JP3465554B2 - Glass rod processing burner and glass rod processing method - Google Patents

Glass rod processing burner and glass rod processing method

Info

Publication number
JP3465554B2
JP3465554B2 JP26835097A JP26835097A JP3465554B2 JP 3465554 B2 JP3465554 B2 JP 3465554B2 JP 26835097 A JP26835097 A JP 26835097A JP 26835097 A JP26835097 A JP 26835097A JP 3465554 B2 JP3465554 B2 JP 3465554B2
Authority
JP
Japan
Prior art keywords
burner
glass rod
oxygen
hydrogen
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26835097A
Other languages
Japanese (ja)
Other versions
JPH11106230A (en
Inventor
裕一 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26835097A priority Critical patent/JP3465554B2/en
Publication of JPH11106230A publication Critical patent/JPH11106230A/en
Application granted granted Critical
Publication of JP3465554B2 publication Critical patent/JP3465554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの製造
工程において、ガラスロッドの曲がり修正や火炎研磨、
あるいは、ガラスロッドへのダミーガラスロッドの溶着
を行うガラスロッドの加工方法、及び、これに用いられ
るガラスロッド加工用バーナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to glass fiber bending correction, flame polishing, and
Alternatively, the present invention relates to a glass rod processing method for welding a dummy glass rod to a glass rod, and a glass rod processing burner used therefor.

【0002】[0002]

【従来の技術】光ファイバの製造工程において、ガラス
ロッドの曲がり修正や火炎研磨、あるいは、ガラスロッ
ドへのダミーロッドの溶着といったガラスロッドの加工
に用いられる従来のバーナとして、特開平4−2924
32号公報従来の技術欄に記載されたものが知られてい
る。図2はこの従来のバーナ構造を示したもので、真円
形状の水素噴出口1中に多数の酸素噴出口2がほぼ均等
間隔で配列された構造である。
2. Description of the Related Art In a manufacturing process of an optical fiber, as a conventional burner used for processing a glass rod, such as bending correction of a glass rod, flame polishing, or welding a dummy rod to a glass rod, a conventional burner is disclosed in Japanese Patent Application Laid-Open No. 4-2924.
The publication described in the conventional art column is known. FIG. 2 shows this conventional burner structure, which is a structure in which a large number of oxygen ejection ports 2 are arranged in a hydrogen ejection port 1 having a perfect circular shape at substantially equal intervals.

【0003】[0003]

【発明が解決しようとする課題】光ファイバの低コスト
化、生産量増大に対する要求から、光ファイバ母材等の
ガラスロッドの大型化が望まれている。大型のガラスロ
ッドを加工するため、バーナーを相似的に大型化してい
くと、それに伴ってガス使用量を多くする必要がある。
その結果、ガス費が増大し、また、ガラスロッドの周辺
設備も同時に加熱されてしまうため、設備の耐熱性が問
題になる等、従来技術の延長線上では解決できない問題
が生じる。本発明は、このような実状に鑑みて、新たな
形状のガラスロッド加工用バーナーとそれに適したガス
の流しかたを開示するものである。
Due to the demand for cost reduction and increase in production of optical fibers, it is desired to increase the size of glass rods such as optical fiber preforms. In order to process a large glass rod, if the burner is similarly enlarged, it is necessary to increase the amount of gas used.
As a result, the gas cost increases and the peripheral equipment of the glass rod is also heated at the same time, which causes a problem that the heat resistance of the equipment becomes a problem, which is a problem that cannot be solved by an extension of the conventional technology. In view of such circumstances, the present invention discloses a burner for processing a glass rod having a new shape and a gas flow method suitable for the burner.

【0004】[0004]

【課題を解決するための手段】本発明にかかるガラスロ
ッド加工用バーナは、水素噴出口中に、1個若しくは複
数個の酸素噴出口が配置され、前記酸素噴出口の断面積
の総和が前記水素噴出口の断面積の2%以上10%以下
であることを特徴とする。また、本発明にかかるガラス
ロッドの加工方法は、前記ガラスロッド加工用バーナを
用い、前記酸素噴出口におけるガス流速を20m/s以
上100m/s以下、前記水素噴出口におけるガス流速
を0.5m/s以上20m/s以下とすることを特徴と
する。
In the burner for processing a glass rod according to the present invention, one or a plurality of oxygen jets are arranged in the hydrogen jet, and the sum of the cross-sectional areas of the oxygen jets is the hydrogen. It is characterized by being 2% or more and 10% or less of the cross-sectional area of the ejection port. Further, a glass rod processing method according to the present invention uses the burner for processing a glass rod, a gas flow velocity at the oxygen jet port is 20 m / s or more and 100 m / s or less, and a gas flow velocity at the hydrogen jet port is 0.5 m. / S or more and 20 m / s or less.

【0005】[0005]

【発明の実施の形態】ガラスロッドを効率よく加熱する
ためには、酸素と水素の流量比を反応の当量(1:2)
に依存する適正範囲にすること、及び、火炎をガラスロ
ッドに集中させることが必要である。発明者が後者の点
について検討を行ったところ、分子量が水素に比べて大
きい酸素の噴出口での流速を大きくすることにより、火
炎がガラスロッドに集中し、少ないガス使用量でガラス
ロッドを効率よく加熱できることが判明した。
BEST MODE FOR CARRYING OUT THE INVENTION In order to efficiently heat a glass rod, the flow ratio of oxygen and hydrogen is set to the reaction equivalent (1: 2).
It is necessary to have a proper range depending on the above and to concentrate the flame on the glass rod. When the inventor investigated the latter point, the flame was concentrated on the glass rod by increasing the flow velocity at the oxygen outlet having a larger molecular weight than hydrogen, and the glass rod was efficiently used with a small amount of gas. It turns out that it can be heated well.

【0006】本発明にかかるガラスロッド加工用バーナ
は、図1に示すように、水素噴出口1中に、1個若しく
は複数個の酸素噴出口2が配置され、酸素噴出口の断面
積の総和が水素噴出口の断面積の2%以上10%以下で
あることを特徴とする。上記の構成によれば、酸素噴出
口2の断面積は比較的小さいので、酸素流量を多くせず
とも酸素噴出口での酸素流速を大きくできる。その結
果、火炎はガラスロッドに向かって集中して流れるよう
になり、ガラスロッドを効率よく加熱できる。
As shown in FIG. 1, the burner for processing a glass rod according to the present invention has one or a plurality of oxygen jets 2 arranged in a hydrogen jet 1 and has a total cross-sectional area of the oxygen jets. Is 2% or more and 10% or less of the cross-sectional area of the hydrogen ejection port. According to the above configuration, since the oxygen jet port 2 has a relatively small cross-sectional area, the oxygen flow rate at the oxygen jet port can be increased without increasing the oxygen flow rate. As a result, the flame is concentrated and flows toward the glass rod, and the glass rod can be efficiently heated.

【0007】本発明にかかるガラスロッド加工用バーナ
として、酸素噴出口がバーナ中心軸上の1点を指向する
構造とすることができる。これにより、火炎がバーナの
中心軸上に一層集中するので、ガラスロッドをより効率
的に加熱することができる。
The burner for processing a glass rod according to the present invention may have a structure in which the oxygen jet port is directed to one point on the central axis of the burner. As a result, the flame is further concentrated on the central axis of the burner, so that the glass rod can be heated more efficiently.

【0008】本発明にかかるガラスロッドの加工方法
は、酸素噴出口の断面積の総和が水素噴出口の断面積の
2%以上10%以下であるガラスロッド加工用バーナを
用い、酸素噴出口におけるガス流速を20m/s以上1
00m/s以下、水素噴出口におけるガス流速を0.5
m/s以上20m/s以下とすることを特徴とする。上
記の構成によれば、火炎がガラスロッドに集中し、ガラ
スロッドを効率よく加熱できる。また、火炎が必要以上
に大きくならず、周辺設備に悪影響を与えることが少な
い。なお、水素噴出口のノズル出口におけるガス流速は
5m/s以上12m/s以下がより好ましい。
The glass rod processing method according to the present invention uses a glass rod processing burner in which the total cross-sectional area of the oxygen ejection port is 2% or more and 10% or less of the cross-sectional area of the hydrogen ejection port. Gas velocity of 20m / s or more 1
00m / s or less, the gas flow velocity at the hydrogen outlet is 0.5
It is characterized in that it is not less than m / s and not more than 20 m / s. According to the above configuration, the flame is concentrated on the glass rod and the glass rod can be efficiently heated. In addition, the flame does not grow larger than necessary, and there is little adverse effect on peripheral equipment. The gas flow velocity at the nozzle outlet of the hydrogen jet outlet is more preferably 5 m / s or more and 12 m / s or less.

【0009】[0009]

【実施例】【Example】

(実施例1)図3に示すように、直径70mm、長さ8
00mmの光ファイバ母材31をダミーガラス棒32を
介して横形旋盤のチャック33に保持し、バーナ台34
に半円周状に等間隔で9本並べたバーナ35から、酸水
素火炎を光ファイバ母材31に吹き付けて火炎研磨を行
った。バーナ35として、図1(a)に示す円柱状の水
素噴出口1中に3個の酸素噴出口2が配置されたバーナ
(水素噴出口の内径10mm、酸素噴出口の内径0.8
mm、酸素噴出口の外径2.0mm、酸素噴出口の断面
積と水素噴出口の断面積の比2.2%;表1のバーナ
A)を用いた。一本のバーナあたり、水素ガスの流量は
5×10-43/s(約30リットル/分)、酸素の流
量は2×10-43/s(約12リットル/分)とし
た。この時の母材表面温度と火炎研磨による外径変化量
(ガラス蒸発量)は、それぞれ表2に示すように、16
00℃、0.6mmであり、火炎研磨後のガラス母材の
表面状態は良好であった。
(Example 1) As shown in FIG. 3, diameter 70 mm, length 8
A 00 mm optical fiber preform 31 is held on a chuck 33 of a horizontal lathe via a dummy glass rod 32, and a burner stand 34
The oxyhydrogen flame was blown onto the optical fiber preform 31 from nine burners 35 arranged in a semicircular shape at regular intervals to perform flame polishing. As the burner 35, a burner in which three oxygen outlets 2 are arranged in a cylindrical hydrogen outlet 1 shown in FIG. 1A (inner diameter of hydrogen outlet is 10 mm, inner diameter of oxygen outlet is 0.8 mm).
mm, the outer diameter of the oxygen ejection port was 2.0 mm, the ratio of the cross-sectional area of the oxygen ejection port to the cross-sectional area of the hydrogen ejection port was 2.2%, and the burner A) in Table 1 was used. The flow rate of hydrogen gas was 5 × 10 -4 m 3 / s (about 30 liters / minute) and the flow rate of oxygen was 2 × 10 -4 m 3 / s (about 12 liters / minute) per burner. . At this time, the base material surface temperature and the outer diameter change amount (glass evaporation amount) due to the flame polishing are 16
The temperature was 00 ° C. and 0.6 mm, and the surface condition of the glass base material after flame polishing was good.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】(実施例2)実施例1で使用したバーナA
に代え、表1のバーナB(酸素噴出口の断面積と水素噴
出口の断面積の比3.7%),C(酸素噴出口の断面積
と水素噴出口の断面積の比5.9%),D(酸素噴出口
の断面積と水素噴出口の断面積の比9.3%)を使用し
て光ファイバ母材の火炎研磨を行った。その他の構成
は、実施例1と同じとした。この時の母材表面温度と火
炎研磨による外径変化量(ガラス蒸発量)は、それぞれ
表2に示すように、1500−1700℃、0.4−
0.8mmであり、火炎研磨後のガラス母材の表面状態
は良好であった。
(Example 2) Burner A used in Example 1
Instead of the above, the burner B in Table 1 (a ratio of the cross-sectional area of the oxygen ejection port and the cross-sectional area of the hydrogen ejection port of 3.7%), C (the ratio of the cross-sectional area of the oxygen ejection port and the cross-sectional area of the hydrogen ejection port is 5.9). %), D (a ratio of the cross-sectional area of the oxygen jet port and the cross-sectional area of the hydrogen jet port of 9.3%) was used to perform flame polishing of the optical fiber preform. Other configurations are the same as those in the first embodiment. At this time, the base material surface temperature and the outer diameter change amount (glass evaporation amount) due to flame polishing are 1500-1700 ° C. and 0.4-
It was 0.8 mm, and the surface state of the glass preform after flame polishing was good.

【0013】(実施例3)実施例1で使用したバーナA
に代え、図1(b)に示す円柱状の水素噴出口1中に7
個の酸素噴出口2が配置されたバーナ(水素噴出口の内
径12mm、酸素噴出口の内径0.8mm、酸素噴出口
の外径2.0mm、酸素噴出口の断面積と水素噴出口の
断面積の比3.9%;表1のバーナE)を使用して光フ
ァイバ母材の火炎研磨を行った。その他の構成は、実施
例1と同じとした。この時の母材表面温度と火炎研磨に
よる外径変化量(ガラス蒸発量)は、表2に示すよう
に、1600℃、0.6mmであり、火炎研磨後のガラ
ス母材の表面状態は良好であった。
(Example 3) Burner A used in Example 1
Instead of 7 in the cylindrical hydrogen ejection port 1 shown in FIG.
A burner in which the individual oxygen jets 2 are arranged (inner diameter of hydrogen jet 12 mm, inner diameter of oxygen jet 0.8 mm, outer diameter of oxygen jet 2.0 mm, cross-sectional area of oxygen jet and disconnection of hydrogen jet). The area ratio of 3.9%; the burner E) of Table 1 was used to flame polish the optical fiber preform. Other configurations are the same as those in the first embodiment. At this time, the base material surface temperature and the amount of change in outer diameter (glass evaporation amount) due to flame polishing were 1600 ° C. and 0.6 mm, as shown in Table 2, and the surface state of the glass base material after flame polishing was good. Met.

【0014】(実施例4)実施例3で使用したバーナE
に代え、表1のバーナF(酸素噴出口の断面積と水素噴
出口の断面積の比7.0%)を使用して光ファイバ母材
の火炎研磨を行った。その他の構成は、実施例1と同じ
とした。この時の母材表面温度と火炎研磨による外径変
化量(ガラス蒸発量)は、表2に示すように、1400
℃、0.2mmであり、火炎研磨後のガラス母材の表面
状態は良好であった。
(Example 4) Burner E used in Example 3
Instead, the burner F in Table 1 (a ratio of the cross-sectional area of the oxygen jet port and the cross-sectional area of the hydrogen jet port of 7.0%) was used to perform flame polishing of the optical fiber preform. Other configurations are the same as those in the first embodiment. At this time, the base material surface temperature and the outer diameter change amount (glass evaporation amount) due to flame polishing are 1400 as shown in Table 2.
C., 0.2 mm, and the surface condition of the glass preform after flame polishing was good.

【0015】(実施例5)実施例1で使用したバーナA
に代え、図1(c)のバーナ(水素噴出口の内寸8mm
×12mm、酸素噴出口の内径1mm、酸素噴出口の外
径2.5mm、酸素噴出口の断面積と水素噴出口の断面
積の比7.0%;表1のバーナI)を使用して光ファイ
バ母材の火炎研磨を行った。この時の母材表面温度と火
炎研磨による外径変化量(ガラス蒸発量)は、表2に示
すように、1400℃、0.2mmであり、火炎研磨後
のガラス母材の表面状態は良好であった。
(Example 5) Burner A used in Example 1
Instead of the burner shown in FIG.
X12 mm, oxygen jet inner diameter 1 mm, oxygen jet outer diameter 2.5 mm, ratio of oxygen jet cross-sectional area to hydrogen jet cross-sectional area 7.0%; using burner I in Table 1) The optical fiber preform was flame-polished. At this time, the base material surface temperature and the amount of change in outer diameter (glass evaporation amount) due to flame polishing are 1400 ° C. and 0.2 mm, as shown in Table 2, and the surface condition of the glass base material after flame polishing is good. Met.

【0016】(比較例1)実施例3で使用したバーナE
に代え、表1のバーナG(酸素噴出口の断面積と水素噴
出口の断面積の比12%),H(酸素噴出口の断面積と
水素噴出口の断面積の比23%)を使用して光ファイバ
母材の火炎研磨を行った。その他の構成は、実施例1と
同じとした。この時の母材表面温度と火炎研磨による外
径変化量(ガラス蒸発量)は、それぞれ表2に示すよう
に、1300−1350℃、0.05−0.15mmで
あり、火炎研磨後のガラス母材の表面にはクラックが生
じた。これは、母材中心まで高温に加熱できなかったた
め、冷却時に表面が急冷し生じたものである。
(Comparative Example 1) Burner E used in Example 3
In place of the above, the burner G in Table 1 (a ratio of the cross-sectional area of the oxygen ejection port and the cross-sectional area of the hydrogen ejection port is 12%) and H (the ratio of the cross-sectional area of the oxygen ejection port and the cross-sectional area of the hydrogen ejection port is 23%) are used. Then, the optical fiber preform was flame-polished. Other configurations are the same as those in the first embodiment. At this time, the base material surface temperature and the outer diameter change amount (glass evaporation amount) due to flame polishing were 1300 to 1350 ° C. and 0.05 to 0.15 mm, respectively, as shown in Table 2, and the glass after flame polishing was used. A crack was generated on the surface of the base material. This is because the surface of the base material could not be heated to a high temperature, and the surface was rapidly cooled during cooling.

【0017】実施例1乃至5、及び、比較例1により断
面積比が2%以上10%以下のバーナで効率よく火炎研磨
を行うことができ、火炎研磨後の表面状態が良好となる
ことがわかった。
According to Examples 1 to 5 and Comparative Example 1, it is possible to efficiently perform flame polishing with a burner having a cross-sectional area ratio of 2% or more and 10% or less, and the surface condition after flame polishing becomes good. all right.

【0018】(実施例6)表1のバーナA,C,E,F
を使用し、実施例1と同一形状の光ファイバ母材の火炎
研磨を行った。バーナの配置は実施例1と同一で、水素
ガスの流量は一本のバーナあたり5×10-43/s
(約30リットル/分)に固定した。酸素の流量を変化
させて、母材表面温度、外径変化量、表面状態を調べた
結果を表3に示す。
(Embodiment 6) Burners A, C, E and F in Table 1
Using, the optical fiber preform having the same shape as in Example 1 was flame-polished. The burner arrangement was the same as in Example 1, and the flow rate of hydrogen gas was 5 × 10 −4 m 3 / s per burner.
It was fixed at (about 30 liters / minute). Table 3 shows the results of examining the base material surface temperature, the outer diameter change amount, and the surface state by changing the flow rate of oxygen.

【0019】[0019]

【表3】 [Table 3]

【0020】酸素噴出口におけるガス流速が18m/s
の場合、火炎研磨後の表面の一部に、クラックが発生し
た。また、酸素噴出口におけるガス流速が130m/s
の場合、酸素噴出口におけるガス流速が65m/sの場
合と比べて母材温度、外径変化量に大差は無く酸素ガス
流量を増やした効果は認められなかった。以上の結果よ
り、酸素噴出口におけるガス流量の好適値は、20m/
s以上100m/s以下であることがわかった。
The gas flow velocity at the oxygen outlet is 18 m / s.
In the case of, cracks were generated on a part of the surface after flame polishing. Also, the gas flow velocity at the oxygen outlet is 130 m / s.
In the case of No. 2, compared with the case where the gas flow velocity at the oxygen jet port was 65 m / s, there was no great difference in the base material temperature and the outer diameter change amount, and the effect of increasing the oxygen gas flow rate was not recognized. From the above results, the preferable value of the gas flow rate at the oxygen ejection port is 20 m /
It was found to be s or more and 100 m / s or less.

【0021】(実施例7)表1のバーナFを使用し、実
施例1と同一形状の光ファイバ母材の火炎研磨を行っ
た。バーナの配置は実施例1と同一で、酸素の流量は一
本のバーナあたり3×10-43/s(約18リットル
/分)に固定した。水素の流量を変化させて、母材表面
温度、外径変化量、表面状態を調べた結果を表4に示
す。
(Example 7) Using the burner F shown in Table 1, the optical fiber preform having the same shape as in Example 1 was flame-polished. The burner arrangement was the same as in Example 1, and the flow rate of oxygen was fixed at 3 × 10 −4 m 3 / s (about 18 liter / min) per burner. Table 4 shows the results of examining the base material surface temperature, the outer diameter change amount, and the surface state by changing the flow rate of hydrogen.

【0022】[0022]

【表4】 [Table 4]

【0023】水素噴出口におけるガス流速が0.38m
/sの場合、火炎研磨後の表面に折り返し点の近くに、
クラックが発生した。また、水素噴出口におけるガス流
速が大きくなるにしたがって母材表面温度は高くなり、
ガラスロッドは強く加熱されているが、水素流量の増加
とともに経費が急速に増大するので、20m/sを超え
る流速は実用的ではない。以上の結果より、水素噴出口
におけるガス流量の好適値は、0.5m/s以上20m
/s以下であることがわかった。
The gas flow velocity at the hydrogen outlet is 0.38 m.
/ S, near the turning point on the surface after flame polishing,
A crack has occurred. Also, as the gas flow velocity at the hydrogen jet increases, the base metal surface temperature rises,
Although the glass rod is heated strongly, the cost increases rapidly as the hydrogen flow rate increases, so flow velocities above 20 m / s are not practical. From the above results, the preferable value of the gas flow rate at the hydrogen ejection port is 0.5 m / s or more and 20 m or more.
It was found to be below / s.

【0024】(実施例8)表1のバーナCとバーナ先端
の断面形状が同じであり、酸素噴出口がバーナ中心軸上
の一点を指向した焦点型構造のバーナを用いて火炎研磨
を行った。光ファイバ母材の形状、バーナの配置、酸
素、水素の流量は実施例1と同じである。この時の母材
表面温度は1650℃で、実施例1のバーナCでの母材
表面温度より50K高かった。焦点型構造とすれば、酸
素噴出口がストレートに配置されるバーナよりもガラス
ロッドを効率的に加熱できることを確認した。
(Embodiment 8) The burner C shown in Table 1 and the burner tip have the same cross-sectional shape, and flame polishing was carried out using a burner having a focal structure in which the oxygen ejection port was directed to a point on the central axis of the burner. . The shape of the optical fiber preform, the arrangement of burners, and the flow rates of oxygen and hydrogen are the same as those in the first embodiment. At this time, the base material surface temperature was 1650 ° C., which was 50 K higher than the base material surface temperature of the burner C of Example 1. It was confirmed that the glass rod can be heated more efficiently than with the burner in which the oxygen ejection port is arranged straight if the focus structure is used.

【0025】[0025]

【発明の効果】以上説明したように、本願の構成によれ
ば、酸素流量を大幅に増やさずにガラスロッドを効率よ
く加熱できる。
As described above, according to the configuration of the present application, the glass rod can be efficiently heated without significantly increasing the oxygen flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるガラスロッド加工用バーナを示
す模式図である。
FIG. 1 is a schematic view showing a burner for processing a glass rod according to the present invention.

【図2】従来のガラスロッド加工用バーナを示す模式図
である。
FIG. 2 is a schematic view showing a conventional burner for processing a glass rod.

【図3】ガラス母材の火炎研磨の一例を示した概略説明
図である。
FIG. 3 is a schematic explanatory view showing an example of flame polishing of a glass base material.

【符号の説明】[Explanation of symbols]

1:水素噴出口 2:酸素噴出口 31:光ファイバ母材 32:ダミーガラス棒 33:チャック 34:バーナ台 35:バーナ 1: Hydrogen spout 2: Oxygen outlet 31: Optical fiber base material 32: Dummy glass rod 33: Chuck 34: Burner stand 35: Burner

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素噴出口中に、1個若しくは複数個の
酸素噴出口が配置され、前記酸素噴出口の断面積の総和
が前記水素噴出口の断面積の2%以上10%以下である
ことを特徴とするガラスロッド加工用バーナ。
1. One or a plurality of oxygen jets are arranged in the hydrogen jet, and the total cross-sectional area of the oxygen jet is 2% or more and 10% or less of the cross-sectional area of the hydrogen jet. A burner for processing glass rods.
【請求項2】 前記酸素噴出口が、バーナ中心軸上の1
点を指向していることを特徴とする請求項1に記載のガ
ラスロッド加工用バーナ。
2. The oxygen outlet is 1 on the central axis of the burner.
The glass rod processing burner according to claim 1, wherein the burner is directed to a point.
【請求項3】 請求項1に記載のガラスロッド加工用バ
ーナを用い、前記酸素噴出口におけるガス流速を20m
/s以上100m/s以下、前記水素噴出口におけるガ
ス流速を0.5m/s以上20m/s以下とすることを
特徴とするガラスロッドの加工方法。
3. The burner for processing a glass rod according to claim 1, wherein the gas flow velocity at the oxygen jet port is 20 m.
/ S or more and 100 m / s or less, and the gas flow velocity at the hydrogen jet port is 0.5 m / s or more and 20 m / s or less, a method of processing a glass rod.
JP26835097A 1997-10-01 1997-10-01 Glass rod processing burner and glass rod processing method Expired - Lifetime JP3465554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26835097A JP3465554B2 (en) 1997-10-01 1997-10-01 Glass rod processing burner and glass rod processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26835097A JP3465554B2 (en) 1997-10-01 1997-10-01 Glass rod processing burner and glass rod processing method

Publications (2)

Publication Number Publication Date
JPH11106230A JPH11106230A (en) 1999-04-20
JP3465554B2 true JP3465554B2 (en) 2003-11-10

Family

ID=17457322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26835097A Expired - Lifetime JP3465554B2 (en) 1997-10-01 1997-10-01 Glass rod processing burner and glass rod processing method

Country Status (1)

Country Link
JP (1) JP3465554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628613B2 (en) * 2001-09-11 2011-02-09 株式会社フジクラ Flame polishing method for optical fiber preform
JP4498802B2 (en) * 2004-04-01 2010-07-07 株式会社フジクラ Glass rod flame polishing method, optical fiber manufacturing method

Also Published As

Publication number Publication date
JPH11106230A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
KR100551100B1 (en) Optical fiber manufacture method, preform manufacture method, and preform manufacture apparatus
JP4043768B2 (en) Manufacturing method of optical fiber preform
US9260339B2 (en) Method of fabricating an optical fiber preform and a burner therefor
WO2008145575A2 (en) Deposition burner and method for the manufacture thereof, use of the deposition burner and method for the production of a quartz glass body by using the deposition burner
JP3387137B2 (en) Flame polishing method for glass base material
JP3465554B2 (en) Glass rod processing burner and glass rod processing method
JP2553791B2 (en) Method for flame-polishing glass base material
JP3946645B2 (en) Optical glass and manufacturing method thereof
JP2006182624A (en) Method for manufacturing glass rod-like body
US5211730A (en) Method for heating glass body
EP0432791B1 (en) Method for heating glass body
JP3489345B2 (en) Optical fiber manufacturing method
US9227869B2 (en) Porous glass base material manufacturing burner and optical fiber porous glass base material manufacturing apparatus
JPH07187683A (en) Burner made of quartz glass, quartz glass produced by using the same and production of quartz glass using the same
US6735986B2 (en) Apparatus for preventing redeposition of silica during flame severing
EP2098488B1 (en) Method of fabricating optical fiber preform
JP4485826B2 (en) Method for forming seamless quartz glass tube with different diameter parts
JPH09188522A (en) Torch for synthesizing glass fine particle
JPH10167748A (en) Burner for synthesis of glass raw material and production of glass raw material
JPH08259253A (en) Optical fiber drawing method and drawing device
KR20090092687A (en) Burner for producing porous glass preform
EP0887318B1 (en) Method and apparatus for separating an optical fiber preform by fusion
JP2003212555A (en) Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same
JP2811184B2 (en) Quartz tube manufacturing equipment
JP2015160774A (en) Burner for manufacturing porous glass parent material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term