンプ式空気調和機の冷凍サ
イクルを示す。この冷凍サイクルは、本発明の圧縮機1
に凝縮器、減圧装置及び蒸発器を加えて構成されてい
る。具体的には、圧縮機1の吐出パイプ11及び吸込パ
イプ14が四方弁31を介して室内熱交換器32及び室
外熱交換器33に接続され、室内熱交換器32と室外熱
交換器33とが膨脹弁34を介して接続されている。制
御ユニット19は、この冷凍サイクルの負荷に基づいて
電動機要素の回転数を増減させる制御装置であり、電動
機要素を駆動するインバータ装置35、室内ファン3
6、室外ファン37及び膨脹弁34を制御することがで
きる。
FIG. 3 shows a refrigeration cycle of the heat pump type air conditioner. This refrigeration cycle is the compressor 1 of the present invention.
To a condenser, a decompression device and an evaporator. Specifically, the discharge pipe 11 and the suction pipe 14 of the compressor 1 are connected to the indoor heat exchanger 32 and the outdoor heat exchanger 33 via the four-way valve 31, and the indoor heat exchanger 32 and the outdoor heat exchanger 33 are connected. Are connected via an expansion valve 34. The control unit 19 is a control device that increases or decreases the rotation speed of the electric motor element based on the load of the refrigeration cycle, and includes an inverter device 35 that drives the electric motor element and the indoor fan 3.
6. The outdoor fan 37 and the expansion valve 34 can be controlled.

【0018】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0019】図2は圧縮機1が停止しているときの状態
を示している。圧縮機1内には潤滑油Oが収容されA室
とB室とで圧力差がないため、潤滑油Oが形成する潤滑
油面Sは同一高さとなっている。図1は圧縮機1が運転
されているときの状態を示している。運転中はA室とB
室とに圧力差があるため、潤滑油Oが形成する潤滑油面
A とSB とが異なっている。一方、冷媒ガスの流れを
見ると、シリンダ20で圧縮された冷媒ガスが吐出弁を
通り、電動機要素6の発熱を抑える目的で電動機要素6
側に吐出され、電動機要素6を通過した後、回転軸の貫
通孔7aを電動機要素6側から圧縮要素5側へ通過し、
B室の反対端に至る。その冷媒ガスは回転軸7の貫通孔
7aを経由し、貫通孔7aの圧縮要素5側の開口部で吐
出カバー10に規制されて吐出カバー10の上方でA室
内に入り、吐出パイプ11より冷凍サイクルに供給され
る。このように冷媒ガスを流すためにA室はB室より圧
力が低くなっている。潤滑油面SA とSB との差は、こ
の圧力差によるものである。
FIG. 2 shows a state in which the compressor 1 is stopped. Since the lubricating oil O is contained in the compressor 1 and there is no pressure difference between the A chamber and the B chamber, the lubricating oil surface S formed by the lubricating oil O has the same height. FIG. 1 shows a state when the compressor 1 is operating. Room A and B during operation
Since there is a pressure difference with the chamber, the lubricating oil surfaces S A and S B formed by the lubricating oil O are different. On the other hand, looking at the flow of the refrigerant gas, the refrigerant gas compressed in the cylinder 20 passes through the discharge valve, and the electric motor element 6 is controlled for the purpose of suppressing heat generation of the electric motor element 6.
After being discharged to the side and passing through the electric motor element 6, it passes through the through hole 7a of the rotary shaft from the electric motor element 6 side to the compression element 5 side,
It reaches the other end of room B. The refrigerant gas passes through the through hole 7a of the rotary shaft 7, is regulated by the discharge cover 10 at the opening of the through hole 7a on the compression element 5 side, enters the chamber A above the discharge cover 10, and is frozen by the discharge pipe 11. Supplied to the cycle. Since the refrigerant gas flows as described above, the pressure in the chamber A is lower than that in the chamber B. The difference between the lubricating oil surfaces S A and S B is due to this pressure difference.

【0020】このまま電動機要素6の回転数が高くなる
と、潤滑油面SA が図1の状態よりさらに上昇する。潤
滑油面SA が吐出カバー10の上端を越えるか、それに
近い状態のとき潤滑油Oが冷媒ガスと一緒に吐出パイプ
11を介して冷凍サイクルに吐油される。従って、従来
の構成ならば圧縮機1内の潤滑油Oに不足が生じ、金属
接触が引き起こされ、磨耗の増加へとつながる。これを
回避するために、潤滑油面SA が吐出カバー10の上端
に近付く前に潤滑油面SA を低下させることが必要にな
る。
If the rotation speed of the electric motor element 6 is increased as it is, the lubricating oil surface S A is further raised from the state shown in FIG. When the lubricating oil surface S A exceeds or is close to the upper end of the discharge cover 10, the lubricating oil O is discharged to the refrigeration cycle together with the refrigerant gas through the discharge pipe 11. Therefore, in the case of the conventional configuration, the lubricating oil O in the compressor 1 runs short, metal contact is caused, and wear increases. To avoid this, the lubricating oil level S A is necessary to decrease the lubricating oil level S A before approaching the upper end of the discharge cover 10.

【0021】さて、本発明では、電動機要素6の回転数
の規制を圧力差に基づいて行う。このために、予め図1
の圧縮機1に潤滑油面を確認するサイトグラス(図示せ
ず)を組み込んで実験を行った。その結果は図4及び図
5に示されている。低圧側センサ17の出力電圧を
L 、高圧側センサ18の出力電圧をVH とするとき、
センサ間の出力電圧差dV=VH −VL である。出力電
圧差dVと潤滑油面SA の高さLとの関係を示す図4に
おいて、LMAX は潤滑油面SA が吐出カバー10の上端
にあるときの高さ、L0 は停止中の潤滑油面Sの高さ、
dVMAX はLMAX に対応する出力電圧差、dV0 は停止
中の出力電圧差、dVsは制御開始電圧である。図4に
示されるように、測定点ははぼ直線を形成しており、こ
の直線41に基づいて潤滑油面SA が吐出カバー10の
上端に近付く前に制御開始できるような制御開始電圧d
Vsを定めることができる。
In the present invention, the rotation speed of the electric motor element 6 is regulated based on the pressure difference. To this end, FIG.
An experiment was conducted by incorporating a sight glass (not shown) for checking the lubricating oil surface into the compressor 1 of 1. The results are shown in FIGS. 4 and 5. When the output voltage of the low voltage side sensor 17 is V L and the output voltage of the high voltage side sensor 18 is V H ,
The output voltage difference between the sensors is dV = VH - VL . 4 showing the relationship between the height L of the output voltage difference dV and the lubricating oil level S A, L MAX is the height at which the lubricating oil surface S A is in the upper end of the discharge cover 10, L 0 is at rest The height of the lubricating oil surface S,
dV MAX is the output voltage difference corresponding to L MAX , dV 0 is the output voltage difference during stop, and dVs is the control start voltage. As shown in FIG. 4, the measurement point forms a curved straight line, and based on this straight line 41, the control start voltage d that allows control to be started before the lubricating oil surface S A approaches the upper end of the discharge cover 10.
Vs can be defined.

【0022】また、A室の圧力をPA 、B室の圧力をP
B とするとき、圧力差dP=PB −PA である。出力電
圧差Vと圧力差Pとの関係を示す図5において、dP
MAX は潤滑油面SA が吐出カバー10の上端にあるとき
の圧力差、dP0 は停止中の圧力差である。図5に示さ
れるように、出力電圧差dVとd圧力差Pとの関係は直
線的である。
Further, the pressure in the chamber A is P A , and the pressure in the chamber B is P
When B , the pressure difference dP = P B −P A. In FIG. 5, which shows the relationship between the output voltage difference V and the pressure difference P, dP
MAX is the pressure difference when the lubricating oil surface S A is at the upper end of the discharge cover 10, and dP 0 is the pressure difference during stop. As shown in FIG. 5, the relationship between the output voltage difference dV and the d pressure difference P is linear.

【0023】本発明にあっては、低圧側センサ17によ
ってA室の圧力PA が電圧VL で検出され、高圧側セン
サ18によってB室の圧力PB が電圧VH で検出され
る。制御ユニット19は圧力差Pを表す出力電圧差dV
が制御開始電圧dVsとなったら電動機要素6の回転数
の規制を開始する。これにより回転数が増大しなくな
り、冷凍サイクルへの吐油の増大がなくなる。従って、
潤滑油不足が生じなくなるので、金属接触による磨耗が
抑えられる。
In the present invention, the low-pressure sensor 17 detects the pressure P A in the A chamber at the voltage V L , and the high-pressure sensor 18 detects the pressure P B in the B chamber at the voltage V H. The control unit 19 outputs the output voltage difference dV indicating the pressure difference P.
Becomes the control start voltage dVs, the regulation of the rotation speed of the electric motor element 6 is started. As a result, the rotation speed does not increase, and the oil discharge to the refrigeration cycle does not increase. Therefore,
Since lack of lubricating oil does not occur, wear due to metal contact is suppressed.

【0024】次に、図3のヒートポンプ式空気調和機の
暖房運転時の制御動作を図6の流れ図に沿って説明す
る。まず、暖房運転開始指令により四方弁31が切り替
えられ暖房運転が可能になる(ステップ1)。各センサ
17,18の出力電圧が検出され、出力電圧差dVが算
出される(ステップ2)。出力電圧差dVが制御開始電
圧dVsより小さいとき、通常の暖房運転となる(ステ
ップ3)。暖房運転開始により潤滑油面SA は上昇す
る。冷凍サイクルの負荷により圧縮機1の電動機要素6
の回転数が上昇すると、潤滑油面SA はさらに上昇し、
吐出カバー10の上端に近付こうとする。出力電圧差d
Vが制御開始電圧dVsより大きくなると、制御ユニッ
ト19は圧縮機1の負荷を軽減させるための制御を行う
(ステップ4)。この制御の内容は、圧縮機1の電動機
要素6の回転数を低下させること、膨脹弁34の絞り量
を大きくすること、及び室内ファン36の風量を大きく
することである。膨張弁34の絞り量と室内ファン36
の風量を大きくするのは、室内熱交換器32内の冷媒の
温度を低下させて圧縮機1の吐出圧力を低下させようと
するものである。この制御は出力電圧差dVが制御開始
電圧dVsより小さくなるまで繰り返される。
Next, the control operation during the heating operation of the heat pump type air conditioner of FIG. 3 will be described with reference to the flow chart of FIG. First, the four-way valve 31 is switched by the heating operation start command to enable the heating operation (step 1). The output voltage of each sensor 17, 18 is detected, and the output voltage difference dV is calculated (step 2). When the output voltage difference dV is smaller than the control start voltage dVs, the normal heating operation is performed (step 3). The lubricating oil surface S A rises as the heating operation starts. The motor element 6 of the compressor 1 depending on the load of the refrigeration cycle
When the number of revolutions of increases, the lubricating oil surface S A further increases,
Attempts to approach the upper end of the discharge cover 10. Output voltage difference d
When V becomes larger than the control start voltage dVs, the control unit 19 performs control for reducing the load on the compressor 1 (step 4). The contents of this control are to reduce the rotation speed of the electric motor element 6 of the compressor 1, increase the throttle amount of the expansion valve 34, and increase the air flow rate of the indoor fan 36. Expansion valve 34 throttling amount and indoor fan 36
The reason for increasing the air volume is to lower the temperature of the refrigerant in the indoor heat exchanger 32 to lower the discharge pressure of the compressor 1. This control is repeated until the output voltage difference dV becomes smaller than the control start voltage dVs.

【0025】他の実施例を説明する。Another embodiment will be described.

【0026】圧縮機の構成及び冷凍サイクルの構成は図
1〜図3のものと同じとし、制御ユニット19の制御内
容が図9の流れ図に従うものとする。図6の流れ図に従
う前記実施例の制御では、冷凍サイクルの吐出油の増大
を防止できるが冷凍サイクルの負荷や能力によって、図
7に示されるように、回転数が頻繁に変化する場合があ
る。ここで、aは圧縮機回転数、bは出力電圧差の変化
を表し、TAは回転数規制の行われている期間、TBは
通常運転の期間、TCは冷凍サイクルの負荷が高まって
いる期間、TDは負荷が低下した期間を示している。
The structure of the compressor and the structure of the refrigeration cycle are the same as those in FIGS. 1 to 3, and the control contents of the control unit 19 follow the flow chart of FIG. In the control of the embodiment according to the flowchart of FIG. 6, it is possible to prevent the discharge oil of the refrigeration cycle from increasing, but the rotation speed may change frequently as shown in FIG. 7 depending on the load and capacity of the refrigeration cycle. Here, a represents the number of revolutions of the compressor, b represents a change in the output voltage difference, TA is a period during which the number of revolutions is regulated, TB is a period during normal operation, and TC is a period during which the load of the refrigeration cycle is high. , TD indicates a period during which the load is reduced.

【0027】本実施例はこれを解消して回転数が頻繁に
変化しないように安定化したものである。即ち、回転数
を一定時間維持してから低減させるようにした。このた
めに制御ユニット19はタイムカウント用の変数tr、
ホールド設定時間tsを有し、出力電圧差dVが制御開
始電圧dVsより大きくなったとき、そのときの回転数
を維持させ、タイムカウント用の変数trをゼロからカ
ウントする。変数trがホールド設定時間tsに達した
ら回転数を低減させる。
The present embodiment eliminates this and stabilizes the rotation speed so that it does not change frequently. That is, the rotation speed is maintained for a certain period of time and then reduced. For this purpose, the control unit 19 uses the variable tr for time counting,
When the output voltage difference dV becomes larger than the control start voltage dVs with the hold setting time ts, the rotation speed at that time is maintained and the time count variable tr is counted from zero. When the variable tr reaches the hold setting time ts, the rotation speed is reduced.

【0028】この制御は図9の流れ図に従って行われ
る。図9のステップ1〜3は図6のステップ1〜3とほ
ぼ同じであり、ステップ4´はステップ4にホールド設
定時間tsの時間待ちを挿入したものである。図9の流
れ図に従う制御の結果は、図8に示されるように、期間
TA内でホールド設定時間ts毎に回転数が低減される
ようになり、頻繁な変化がないので制御が安定する。
This control is performed according to the flow chart of FIG. Steps 1 to 3 in FIG. 9 are almost the same as steps 1 to 3 in FIG. 6, and step 4 ′ is a step 4 in which a wait for the hold setting time ts is inserted. As a result of the control according to the flow chart of FIG. 9, as shown in FIG. 8, the rotation speed is reduced every hold setting time ts within the period TA, and the control is stable because there is no frequent change.

【0029】次に、第2の構成に基づく実施例を説明す
る。
Next, an embodiment based on the second structure will be described.

【0030】図10に示されるように、圧縮機1は、図
1及び図2に示した圧縮機1と同様に、圧縮機ケース
(密閉容器)2、横形サクションカップ3、仕切板4、
圧縮要素5、電動機要素6、回転軸7、ブレード室8、
オイルポンプ板9、吐出カバー10、吐出パイプ11、
パイプ12、吸込パイプ14、感圧管15,16、低圧
側センサ17、高圧側センサ18、及び制御ユニット1
9を有しており、停止中はA室とB室とで圧力差がない
ため、図2の場合と同じように同一高さの潤滑油面Sが
形成され、運転中は図1の場合と同じように冷媒ガスが
流れ、潤滑油面SA ,SB が形成されるものである。相
違点は、A室(圧縮要素5)とB室(電動機要素6)と
の間にバイパス管91が設けられていることである。こ
のバイパス管91には開度調整ができる制御弁92が設
けられ、制御ユニット19が制御弁92を開度制御する
構成となっている。図11の冷凍サイクルは、図3の冷
凍サイクルと同様の四方弁31、室内熱交換器32、室
外熱交換器33、膨脹弁34、インバータ装置35、室
内ファン36及び室外ファン37を有し、相違点は、制
御ユニット19が圧縮機1のバイパス管91の制御弁9
2を開度制御することである。なお、この制御は、前記
実施例における回転数規制の制御とは独立に行われる。
As shown in FIG. 10, the compressor 1 is similar to the compressor 1 shown in FIGS. 1 and 2 in that the compressor case (closed container) 2, the horizontal suction cup 3, the partition plate 4,
Compression element 5, electric motor element 6, rotary shaft 7, blade chamber 8,
Oil pump plate 9, discharge cover 10, discharge pipe 11,
The pipe 12, the suction pipe 14, the pressure sensitive tubes 15 and 16, the low pressure side sensor 17, the high pressure side sensor 18, and the control unit 1.
9 and there is no pressure difference between the A chamber and the B chamber during stop, so that the lubricating oil surface S of the same height is formed as in the case of FIG. 2, and in the case of FIG. 1 during operation. Similarly to the above, the refrigerant gas flows to form the lubricating oil surfaces S A and S B. The difference is that a bypass pipe 91 is provided between the chamber A ( compression element 5) and the chamber B ( motor element 6). The bypass pipe 91 is provided with a control valve 92 capable of adjusting the opening degree, and the control unit 19 controls the opening degree of the control valve 92. The refrigeration cycle of FIG. 11 has a four-way valve 31, an indoor heat exchanger 32, an outdoor heat exchanger 33, an expansion valve 34, an inverter device 35, an indoor fan 36, and an outdoor fan 37, which are similar to those of the refrigeration cycle of FIG. The difference is that the control unit 19 controls the control valve 9 of the bypass pipe 91 of the compressor 1.
2 is to control the opening degree. It should be noted that this control is performed independently of the rotation speed regulation control in the above-described embodiment.

【0031】さて、図10及び図11の構成において、
運転が開始されると潤滑油面SA は上昇する。冷凍サイ
クルの負荷により圧縮機1の電動機要素6の回転数が上
昇すると、潤滑油面SA はさらに上昇し、吐出カバー1
0の上端に近付こうとする。各センサ17,18の出力
電圧の出力電圧差dVが制御開始電圧dVsより大きく
なると、制御ユニット19は圧縮機1の負荷を軽減させ
るための制御を行う。この制御の内容は、図12に示さ
れるように、圧力差に応じて制御弁92を開度制御する
ことである。通常運転時は全閉となっている制御弁92
が開くことにより、冷媒ガスがB室からバイパス管91
を通ってA室に流れる。従って、圧力差が緩和される。
これにより潤滑油不足が生じなくなるので、金属接触に
よる磨耗が抑えられる。この場合、回転数は規制されな
いので圧縮機の能力を変えずに吐油量の増加を防止でき
ることになる。
Now, in the configuration of FIG. 10 and FIG.
When the operation is started, the lubricating oil surface S A rises. When the rotation speed of the electric motor element 6 of the compressor 1 increases due to the load of the refrigeration cycle, the lubricating oil surface S A further rises, and the discharge cover 1
I try to get closer to the top of 0. When the output voltage difference dV between the output voltages of the sensors 17 and 18 becomes larger than the control start voltage dVs, the control unit 19 performs control for reducing the load on the compressor 1. The content of this control is to control the opening of the control valve 92 according to the pressure difference, as shown in FIG. Control valve 92 which is fully closed during normal operation
The refrigerant gas from the chamber B is opened by opening the bypass pipe 91.
Through room A. Therefore, the pressure difference is reduced.
As a result, the lack of lubricating oil does not occur, and wear due to metal contact is suppressed. In this case, the number of revolutions is not regulated, so that it is possible to prevent an increase in the amount of oil discharged without changing the capacity of the compressor.

【0032】次の実施例は、圧力差を直接検出する圧差
センサを使用するものである。
The following embodiment uses a pressure difference sensor which directly detects the pressure difference.

【0033】図13に示されるように、圧縮機1は、図
1及び図2に示した圧縮機1と同様に、圧縮機ケース
(密閉容器)2、横形サクションカップ3、仕切板4、
圧縮要素5、電動機要素6、回転軸7、ブレード室8、
オイルポンプ板9、吐出カバー10、吐出パイプ11、
パイプ12、吸込パイプ14、及び制御ユニット19を
有しているが、感圧管15,16、低圧側センサ17及
び高圧側センサ18はなく、その代わりにA室(圧縮
素5)とB室(電動機要素6)との間に圧差センサ93
が設けられている。
As shown in FIG. 13, the compressor 1 is similar to the compressor 1 shown in FIGS. 1 and 2 in that the compressor case (closed container) 2, the horizontal suction cup 3, the partition plate 4,
Compression element 5, electric motor element 6, rotary shaft 7, blade chamber 8,
Oil pump plate 9, discharge cover 10, discharge pipe 11,
Although the pipe 12, the suction pipe 14, and the control unit 19 are included, the pressure sensitive pipes 15 and 16, the low-pressure side sensor 17, and the high-pressure side sensor 18 are not provided, and instead, the chamber A ( compression element 5) is used. ) And chamber B ( motor element 6) between the pressure difference sensor 93
Is provided.

【0034】圧差センサ93は、シリンダ20のケース
2の上側(少なくとも吐出カバー10より上)を貫通す
る貫通穴94に埋め込まれ、一側がA室の圧力を受け、
他側がB室の圧力を受けて圧差を検出するようになって
いる。圧差センサ93の出力線95は圧縮機ケース2に
挿入された細管96を通して引き出されている。図14
は、圧差センサ部分の拡大図であり、圧差センサ93、
貫通穴94、出力線95、細管96、圧縮機ケース2、
仕切板4、ブレード室8を構成するシリンダ97、シャ
フトを構成するパイプ7、メインベアリング98、サブ
ベアリング99、吐出カバー10が示されている。
The pressure difference sensor 93 is embedded in a through hole 94 penetrating the upper side (at least above the discharge cover 10) of the case 2 of the cylinder 20, and one side receives the pressure of the A chamber,
The other side receives the pressure in the B chamber and detects the pressure difference. An output line 95 of the pressure difference sensor 93 is drawn out through a thin tube 96 inserted in the compressor case 2. 14
6 is an enlarged view of a pressure difference sensor portion, which is a pressure difference sensor 93,
Through hole 94, output wire 95, thin tube 96, compressor case 2,
The partition plate 4, the cylinder 97 forming the blade chamber 8, the pipe 7 forming the shaft, the main bearing 98, the sub bearing 99, and the discharge cover 10 are shown.

【0035】図15に示されるように、圧差センサは台
座151に拡散抵抗層152を有するシリコン基板15
3を接合し、シリコンダイヤフラム154を形成したも
のであり、これらを収容する円筒形の本体ケース155
の両端にシリコンダイヤフラム154の両側へ通じる小
孔156,157が設けられている。本体ケース155
の外周と貫通穴94との間にシール材158が設けら
れ、貫通穴94の両側からカラー159を嵌め込んで接
着等により固定されている。
As shown in FIG. 15, the pressure difference sensor includes a silicon substrate 15 having a diffusion resistance layer 152 on a pedestal 151.
3 is joined to form a silicon diaphragm 154, and a cylindrical main body case 155 that houses these is formed.
Small holes 156 and 157 communicating with both sides of the silicon diaphragm 154 are provided at both ends of the. Body case 155
A seal member 158 is provided between the outer periphery of the through hole 94 and the through hole 94, and collars 159 are fitted from both sides of the through hole 94 and fixed by adhesion or the like.

【0036】圧差センサによる圧力差の直接検出は、こ
れまでに述べた3圧縮機1の制御のいずれにも使用でき
る。この場合、センサが圧縮機1の内部に収容されるの
で、省スペースとなる。また、2つの圧力を検出してか
ら圧力差を算出するものに比べて、演算が不要となる。
なお、圧差センサは、この実施例のようにダイヤフラム
式でなくともよく、A室とB室との圧力差を検出するも
のであればよい。
Direct detection of the pressure difference by the pressure difference sensor can be used for any of the controls of the three compressors 1 described above. In this case, since the sensor is housed inside the compressor 1, space is saved. Further, as compared with the case where the pressure difference is calculated after detecting the two pressures, the calculation is unnecessary.
The pressure difference sensor need not be of the diaphragm type as in this embodiment, and may be any one that detects the pressure difference between the A chamber and the B chamber.

【0037】[0037]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0038】(1)請求項1の発明にあっては、圧力差
に基づいて電動機要素の回転数を規制しているので、簡
単な構成で、正確に潤滑油不足を防止することができ、
冷凍サイクルの信頼性の向上につながる。
(1) In the invention of claim 1, since the rotation speed of the electric motor element is regulated based on the pressure difference, it is possible to accurately prevent the lack of lubricating oil with a simple structure.
This will improve the reliability of the refrigeration cycle.

【0039】(2)請求項2の態様にあっては、回転数
を一定時間維持したことにより、安定度の高い制御が実
現される。
(2) In the second aspect of the invention, the control with high stability is realized by maintaining the rotation speed for a certain period of time.

【0040】(3)請求項3の発明にあっては、バイパ
スすることによって圧力差を緩和しているので、簡単な
構成で、正確に潤滑油不足を防止することができるのみ
ならず、圧縮機の能力を変えずに行うことができる。
(3) In the third aspect of the invention, since the pressure difference is alleviated by bypassing, not only can the lubricating oil shortage be accurately prevented with a simple structure, but also compression It can be performed without changing the ability of the machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の発明の実施例を示す圧縮機の運
転中の断面図である。
FIG. 1 is a sectional view of a compressor according to a first embodiment of the present invention during operation.

【図2】図1の圧縮機の停止中の断面図である。2 is a cross-sectional view of the compressor of FIG. 1 during a stop.

【図3】本発明の第1の発明の実施例を示す冷凍サイク
ルのブロック図である。
FIG. 3 is a block diagram of a refrigeration cycle showing an embodiment of the first invention of the present invention.

【図4】圧縮機における出力電圧差と潤滑油面の高さと
の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing the relationship between the output voltage difference and the height of the lubricating oil surface in the compressor.

【図5】圧縮機における出力電圧差と圧力差との関係を
示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between an output voltage difference and a pressure difference in the compressor.

【図6】本発明の第1の発明の実施例によるヒートポン
プ式空気調和機の暖房運転時の動作を示す流れ図であ
る。
FIG. 6 is a flow chart showing an operation during a heating operation of the heat pump type air conditioner according to the first embodiment of the present invention.

【図7】本発明の第1の発明の実施例による制御タイミ
ング図である。
FIG. 7 is a control timing diagram according to the first embodiment of the present invention.

【図8】本発明の第1の発明の他の実施例による制御タ
イミング図である。
FIG. 8 is a control timing diagram according to another embodiment of the first aspect of the present invention.

【図9】本発明の第1の発明の他の実施例によるヒート
ポンプ式空気調和機の暖房運転時の動作を示す流れ図で
ある。
FIG. 9 is a flow chart showing an operation during heating operation of the heat pump type air conditioner according to another embodiment of the first aspect of the present invention.

【図10】本発明の第2の発明の実施例を示す圧縮機の
運転中の断面図である。
FIG. 10 is a sectional view of the compressor according to the second embodiment of the present invention during operation.

【図11】本発明の第2の発明の実施例を示す冷凍サイ
クルのブロック図である。
FIG. 11 is a block diagram of a refrigeration cycle showing an embodiment of the second invention of the present invention.

【図12】出力電圧差に応じた制御弁開度の制御図であ
る。
FIG. 12 is a control diagram of a control valve opening degree according to an output voltage difference.

【図13】第1,第2の発明に共通な他の実施例を示す
圧縮機の運転中の断面図である。
FIG. 13 is a sectional view of the compressor during operation showing another embodiment common to the first and second inventions.

【図14】図13の部分拡大図である。FIG. 14 is a partially enlarged view of FIG.

【図15】圧差センサの断面図である。FIG. 15 is a cross-sectional view of a pressure difference sensor.

【符号の説明】[Explanation of symbols]

2 密閉容器 5 圧縮要素 6 電動機要素 17 低圧側センサ 18 高圧側センサ 19 制御ユニット A 圧縮要素室(A室) B 電動機要素室(B室) 2 closed container 5 compression elements 6 Electric motor elements 17 Low pressure side sensor 18 High voltage side sensor 19 Control unit A compression element room (A room) B Electric motor element room (Room B)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密閉容器内に電動機要素を収容する電動
機要素室と圧縮要素を収容する圧縮要素室とを横に並べ
て形成し両要素室間の圧力差で潤滑油を給油する圧縮機
を用い、この圧縮機に凝縮器、減圧装置及び蒸発器を加
えて冷凍サイクルを構成した冷凍機に設けられ、この冷
凍サイクルの負荷に基づいて上記電動機要素の回転数を
増減させる冷凍機の制御装置において、上記圧力差に基
づいて上記電動機要素の回転数を規制する制御部を備え
たことを特徴とする冷凍機の制御装置。
1. A compressor in which an electric motor element chamber for accommodating an electric motor element and a compression element chamber for accommodating a compression element are formed side by side in a sealed container and a lubricating oil is supplied by a pressure difference between the element chambers is used. In a refrigerator control device that is provided in a refrigerator that constitutes a refrigeration cycle by adding a condenser, a pressure reducing device, and an evaporator to this compressor, and that increases or decreases the rotation speed of the electric motor element based on the load of the refrigeration cycle. A control device for a refrigerator, comprising: a control unit that regulates a rotation speed of the electric motor element based on the pressure difference.
【請求項2】 上記制御部は、上記圧力差が設定値を越
えたとき、上記電動機要素の回転数を一定時間維持した
後、低減させることを特徴とする請求項1記載の冷凍機
の制御装置。
2. The control of the refrigerator according to claim 1, wherein when the pressure difference exceeds a set value, the control unit reduces the rotation speed of the electric motor element after maintaining the rotation speed for a certain period of time. apparatus.
【請求項3】 密閉容器内に電動機要素を収容する電動
機要素室と圧縮要素を収容する圧縮要素室とを横に並べ
て形成し両要素室間の圧力差で潤滑油を給油する圧縮機
を用い、この圧縮機に凝縮器、減圧装置及び蒸発器を加
えて冷凍サイクルを構成した冷凍機に設けられ、この冷
凍サイクルの負荷に基づいて上記電動機要素の回転数を
増減させる冷凍機の制御装置において、上記電動機要素
と上記圧縮要素とをバイパス管で結び、上記圧力差
に基づいて上記バイパス管の流量を規制する制御部を備
えたことを特徴とする冷凍機の制御装置。
3. A compressor is provided in which a motor element chamber for accommodating an electric motor element and a compression element chamber for accommodating a compression element are formed side by side in a hermetic container, and a lubricating oil is supplied by a pressure difference between the element chambers. In a refrigerator control device that is provided in a refrigerator that constitutes a refrigeration cycle by adding a condenser, a pressure reducing device, and an evaporator to this compressor, and that increases or decreases the rotation speed of the electric motor element based on the load of the refrigeration cycle, , The above motor element
The chamber and the compression element chamber connected by a bypass pipe, the control device of the refrigerator, characterized in that it comprises a control unit for regulating the flow rate of the bypass pipe on the basis of the pressure difference.
JP11501994A 1994-05-27 1994-05-27 Refrigerator control device Expired - Fee Related JP3467076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11501994A JP3467076B2 (en) 1994-05-27 1994-05-27 Refrigerator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11501994A JP3467076B2 (en) 1994-05-27 1994-05-27 Refrigerator control device

Publications (2)

Publication Number Publication Date
JPH07318174A JPH07318174A (en) 1995-12-08
JP3467076B2 true JP3467076B2 (en) 2003-11-17

Family

ID=14652238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11501994A Expired - Fee Related JP3467076B2 (en) 1994-05-27 1994-05-27 Refrigerator control device

Country Status (1)

Country Link
JP (1) JP3467076B2 (en)

Also Published As

Publication number Publication date
JPH07318174A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
JP4639413B2 (en) Scroll compressor and air conditioner
KR930012234B1 (en) Air-conditioner
JP4225357B2 (en) Refrigerant filling apparatus, refrigeration apparatus and refrigerant filling method
JP5965895B2 (en) Refrigeration cycle equipment
US10006681B2 (en) Pulse width modulation with discharge to suction bypass
JP6083173B2 (en) AIR CONDITIONER AND COMPRESSOR USED FOR THE SAME
KR101738458B1 (en) High pressure compressor and refrigerating machine having the same
JP3461633B2 (en) Air conditioner
KR0183481B1 (en) Refrigerating apparatus, airconditioner using the same and method for driving the airconditioner
JP4348788B2 (en) Refrigeration equipment
JP4315585B2 (en) Air conditioner
JP2002317785A (en) Refrigerating device and refrigerant compressor
JP3467076B2 (en) Refrigerator control device
JP2012097645A (en) Compressor
JP4402234B2 (en) Oil quantity detection device and refrigeration device
JPH10227533A (en) Air-conditioner
JP2007023906A (en) Variable displacement compressor and control method of variable displacement compressor
JPH0337391A (en) Rotary compressor
KR102018764B1 (en) Heat pump system and control method thereof
JPH0674579A (en) Refrigerating apparatus
WO2021085330A1 (en) Refrigeration device
JP4489890B2 (en) Multi-type air conditioner
JP2002147819A (en) Refrigeration unit
JP3934601B2 (en) Air conditioner
JP4301546B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees