JP3466786B2 - Electromagnetic wave matching device - Google Patents

Electromagnetic wave matching device

Info

Publication number
JP3466786B2
JP3466786B2 JP18692795A JP18692795A JP3466786B2 JP 3466786 B2 JP3466786 B2 JP 3466786B2 JP 18692795 A JP18692795 A JP 18692795A JP 18692795 A JP18692795 A JP 18692795A JP 3466786 B2 JP3466786 B2 JP 3466786B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave beam
phase correction
matching device
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18692795A
Other languages
Japanese (ja)
Other versions
JPH0936615A (en
Inventor
田 洋 介 平
仲 義 加 満
健 一 林
藤 保 之 伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18692795A priority Critical patent/JP3466786B2/en
Publication of JPH0936615A publication Critical patent/JPH0936615A/en
Application granted granted Critical
Publication of JP3466786B2 publication Critical patent/JP3466786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジャイロトロン装
置から出力される電磁波を変換してコルゲート導波管等
の伝送系に伝える電磁波整合器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave matching device for converting an electromagnetic wave output from a gyrotron device and transmitting it to a transmission system such as a corrugated waveguide.

【0002】[0002]

【従来の技術】現在、核融合炉のプラズマを加熱するた
めに電磁波を用いる方式が検討されており、ミリ波帯の
大電力高周波発振源として高次モードジャイロトロン装
置が有望視され、開発途上にある。このジャイロトロン
装置20の構成を図10に示す。このジャイロトロン2
0はジャイロトロン発振管本体21と、超電導磁石40
とを有している。本体21は電子銃22と、ボディ部2
3と、コレクタ部24とを有しており、電子銃22およ
びボディ部23は超電導磁石40の中央に設けられた孔
に貫入されている。超電導磁石40は電子銃22を取囲
むように形成されたガンコイル41と、ボディ部23を
取囲むように形成された主コイル42とを備えている。
2. Description of the Related Art Currently, a method of using electromagnetic waves to heat the plasma of a fusion reactor is under study, and a high-order mode gyrotron device is promising as a high-power high-frequency oscillation source in the millimeter wave band, and is under development. It is in. The configuration of this gyrotron device 20 is shown in FIG. This gyrotron 2
0 is the gyrotron oscillator tube main body 21 and the superconducting magnet 40
And have. The main body 21 is an electron gun 22 and the body portion 2
3 and a collector portion 24, and the electron gun 22 and the body portion 23 are inserted into a hole provided in the center of the superconducting magnet 40. The superconducting magnet 40 includes a gun coil 41 formed so as to surround the electron gun 22, and a main coil 42 formed so as to surround the body portion 23.

【0003】電子銃22はカソード部22aとアノード
部22bを有している。カソード部22aとアノード部
22bの間には直流電圧52が印加され、カソード部2
2aとコレクタ部24の間には直流電圧51が印加され
ている。またカソード部22aはヒータ用電源54によ
って熱せられ、熱電子を放出する。この放出された熱電
子はカソード22aとアノード22bとの間の電界およ
びガンコイル41によって生じた磁界によって加速され
てボディ部23内に設けられた空胴共振器26に入力す
る。空胴共振器26に入力された電子は主コイル42に
よる磁界によって振動させられ、電磁波(特にミリ波)
が発生する。この発生したミリ波はモード変換器27を
介してミラー30a,30b,30c,30d,30e
からなるミラー系30に伝播される。そしてこのミラー
系30によってミリ波ビーム29に変換され誘電体で作
られた出力窓33を介して外部の伝送系に送出される。
なお、振動させられた電子35はコレクタ24に吸引さ
れる。
The electron gun 22 has a cathode portion 22a and an anode portion 22b. A DC voltage 52 is applied between the cathode portion 22a and the anode portion 22b,
A DC voltage 51 is applied between 2a and the collector section 24. The cathode portion 22a is heated by the heater power supply 54 and emits thermoelectrons. The emitted thermoelectrons are accelerated by the electric field between the cathode 22a and the anode 22b and the magnetic field generated by the gun coil 41, and enter the cavity resonator 26 provided in the body portion 23. The electrons input to the cavity resonator 26 are vibrated by the magnetic field generated by the main coil 42, and electromagnetic waves (especially millimeter waves)
Occurs. The generated millimeter wave is transmitted through the mode converter 27 to the mirrors 30a, 30b, 30c, 30d, 30e.
Is transmitted to the mirror system 30. Then, it is converted into a millimeter wave beam 29 by this mirror system 30 and sent out to an external transmission system through an output window 33 made of a dielectric material.
The vibrated electrons 35 are attracted to the collector 24.

【0004】出力がMW級のジャイロトロンにおいて
は、出力窓33をミリ波が通過する際に、誘電体発熱に
よる温度上昇が生じ、出力窓33を破損することが危惧
されている。誘電体からなる出力窓33の温度上昇を抑
えるために出力窓33上でのミリ波ビーム29の強度分
布を平坦化したり、複数のミリ波ビームに分離して複数
の出力窓から取り出すことなどが提案されている。
In a gyrotron having an output of MW class, when the millimeter wave passes through the output window 33, the temperature rises due to the heat generation of the dielectric material, which may damage the output window 33. In order to suppress the temperature rise of the output window 33 made of a dielectric material, the intensity distribution of the millimeter wave beam 29 on the output window 33 may be flattened, or the millimeter wave beam 29 may be separated into a plurality of millimeter wave beams and taken out from the plurality of output windows. Proposed.

【0005】ジャイロトロンから出力されたミリ波ビー
ムは通常コルゲート導波管などを通じて核融合炉まで伝
送されるが、平坦化されたミリ波ビームはコルゲート導
波管との結合効率が低いため、複数の反射鏡を内蔵する
整合器を用いてミリ波ビームを整形して結合効率を高め
ている。
The millimeter wave beam output from the gyrotron is usually transmitted to a fusion reactor through a corrugated waveguide or the like, but the flattened millimeter wave beam has a low coupling efficiency with the corrugated waveguide, and therefore a plurality of beams are used. The millimeter wave beam is shaped by using a matching device with a built-in reflecting mirror to improve the coupling efficiency.

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の整
合器ではミリ波ビームの強度、位相の両方を制御するこ
とは難しく、コルゲート導波管等との結合効率が高くな
るようなビームに変換することは困難であった。
However, it is difficult to control both the intensity and the phase of the millimeter wave beam with the conventional matching device, and it is necessary to convert the beam into a beam that enhances the coupling efficiency with the corrugated waveguide or the like. Was difficult.

【0007】このように出力窓の破損を抑えるためにミ
リ波の強度分布を出力窓上で平坦なものにすると、ミリ
波伝送系(例えば、コルゲート導波管)との結合効率が
低いものとなってしまうという問題があった。
Thus, if the intensity distribution of the millimeter wave is made flat on the output window in order to suppress the damage of the output window, the coupling efficiency with the millimeter wave transmission system (for example, corrugated waveguide) is low. There was a problem of becoming.

【0008】本発明は上記事情を考慮してなされたもの
であって、ジャイロトロンの出力窓から出力された電磁
波ビームの強度分布が平坦であっても、電磁波伝送系と
の結合効率を可及的に高くすることのできる電磁波整合
器を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and it is possible to maximize the coupling efficiency with the electromagnetic wave transmission system even if the intensity distribution of the electromagnetic wave beam output from the output window of the gyrotron is flat. An object of the present invention is to provide an electromagnetic wave matching device that can be made highly expensive.

【0009】[0009]

【課題を解決するための手段】本発明による電磁波整合
器の第1の態様は、入り口から入射された電磁波ビーム
を複数枚の位相補正鏡を用いて反射させ、この反射され
た電磁波ビームを、出口を通して外部の伝送系に結合す
る電磁波整合器において、前記位相補正鏡は、この位相
補正鏡の反射面に入射した前記電磁波ビームの位相を、
前記反射面の位置に対応した所定量だけ変化させるよう
な形状を有していることを特徴とする。
According to a first aspect of an electromagnetic wave matching device of the present invention, an electromagnetic wave beam incident from an entrance is reflected by using a plurality of phase correction mirrors, and the reflected electromagnetic wave beam is In the electromagnetic wave matching device coupled to the external transmission system through the outlet, the phase correction mirror, the phase of the electromagnetic wave beam incident on the reflection surface of the phase correction mirror,
It is characterized in that it has a shape that is changed by a predetermined amount corresponding to the position of the reflecting surface.

【0010】また本発明による電磁波整合器の第2の態
様は、入り口から入射された電磁波ビームを複数枚の位
相補正鏡を用いて反射させ、この反射された電磁波ビー
ムを、出口を通して外部の伝送系に結合する電磁波整合
器において、前記位相補正鏡の表面形状は、前記入り口
から入射された電磁波ビームを前記位相補正鏡まで伝播
させたとき、この位相補正鏡の表面での前記電磁波ビー
ムの位相分布が、前記出口で所望の分布を有する電磁波
を逆向きに進行させて前記位相補正鏡まで伝播させたと
きに、前記位相補正鏡の表面で、前記逆向きに進行する
電磁波ビームのつくる分布と複素共役関係にある分布を
有する電磁波ビームの位相分布に等しくなるように決定
されていることを特徴とする。
In a second aspect of the electromagnetic wave matching device according to the present invention, the electromagnetic wave beam incident from the entrance is reflected by using a plurality of phase correction mirrors, and the reflected electromagnetic wave beam is transmitted to the outside through the exit. In the electromagnetic wave matching device coupled to the system, the surface shape of the phase correction mirror has a phase of the electromagnetic wave beam on the surface of the phase correction mirror when the electromagnetic wave beam incident from the entrance is propagated to the phase correction mirror. When the distribution causes an electromagnetic wave having a desired distribution to travel in the opposite direction at the exit and propagates to the phase correction mirror, a distribution created by the electromagnetic wave beam traveling in the opposite direction on the surface of the phase correction mirror. It is characterized in that it is determined so as to be equal to the phase distribution of an electromagnetic wave beam having a distribution having a complex conjugate relationship.

【0011】[0011]

【作用】上述のように構成された本発明による電磁波整
合器の第1の態様によれば、位相補正鏡の反射面に入射
した電磁波ビームの位相は上記位相補正鏡によって反射
面の位置に対応した所定量だけ変化させられる。これに
より例えばジャイロトロンから出力される電磁波ビーム
の強度、位相を所望のものに整形することが可能とな
り、伝送系との結合効率を高くすることができる。
According to the first aspect of the electromagnetic wave matching device of the present invention constructed as described above, the phase of the electromagnetic wave beam incident on the reflection surface of the phase correction mirror corresponds to the position of the reflection surface by the phase correction mirror. Can be changed by a predetermined amount. Thereby, for example, the intensity and phase of the electromagnetic wave beam output from the gyrotron can be shaped to a desired one, and the coupling efficiency with the transmission system can be increased.

【0012】また上述のように構成された本発明の電磁
波整合器の第2の態様によれば、正方向に伝播した電磁
波ビームの位相補正鏡の表面における位相分布は、逆方
向に伝播した電磁波ビームのつくる分布と複素共役の関
係にある分布を有する電磁波ビームの、上記位相補正鏡
の表面における位相分布に等しくなるように上記位相補
正鏡の表面形状が決定される。
According to the second aspect of the electromagnetic wave matching device of the present invention configured as described above, the phase distribution of the electromagnetic wave beam propagating in the positive direction on the surface of the phase correction mirror is the electromagnetic wave propagating in the opposite direction. The surface shape of the phase correction mirror is determined so as to be equal to the phase distribution on the surface of the phase correction mirror of the electromagnetic wave beam having a distribution having a complex conjugate relationship with the distribution formed by the beam.

【0013】これにより、ジャイロトロンから出力され
る電磁波ビームの強度、位相を所望のものに整形するこ
とが可能となり、伝送系との結合効率を高くすることが
できる。
As a result, the intensity and phase of the electromagnetic wave beam output from the gyrotron can be shaped as desired, and the coupling efficiency with the transmission system can be increased.

【0014】[0014]

【発明の実施の形態】本発明による電磁波整合器の第1
の実施の形態の構成を図1に示す。この実施の形態の電
磁波整合器1は真空壁7で囲まれた空間(真空状態)に
設けられた2枚の位相補正鏡3,5を備えており、ジャ
イロトロン装置20の出力窓33から出力された、強度
分布が平坦化されたミリ波ビームを、上記位相補正鏡
3,5を用いてコルゲート導波管10の基本モードであ
るHE11モードに変換するものである。
BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment of Electromagnetic Wave Matching Device According to the Present Invention
FIG. 1 shows the configuration of the embodiment. The electromagnetic wave matching device 1 of this embodiment includes two phase correction mirrors 3 and 5 provided in a space (vacuum state) surrounded by a vacuum wall 7, and outputs from the output window 33 of the gyrotron device 20. The millimeter wave beam having the flattened intensity distribution is converted into the HE 11 mode which is the fundamental mode of the corrugated waveguide 10 by using the phase correction mirrors 3 and 5.

【0015】ジャイロトロン装置20の出力窓33から
出力されるミリ波の出力窓33における電力分布(強度
分布)の平面図、斜視図を図2、図3に各々示す。な
お、出力窓33のサイズは20cm×20cmである。
また、コルゲート導波管10の基本モードHE11におけ
る電力分布の平面図、斜視図を図4、図5に各々示す。
2 and 3 are a plan view and a perspective view of a power distribution (intensity distribution) in the output window 33 of the millimeter wave output from the output window 33 of the gyrotron device 20, respectively. The size of the output window 33 is 20 cm × 20 cm.
Further, a plan view and a perspective view of the power distribution in the fundamental mode HE 11 of the corrugated waveguide 10 are shown in FIGS. 4 and 5, respectively.

【0016】図1において、ジャイロトロン装置20の
出力窓から出力された強度分布が平坦化されたミリ波は
位相補正鏡3によって位相が補正されて反射され位相補
正鏡5まで伝播される。そして、再び位相補正鏡5によ
って位相が補正されてHE11モードに変換され、コルゲ
ート導波管10に伝播される。
In FIG. 1, the millimeter wave output from the output window of the gyrotron device 20 whose intensity distribution is flattened is reflected by the phase correction mirror 3 after being phase-corrected and propagated to the phase correction mirror 5. Then, the phase is again corrected by the phase correction mirror 5, the HE 11 mode is converted, and the HE 11 mode is propagated to the corrugated waveguide 10.

【0017】今、上述の2枚の位相補正鏡3,5によっ
て、強度分布が平坦化されたミリ波からHE11モードの
ミリ波に変換が可能であると仮定する。この場合に、電
磁波整合器1の出口、すなわちコルゲート導波管10の
入口からHE11モードのミリ波を電磁波整合器1に入力
すると、電磁波整合器1の入口、すなわちジャイロトロ
ン装置20の出口で強度が平坦な分布を有するミリ波を
得ることができるはずである。
Now, it is assumed that the two phase correction mirrors 3 and 5 described above can convert a millimeter wave whose intensity distribution is flattened into a HE 11 mode millimeter wave. In this case, when the HE 11 mode millimeter wave is input to the electromagnetic wave matching device 1 from the exit of the electromagnetic wave matching device 1, that is, the entrance of the corrugated waveguide 10, the electromagnetic wave matching device 1 enters, that is, the gyrotron device 20 exits. It should be possible to obtain millimeter waves with a flat intensity distribution.

【0018】このとき、仮に上述の変換を完全に行うこ
とが可能であるとするならば、整合器の入口から出口に
向かうミリ波(ビーム)と、出口から入口に向かうミリ
波(ビーム)とは、ミリ波の進行方向を横切る平面内に
おける位相分布は等しく進行方向が逆であることから複
素的に共役関係にある。すなわち2枚の位相補正鏡の表
面を含むすべての領域において、正方向(電磁波整合器
1の入口から出口)に進む入力ミリ波ビームと、逆方向
に進む出力ミリ波ビームと複素共役関係にある分布を有
するミリ波ビームとの位相は一致するはずである。
At this time, if it is possible to completely perform the above-mentioned conversion, a millimeter wave (beam) traveling from the entrance to the exit of the matching device and a millimeter wave (beam) traveling from the exit to the entrance of the matching device. Has a complex conjugate relationship because the phase distributions in the plane crossing the traveling direction of the millimeter wave are equal and the traveling directions are opposite. That is, in all the regions including the surfaces of the two phase correction mirrors, there is a complex conjugate relationship between the input millimeter wave beam traveling in the positive direction (from the inlet to the outlet of the electromagnetic wave matching device 1) and the output millimeter wave beam traveling in the opposite direction. The phase with the millimeter wave beam with the distribution should match.

【0019】したがって、上述の完全な変換が可能な状
態を目指すために、電磁波整合器1の出口から目標とす
るミリ波ビームを逆向きに伝播させ、その逆向ビームと
複素共役関係にある分布を有するミリ波ビームと、入力
ミリ波ビームとの位相が2枚の位相補正鏡3,5の両方
の表面で各々一致するように位相補正鏡3,5の表面形
状を反復計算を行って決定すれば良いことになる。この
ようにして求めた位相補正鏡3の表面の平面図、斜視図
を図6、図7に各々示し、位相補正鏡5の表面の平面
図、斜視図を図8、図9に各々示す。
Therefore, in order to achieve the above-mentioned state in which complete conversion is possible, the target millimeter-wave beam is propagated in the opposite direction from the exit of the electromagnetic wave matching device 1, and a distribution having a complex conjugate relationship with the opposite beam is generated. The surface shapes of the phase-correcting mirrors 3 and 5 are determined by iterative calculation so that the phases of the millimeter-wave beam and the input millimeter-wave beam match on both surfaces of the two phase-correcting mirrors 3 and 5, respectively. It would be good. Plan views and perspective views of the surface of the phase correction mirror 3 thus obtained are shown in FIGS. 6 and 7, respectively, and plan views and perspective views of the surface of the phase correction mirror 5 are shown in FIGS. 8 and 9, respectively.

【0020】以上説明したように、本実施の形態の電磁
波整合器によれば、結合効率を可及的に高くすることが
できる。
As described above, according to the electromagnetic wave matching device of this embodiment, the coupling efficiency can be increased as much as possible.

【0021】なお、上記実施の形態の電磁波整合器にお
いては、位相補正鏡3,5の他に、この位相補正鏡3,
5を冷却するための冷却材路(図示せず)や、鏡面等で
散乱され、出力口から出射されない損失ミリ波を吸収す
るための吸収材等(図示せず)が設けられている。
In the electromagnetic wave matching device of the above embodiment, in addition to the phase correction mirrors 3 and 5, the phase correction mirror 3 and
A coolant path (not shown) for cooling 5 and an absorber (not shown) for absorbing the lossy millimeter waves scattered by the mirror surface or the like and not emitted from the output port are provided.

【0022】また、上記実施の形態の電磁波整合器にお
いては、2枚の位相補正鏡を用いて強度分布が平坦化さ
れたミリ波からHE11モードのミリ波に変換したが、3
枚以上の位相補正鏡を用いて行うことができることは言
うまでもない。なお位相補正鏡の枚数が増えれば増える
ほど整合器の性能は向上する。
Further, in the electromagnetic wave matching device of the above-mentioned embodiment, the millimeter wave whose intensity distribution is flattened is converted into the HE 11 mode millimeter wave by using two phase correction mirrors.
It goes without saying that it is possible to use more than one phase correction mirror. The performance of the matching box improves as the number of phase correction mirrors increases.

【0023】上記実施の形態の電磁波整合器においては
電磁波としてはミリ波を用いたがマイクロ波を用いても
良い。
Although the millimeter wave is used as the electromagnetic wave in the electromagnetic wave matching device of the above embodiment, a microwave may be used.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、結合
効率を可及的に高くすることができる。
As described above, according to the present invention, the coupling efficiency can be made as high as possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電磁波整合器の一実施の形態の構
成を示す構成図。
FIG. 1 is a configuration diagram showing a configuration of an embodiment of an electromagnetic wave matching device according to the present invention.

【図2】ジャイロトロン装置の出力窓から出力される電
磁波の出力窓における電力分布の平面図。
FIG. 2 is a plan view of power distribution in an output window of electromagnetic waves output from the output window of the gyrotron device.

【図3】ジャイロトロン装置の出力窓から出力される電
磁波の出力窓における電力分布の斜視図。
FIG. 3 is a perspective view of power distribution in an output window of an electromagnetic wave output from the output window of the gyrotron device.

【図4】コルゲート導波管の基本モードHE11における
電磁波の電力分布の平面図。
FIG. 4 is a plan view of electric power distribution of electromagnetic waves in a fundamental mode HE 11 of a corrugated waveguide.

【図5】コルゲート導波管の基本モードHE11における
電磁波の電力分布の斜視図。
FIG. 5 is a perspective view of the power distribution of electromagnetic waves in the fundamental mode HE 11 of the corrugated waveguide.

【図6】本発明による電磁波整合器にかかる第1の位相
補正鏡の表面の平面図。
FIG. 6 is a plan view of the surface of the first phase correction mirror of the electromagnetic wave matching device according to the present invention.

【図7】本発明による電磁波整合器にかかる位相補正鏡
の表面の斜視図。
FIG. 7 is a perspective view of a surface of a phase correction mirror according to the electromagnetic wave matching device of the present invention.

【図8】本発明による電磁波整合器にかかる第2の位相
補正鏡の表面の平面図。
FIG. 8 is a plan view of the surface of a second phase correction mirror according to the electromagnetic wave matching device of the present invention.

【図9】本発明による電磁波整合器にかかる第2の位相
補正鏡の表面の斜視図。
FIG. 9 is a perspective view of the surface of a second phase correction mirror according to the electromagnetic wave matching device of the present invention.

【図10】ジャイロトロン装置の構成を示す構成図。FIG. 10 is a configuration diagram showing a configuration of a gyrotron device.

【符号の説明】[Explanation of symbols]

1 電磁波整合器 3 位相補正鏡 5 位相補正鏡 7 真空壁 10 コルゲート導波管 20 ジャイロトロン装置 21 ジャイロトロン発振管本体 22 電子銃 22a カソード部 22b アノード部 23 ボディ部 24 コレクタ部 26 空胴共振器 27 モード変換器 29 ミリ波ビーム 30 ミラー系 30i(i=a,…e) ミラー 33 出力窓 35 電子 40 超電導磁石 41 ガンコイル 42 主コイル 51 直流電圧 52 直流電圧 54 ヒータ用電源 1 Electromagnetic wave matching device 3 Phase correction mirror 5 Phase correction mirror 7 vacuum wall 10 Corrugated waveguide 20 Gyrotron device 21 Gyrotron oscillator tube body 22 electron gun 22a cathode part 22b Anode part 23 Body 24 Collector 26 cavity resonator 27 mode converter 29 millimeter wave beam 30 mirror system 30i (i = a, ... e) Mirror 33 Output window 35 electronic 40 Superconducting magnet 41 gun coil 42 Main coil 51 DC voltage 52 DC voltage 54 Heater power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊 藤 保 之 神奈川県川崎市幸区小向東芝町1 株式 会社東芝 研究開発センター内 (56)参考文献 特開 平8−102621(JP,A) 特表 平3−504187(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01P 5/00 - 5/22 G21B 1/00 H01P 1/16 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuyuki Ito 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center Co., Ltd. (56) Reference JP-A-8-102621 (JP, A) Tokuyohei 3-504187 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01P 5/00-5/22 G21B 1/00 H01P 1/16 JISC file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入り口から入射された電磁波ビームを複数
枚の位相補正鏡を用いて反射させ、この反射された電磁
波ビームを、出口を通して外部の伝送系に結合する電磁
波整合器において、 前記位相補正鏡は、この位相補正鏡の反射面に入射した
前記電磁波ビームの位相を、前記反射面の位置に対応し
た所定量だけ変化させるような形状を有していることを
特徴とする電磁波整合器。
1. An electromagnetic wave matching device for reflecting an electromagnetic wave beam incident from an entrance using a plurality of phase correction mirrors and coupling the reflected electromagnetic wave beam to an external transmission system through the exit, wherein the phase correction is performed. The electromagnetic wave matching device, wherein the mirror has a shape that changes the phase of the electromagnetic wave beam incident on the reflection surface of the phase correction mirror by a predetermined amount corresponding to the position of the reflection surface.
【請求項2】入り口から入射された電磁波ビームを複数
枚の位相補正鏡を用いて反射させ、この反射された電磁
波ビームを、出口を通して外部の伝送系に結合する電磁
波整合器において、 前記位相補正鏡の表面形状は、前記入り口から入射され
た電磁波ビームを前記位相補正鏡まで伝播させたときの
前記位相補正鏡の表面での前記電磁波ビームの位相分布
が、前記出口で所望の分布を有する電磁波を逆向きに進
行させて前記位相補正鏡まで伝播させたときに、前記位
相補正鏡の表面で、前記逆向きに進行する電磁波ビーム
のつくる分布と複素共役関係にある分布を有する電磁波
ビームの位相分布に等しくなるように決定されているこ
とを特徴とする電磁波整合器。
2. An electromagnetic wave matching device that reflects an electromagnetic wave beam incident from an entrance using a plurality of phase correction mirrors and couples the reflected electromagnetic wave beam to an external transmission system through the exit. The surface shape of the mirror is an electromagnetic wave in which the phase distribution of the electromagnetic wave beam on the surface of the phase correction mirror when the electromagnetic wave beam incident from the entrance is propagated to the phase correction mirror has a desired distribution at the exit. Of the electromagnetic wave beam having a distribution having a complex conjugate relationship with the distribution formed by the electromagnetic wave beam traveling in the opposite direction on the surface of the phase correcting mirror when propagating to the phase correcting mirror in the opposite direction. An electromagnetic wave matching device characterized by being determined so as to have an equal distribution.
JP18692795A 1995-07-24 1995-07-24 Electromagnetic wave matching device Expired - Lifetime JP3466786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18692795A JP3466786B2 (en) 1995-07-24 1995-07-24 Electromagnetic wave matching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18692795A JP3466786B2 (en) 1995-07-24 1995-07-24 Electromagnetic wave matching device

Publications (2)

Publication Number Publication Date
JPH0936615A JPH0936615A (en) 1997-02-07
JP3466786B2 true JP3466786B2 (en) 2003-11-17

Family

ID=16197154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18692795A Expired - Lifetime JP3466786B2 (en) 1995-07-24 1995-07-24 Electromagnetic wave matching device

Country Status (1)

Country Link
JP (1) JP3466786B2 (en)

Also Published As

Publication number Publication date
JPH0936615A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
EP1295356B1 (en) Mode translating waveguide adapter for a quasi-optic grid array
JP2001504991A (en) Diffraction grating coupled free electron laser device and method
Piosczyk et al. A 1.5-MW, 140-GHz, TE/sub 28, 16/-coaxial cavity gyrotron
Shapiro et al. Loss estimate for ITER ECH transmission line including multimode propagation
Samsonov et al. Frequency-tunable CW gyro-BWO with a helically rippled operating waveguide
US4636689A (en) Microwave propagation mode transformer
US5302962A (en) Antenna system producing a millimeter wave beam having a gaussian-like distribution
Shin et al. Quasi-optical output-cavity design for a 50-kW multicavity W-band sheet-beam klystron
US11545329B2 (en) THz vacuum electronic devices with micro-fabricated electromagnetic circuits
Bogdashov et al. Microwave System of Transverse Output for a High-Power ${W} $-Band Gyro-TWT
JP3166869B2 (en) Method for converting a TE mode to an EHmn-type hybrid mode, and a helical aperture antenna for implementing the method
CA1139444A (en) Traveling wave tube with non-reciprocal attenuating adjunct
JP3466786B2 (en) Electromagnetic wave matching device
Huang et al. Study of a 35-GHz third-harmonic low-voltage complex cavity gyrotron
Sobolev et al. Minimization of diffraction losses in big gaps of multi-mode waveguides
US5929720A (en) Electromagnetic wave matching matrix using a plurality of mirrors
He et al. The Development of broadband millimeter-wave and terahertz gyro-TWAs
JP3144883B2 (en) Mode converter
Enderby Ring-plane traveling-wave amplifier: 40 KW at 9 MM
JPH09138291A (en) Matching device for electromagnetic waves
JPH0538522Y2 (en)
Fan et al. Theoretical and experimental researches on C-band three-cavity transit-time effect oscillator
US4829261A (en) Circuitless electron beam amplifier (CEBA)
Samsonov et al. Experiment Design of One-Octave Bandwidth Gyro-BWO with Zigzag Quasi-Optical Transmission Line
Gong et al. Theoretical analysis of ridge-loaded ring-plane slow wave structure by variational methods

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

EXPY Cancellation because of completion of term