JP3465198B2 - Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant - Google Patents

Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant

Info

Publication number
JP3465198B2
JP3465198B2 JP26199693A JP26199693A JP3465198B2 JP 3465198 B2 JP3465198 B2 JP 3465198B2 JP 26199693 A JP26199693 A JP 26199693A JP 26199693 A JP26199693 A JP 26199693A JP 3465198 B2 JP3465198 B2 JP 3465198B2
Authority
JP
Japan
Prior art keywords
temperature
chemical reaction
reaction container
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26199693A
Other languages
Japanese (ja)
Other versions
JPH07114934A (en
Inventor
茂昭 難波
昌生 斎藤
正治 ▲高▼橋
正 吉田
信宏 清木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26199693A priority Critical patent/JP3465198B2/en
Publication of JPH07114934A publication Critical patent/JPH07114934A/en
Application granted granted Critical
Publication of JP3465198B2 publication Critical patent/JP3465198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、単数若しくは複数
の化学反応容器を有する化学プラントにおいて、プラン
ト停止操作後のメンテナンスに取りかかるまでの待機時
間ロスを低減する為に、化学反応容器の常温化操作を強
制的手段によって行なう方法及び燃料電池発電プラント
の降温方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical plant having a single or a plurality of chemical reaction vessels, in order to reduce the loss of waiting time until the start of maintenance after the plant shutdown operation. Method and fuel cell power plant
Regarding the temperature decrease method .

【0002】[0002]

【従来の技術】特開昭58−220907号公報には、
蒸気タービンを強制冷却するに際し、機器損傷に至るこ
とのないよう、タービン内圧力を上流側負圧化操作によ
ってタービン内通過ガス流方向を有負荷時と逆転させて
効果的に冷却する方法が述べられているが、ここに記載
された技術は、化学反応容器の如く、容器内反応場と反
応促進若しくは抑制を目的とする複数のプロセス入出力
系統を有する系での一般的な冷却方法若しくは常温化操
作方法としての解を与えるものではない。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 58-220907 discloses
In the forced cooling of the steam turbine, a method to effectively cool the turbine by reversely changing the gas flow direction inside the turbine to that under load so as not to damage the equipment is described. However, the technology described here is a general cooling method or normal temperature in a system having a reaction field in a container and a plurality of process input / output systems for the purpose of promoting or suppressing the reaction, such as a chemical reaction container. It does not give a solution as a slicing operation method.

【0003】また、特開平3−276574号公報に
は、燃料電池発電プラントにおいて、プラント冷却時
に、パージガス冷却器によって冷却された排ガスを改質
器に循環させることにより、迅速に改質器バーナ排ガス
系を冷却可能にすることが開示されている。
Further, in Japanese Patent Laid-Open No. 3-276574, a reformer burner exhaust gas is swiftly circulated in a fuel cell power plant by circulating the exhaust gas cooled by a purge gas cooler to the reformer when the plant is cooled. It is disclosed that the system can be cooled.

【0004】[0004]

【発明が解決しようとする課題】通常の化学反応プロセ
スを利用した、化学工業や水素ガス製造装置、燃料電池
発電プラント等においては、化学反応速度を上げて、収
量増加の工夫がなされるのが常識であり、その為に反応
管理に適した温度まで昇温するのが一般的である。とこ
ろが、その反応温度は、常温に比べ数百度も高い領域で
ある場合が多く、運転停止後の保守、メンテナンスが必
要であるときに、自然放熱のままでは機器の温度がメン
テナンス作業が可能な温度、一般的に常温になるまでの
待機時間が数日〜週間オーダーとなり、その時間的ロス
が大きく、プラント利用率低下の一要因となっている。
また、化学反応の中には、燃焼をその反応熱源として利
用するものも多く、その場合には、燃焼部消炎後のパー
ジ操作或いは、ガス置換操作等が伴い、常温レベルまで
降温する為には、上記ガス置換の為のガス充てん後の自
然放熱や、その際に強制冷却を行なうとしても、その為
の追加加圧源としてのコンプレッサ,ガス消費量をまか
なうだけのボンベ数の増加といったコスト増要因があ
り、その辺の事情を併せてクリアすることに難点があっ
た。更に、高温領域から常温域に至らしめる過程での強
制冷却は、不用意に部品に温度差をつけることにもつな
がる為、熱応力の管理が行き届かずに、部材の疲労,過
大熱応力の発生という、致命的な問題を孕んでいるとい
う難点があった。
In the chemical industry, hydrogen gas production apparatus, fuel cell power plant, etc., which utilize ordinary chemical reaction processes, it is necessary to increase the chemical reaction rate to increase the yield. It is common sense that the temperature is generally raised to a temperature suitable for reaction control. However, the reaction temperature is often in the range of several hundreds of degrees higher than room temperature, and when maintenance or maintenance is required after operation is stopped, the temperature of the equipment is the temperature at which maintenance work can be performed with natural heat radiation. Generally, the waiting time until the temperature reaches room temperature is on the order of several days to a week, and the time loss is large, which is one of the factors that lowers the plant utilization rate.
In many chemical reactions, combustion is used as a heat source for the reaction, and in that case, purging operation after extinction of the combustion part, gas replacement operation, etc. are required to lower the temperature to a room temperature level. However, even if natural heat is released after the gas is filled for the above gas replacement, or even if forced cooling is performed at that time, there is an increase in costs such as a compressor as an additional pressurizing source, and an increase in the number of cylinders to cover the gas consumption. There was a factor, and there was a difficulty in clearing the circumstances around it. In addition, forced cooling in the process of reaching from the high temperature region to the normal temperature region also causes a temperature difference in the parts carelessly. Therefore, the thermal stress cannot be managed well and fatigue of the member and excessive thermal stress There was a problem that it contained a fatal problem of occurrence.

【0005】また、特開平3−276574号公報記載
の技術は、パージガス冷却器によって冷却された排ガス
を用いるもので、それだけ余分の機器を必要とするとい
う難点があった。
Further, the technique described in Japanese Patent Laid-Open No. 3-276574 uses exhaust gas cooled by a purge gas cooler, and has a drawback that extra equipment is required.

【0006】本発明の目的は、単数若しくは複数の化学
反応容器を有する化学プラントにおいて、プラント停止
操作後のメンテナンスに取りかかるまで機器冷却のため
の待機時間ロスを低減するにある。更に燃料電池発電シ
ステムにおいての上記目的を達成する具体的な手法を提
案することにある。
An object of the present invention is to reduce the standby time loss for cooling equipment in a chemical plant having a single or a plurality of chemical reaction vessels until the maintenance after the plant shutdown operation is started. Further on it is to propose a specific method to achieve the object of the fuel cell power generation system.

【0007】[0007]

【課題を解決するための手段】上記の目的は、常温に較
べ、高温または低温領域で運転される化学反応を利用す
る化学プラントにおける化学反応容器を対象とし、通常
運転時に化学反応容器への化学反応基の供給、排出に使
用される配管類に、予め、それら配管と化学反応容器を
含む循環流路を形成するように、前記排出に使用される
配管と供給に使用される配管を熱交換器を介装した管路
で接続しておき、化学反応容器の運転終了後の常温化操
作時に、前記循環流路に冷却または昇温用媒体を通ずる
とともに、冷却または昇温用媒体に回収された熱を、前
記管路に介装された熱交換器を介して系外に放出するこ
により達成される。
[Means for Solving the Problems] The above object, compared to room temperature, intended for chemical reaction vessel in a chemical plant that utilizes a chemical reaction which is operated at high or low temperature region, usually
Used to supply and discharge chemical reaction groups to the chemical reaction vessel during operation.
Preliminarily install these pipes and chemical reaction vessels in the pipes used.
Used for said discharge so as to form a circulation channel containing
Piping and piping used for supply via a heat exchanger
To keep the room temperature after operation of the chemical reaction vessel
At the time of operation, a cooling or heating medium is passed through the circulation channel.
At the same time, the heat recovered in the cooling or heating medium is
It can be released to the outside of the system via a heat exchanger installed in the storage conduit.
It is achieved by the.

【0008】上記課題は、燃料電池のカソードガス出側
とカソードガス入り側とに接続され、カソード排ガスの
一部を調整弁を介して前記燃料電池にリサイクルするカ
ソードガスブロワと、該カソードガス出側に第1の管路
を介して連通され、該管路を介して供給されるカソード
排ガスを駆動流体として空気を圧縮するターボコンプレ
ッサと、該ターボコンプレッサにより圧縮された空気を
第1の弁と前記調整弁とを介して前記燃料電池のカソー
ドガス入り側に供給する第2の管路と、該第2の管路の
前記ターボコンプレッサと前記第1の弁との間を前記第
1の管路に連通させて設けられた第3の管路とを有して
なる燃料電池発電プラントの発電停止後の電気化学反応
部を降温する場合において、前記発電停止後、前記第1
の弁を閉じ、前記カソードガスブロワを運転して、停止
している前記ターボコンプレッサから第3の管路と第1
の管路とを介して空気を吸引するとともに、前記燃料電
池のカソードガス出側からガスを吸引してなる混合ガス
の一部を前記燃料電池のカソードに循環させ、残りの混
合ガスを前記第2の管路を介して系外に放出することに
より達成される。
The above-mentioned problems are caused by the cathode gas outlet side of the fuel cell.
And the cathode gas inlet side of the cathode exhaust gas.
A part of the fuel cell is recycled to the fuel cell through a regulating valve.
Sword gas blower and first conduit on the cathode gas outlet side
Cathode that is communicated via the
A turbo compressor that compresses air using exhaust gas as a driving fluid
And the air compressed by the turbo compressor
The fuel cell caustic via the first valve and the regulating valve
A second pipeline for supplying gas to the gas inlet side, and a second pipeline for the second pipeline.
Between the turbo compressor and the first valve, the first
And a third conduit provided so as to communicate with the first conduit.
Reactions after Power Generation Stops at Naruto Fuel Cell Power Plant
In the case of lowering the temperature of the section, after the power generation is stopped, the first
Close the valve, operate the cathode gas blower, and stop.
From the turbo compressor to the third line and the first line
Air is sucked in through the conduit of
Mixed gas created by sucking gas from the cathode gas outlet of the pond
Part of this is circulated to the cathode of the fuel cell and the remaining mixture
It is achieved by discharging the combined gas to the outside of the system through the second conduit .

【0009】[0009]

【作用】本発明では、反応基を注入する系統を利用し化
学反応容器内の反応終了後、反応により生じた発熱また
は、放熱により生じる外気との温度差を常温レベルに促
進させる。また、化学反応容器またはその周辺機器等が
許容する温度変化率の制限値以内に納まる様に温度制御
を行なうことで、急激な温度変化を機器に与えることな
く機器損傷を防止することができる。
In the present invention, a system for injecting a reactive group is utilized to promote the temperature difference between the heat generated by the reaction and the outside air caused by heat dissipation to the room temperature level after the reaction in the chemical reaction container is completed. Further, by controlling the temperature so that the temperature change rate falls within the limit value of the temperature change rate allowed by the chemical reaction container or its peripheral equipment, damage to the equipment can be prevented without giving a rapid temperature change to the equipment.

【0010】燃料電池発電プラントにおいては、発電プ
ラント停止後の電池化学反応部の降温の際に、カソ−ド
ガスリサイクル用の回転機械を用いて電池化学反応部に
冷却用媒体の強制循環流が送り込まれ、電池化学反応部
の降温が促進される。
In the fuel cell power generation plant, when the temperature of the cell chemical reaction unit is lowered after the power plant is stopped, a forced circulation flow of a cooling medium is applied to the cell chemical reaction unit by using a rotary machine for recycling cathode gas. It is sent and the temperature reduction of the battery chemical reaction part is promoted.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例の図面を参
照して説明する。図12に、本発明の対象となる化学反
応プラントの一般的な全体構成例を模式的に示す。図示
の化学反応プラントは、化学反応基Aを供給する供給源
17Aからの反応基と、化学反応基Bを供給する供給源17B
からの反応基を反応基流路18A,18Bを通じて化学反応容
器13に注入する構成であり、そのために各供給源17A,1
7Bの出口側の反応基流路にブロワ15A,15Bをそれぞれ設
け、化学反応場である化学反応容器13に反応基を押し込
んでいる。反応基の流量制御のために、供給源とブロワ
の間の反応基流路18A,18Bに弁16A,16Bが配設されてい
る。化学反応容器13での反応は、例えば
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 12 schematically shows an example of a general overall configuration of a chemical reaction plant which is the subject of the present invention. The illustrated chemical reaction plant is a source for supplying the chemical reaction group A.
Source 17B for supplying the reactive group from 17A and the chemically reactive group B
The reaction groups from the above are injected into the chemical reaction vessel 13 through the reaction group flow paths 18A and 18B.
Blowers 15A and 15B are respectively provided in the reaction group flow path on the outlet side of 7B, and the reaction group is pushed into the chemical reaction container 13 which is the chemical reaction field. Valves 16A and 16B are provided in the reaction group flow paths 18A and 18B between the supply source and the blower for controlling the flow rate of the reaction group. The reaction in the chemical reaction vessel 13 is, for example,

【0012】[0012]

【数1】 等の反応式によって記述される。化学反応容器13での反
応生成物は、反応生成物流路19を経て反応生成物タンク
11に回収される。ここで、ブロワ15A,15Bや弁16A,16B
は、通常運転時に必ず使用される補機である。
[Equation 1] It is described by a reaction formula such as. The reaction product in the chemical reaction vessel 13 passes through the reaction product flow path 19 and the reaction product tank.
Recovered in 11. Here, blowers 15A and 15B and valves 16A and 16B
Is an accessory that is always used during normal operation.

【0013】本発明の着眼点は化学反応系における反応
容器内の化学反応時に生じる保有熱が、運転終了後、通
常の自然熱放散時の常温までの温度変化に要する時間を
合理的に早く外気と同様の温度レベルとすべく工夫した
ものであり、以下具体的に説明する。
The point of interest of the present invention is that the retained heat generated during the chemical reaction in the reaction vessel in the chemical reaction system can reasonably speed up the time required for the temperature change to the normal temperature at the time of normal natural heat dissipation after the operation is completed. It is devised so that the temperature level is the same as the above, and will be specifically described below.

【0014】図1に本発明の原理を説明するための参考
例を示す。同図は、図12に示したプラントの、化学反
応基供給源17A,17Bから反応容器13へ反応基を導く注入
する反応基流路18A,18Bに、新たに常温化時熱交換用ガ
ス吸入部23A,23Bを吸入調節弁24A,24Bを介して接続
し、反応生成物流路19に排出調節弁22を介して常温化時
熱交換用ガス排出部21を接続したものである。常温化時
熱交換用ガス吸入部23A,23Bは、ブロワ15A,15Bの上流
側の反応基流路18A,18Bに接続されている。吸入調節弁
24A,24Bは常温化時熱交換用ガス吸入部23A,23Bから反
応基流路18A,18Bに流入するガスを制御するもので、排
出調節弁22は反応生成物流路19から常温化時熱交換用ガ
ス排出部21に流出するガスを制御するものである。
FIG. 1 is a reference for explaining the principle of the present invention .
Here is an example: The figure shows that a new gas suction for heat exchange at normal temperature is newly introduced into the reaction group flow paths 18A, 18B for injecting the reaction groups from the chemical reaction group supply sources 17A, 17B into the reaction vessel 13 of the plant shown in FIG. The parts 23A and 23B are connected via the suction control valves 24A and 24B, and the reaction product flow path 19 is connected to the normal temperature heat exchange gas discharge part 21 via the discharge control valve 22. The gas suction portions 23A and 23B for heat exchange at room temperature are connected to the reaction base flow paths 18A and 18B on the upstream side of the blowers 15A and 15B. Inhalation control valve
24A and 24B are for controlling the gas flowing into the reaction base flow paths 18A and 18B from the gas intake portions 23A and 23B for heat exchange at room temperature, and the discharge control valve 22 is for heat exchange at room temperature from the reaction product flow path 19. It controls the gas flowing out to the use gas discharge part 21.

【0015】上記構成の装置において化学反応容器13の
運転終了後化学反応容器13のメンテナンスが行われる場
合、常温化時熱交換用ガス吸入部23A,23Bから冷却用媒
体(運転温度が常温よりも低温の場合は昇温用媒体)を
反応基流路18A,18Bを介して反応容器13に注入すること
により、化学反応容器13内温度の常温化が促進される。
また、注入された冷却または昇温用媒体(以下常温化媒
体という)は、常温化時熱交換用ガス排出部21を経て回
収される。排出調節弁22により、回収されるガスの排出
が調整される。ここで、弁16Aと吸入調節弁24A,弁16B
と吸入調節弁24Bの関係は、相互にガスの混入を防止す
るため、双方が同時に開くことのないよう開度(開閉)
制御が行われる。
When maintenance of the chemical reaction vessel 13 is performed after the operation of the chemical reaction vessel 13 is completed in the apparatus having the above-mentioned configuration, the cooling medium (operating temperature is higher than normal temperature) from the heat exchange gas suction portions 23A and 23B at normal temperature. When the temperature is low, the temperature raising medium) is injected into the reaction vessel 13 via the reaction base flow paths 18A and 18B, so that the internal temperature of the chemical reaction vessel 13 is accelerated.
In addition, the injected cooling or temperature raising medium (hereinafter referred to as normal temperature medium) is recovered through the heat exchange gas discharge part 21 at normal temperature. The emission control valve 22 regulates the emission of the recovered gas. Here, valve 16A, suction control valve 24A, valve 16B
The suction control valve 24B and the suction control valve 24B have a degree of opening (opening and closing) so that they do not open at the same time in order to prevent mutual gas mixture.
Control is performed.

【0016】図2に本発明の第1の実施例を示す。図1
は、常温化時熱交換用ガス吸入部23A,23Bの入り口側と
常温化時熱交換用ガス排出部21の出口側が接続されてい
ないが、図2に示す第1の実施例は、常温化時熱交換用
ガス吸入部23A,23Bの入り口側と常温化時熱交換用ガス
排出部21の出口側が接続されている点で相違する。つま
り、図2においては、常温化時熱交換用ガス吸入部23
A,23Bや常温化時熱交換用ガス排出部21となる特別の機
器は設けられておらず、排出調節弁22の出口側と吸入調
節弁24A,24Bの入り口側が媒体流路20により連通されて
いる。図中、媒体流路20に介装されている熱交換器28
は、該媒体流路20を通過中に常温化媒体が外部の空気と
熱交換してその熱を空気に放出もしくは空気から熱を吸
収することを表現したものである。もちろん、プラント
機器の配置上、媒体流路20が常温化媒体の熱の放出ある
いは吸収に十分な長さがない場合は、実際に熱交換器を
設けてもよい。いずれの場合でも、化学反応容器13内の
温度を常温域に移行させる時間を短縮させることが可能
である。
FIG. 2 shows a first embodiment of the present invention. Figure 1
Is not connected to the inlet side of the heat exchange gas suction portions 23A and 23B for normal temperature and the outlet side of the normal temperature heat exchange gas discharge portion 21, but in the first embodiment shown in FIG. The difference is that the inlet sides of the hour heat exchange gas suction portions 23A and 23B and the outlet side of the normal temperature heat exchange gas discharge portion 21 are connected . Tsuma
2 , in FIG. 2, the gas suction part 23 for heat exchange at room temperature is used.
No special equipment is provided to serve as A, 23B and the heat exchange gas discharge part 21 at room temperature, and the outlet side of the discharge control valve 22 and the inlet side of the suction control valves 24A, 24B are connected by the medium flow path 20. ing. In the figure, a heat exchanger 28 installed in the medium flow path 20.
Represents that the ambient temperature medium exchanges heat with the outside air while passing through the medium flow path 20, and releases the heat to the air or absorbs the heat from the air. Of course, when the medium flow path 20 is not long enough to release or absorb the heat of the ambient temperature medium due to the arrangement of the plant equipment, the heat exchanger may be actually provided. In any case, it is possible to shorten the time for shifting the temperature inside the chemical reaction container 13 to the normal temperature range.

【0017】図3,4は、図1の参考例における化学反
応容器が多系列化された場合の参考例であり、いずれも
図2の実施例を適用できる。図3は装置の通常運転中の
反応基の流れを示したものである。通常運転中は、熱交
換用ガス吸入部23A,23Bからの反応容器への常温化媒体
注入を防ぐため吸入調節弁24A,24Bが閉じられ、また、
熱交換用ガス排出部21への反応基の流入を防ぐため排出
調節弁22が閉じられている。図4は、運転終了後、反応
容器13を常温にする場合の媒体の流れを示したもので、
化学反応基供給源17A,17Bから反応基流路18A,18Bへの
反応基注入を防ぐため弁16A,16Bが閉じられて常温化媒
体を反応容器に導くため吸入調節弁24A,24Bが開かれ、
また、反応生成物タンク11への常温化媒体の流入を防ぐ
ため弁12が閉じられ熱交換用ガス排出部21へ常温化媒体
を導くため排出調節弁22が開かれる。実際に常温化媒体
を注入する際は、反応基流路内の反応基をパージする等
の手順を必要とする場合もある。
[0017] Figure 3 and 4, a reference example in which a chemical reaction vessel in reference example of FIG. 1 is a multi-sequenced, both
The embodiment of FIG. 2 can be applied . FIG. 3 shows the flow of reactive groups during normal operation of the device. During normal operation, the suction control valves 24A and 24B are closed in order to prevent the room temperature medium from being injected into the reaction vessel from the heat exchange gas suction portions 23A and 23B, and
The discharge control valve 22 is closed to prevent the reaction group from flowing into the heat exchange gas discharge part 21. FIG. 4 shows the flow of the medium when the reaction container 13 is brought to room temperature after the operation is completed.
The valves 16A and 16B are closed to prevent injection of the reactive groups from the chemically reactive group supply sources 17A and 17B into the reactive group flow paths 18A and 18B, and the suction control valves 24A and 24B are opened to introduce the temperature-warming medium into the reaction vessel. ,
Further, the valve 12 is closed to prevent the ambient temperature medium from flowing into the reaction product tank 11, and the discharge control valve 22 is opened to guide the ambient temperature medium to the heat exchange gas discharge portion 21. When actually injecting the ambient temperature medium, a procedure such as purging the reaction group in the reaction group channel may be required.

【0018】化学反応容器を常温にするために注入する
常温化媒体として、液体、不活性ガスまたは、空気等が
考えられ、これらは化学反応プラントの本来の目的を損
なわない物質であれば基本的に問題はない。
Liquids, inert gases, air, and the like are considered as the temperature-increasing medium to be injected to bring the chemical reaction vessel to room temperature, and these are basically substances that do not impair the original purpose of the chemical reaction plant. There is no problem with.

【0019】冷却又は、昇温用媒体の注入方法として、
通常運転中に使用していた図1のブロワ15A,15Bを流用
し反応容器内に図2のように循環注入するか、或は、冷
却・昇温用媒体の注入専用のファン,ブロワ等の回転機
械を設けることにより図2のように循環注入するが、化
学反応容器またはその周辺機器等が許容する温度変化率
の制限値以内に納まる様に、図1〜図4では図示しない
測温手段を設け、同じく図示しない温度制御機構により
ブロワ15A,15Bまたは吸入調節弁24A,24Bの調整を行
う。また反応容器内部或は、内部と外部の相対的圧力差
によって回転機が力学的に損傷しない許容範囲におい
て、回転機の運転制御を行う。
As a method for injecting a medium for cooling or heating,
The blowers 15A and 15B shown in Fig. 1 that were used during normal operation are diverted and circulated and injected into the reaction vessel as shown in Fig. 2 , or a fan or blower dedicated to the injection of the cooling / heating medium is used. Circulating injection as shown in FIG. 2 by providing a rotary machine, but a temperature measuring means not shown in FIGS. 1 to 4 so that the chemical reaction container or peripheral equipment thereof is within the limit value of the rate of temperature change allowed. The blower 15A, 15B or the suction control valve 24A, 24B is adjusted by a temperature control mechanism (not shown). Further, the operation control of the rotating machine is performed within an allowable range in which the rotating machine is not mechanically damaged by the relative pressure difference inside the reaction vessel or inside and outside.

【0020】図5に示す参考例は、図3,4で説明して
いる常温化時熱交換用ガス排出部21を反応生成物タンク
11で兼用したケースを示した場合の図である。
In the reference example shown in FIG. 5, the gas discharge portion 21 for heat exchange at room temperature described in FIGS.
FIG. 13 is a diagram showing a case in which 11 is also used.

【0021】また、図6に示す他の参考例においては、
図3,4に示す参考例に対し、反応基流路18A,18Bの一
方のみ使用して、化学反応容器の温度を常温レベルに促
進する場合を示した図である。例えば、B系ライン(破
線部は不使用系)を使用すると、可燃性ガスや有毒ガス
のリークが問題となる場合は、その系統を生かさずAの
系統のみで常温化媒体の注入を行う場合を示したもので
ある。
Further, in another reference example shown in FIG.
It is the figure which showed the case where only one of the reaction group flow paths 18A and 18B is used to accelerate the temperature of the chemical reaction vessel to the room temperature level, as compared with the reference example shown in FIGS. For example, when using the B line (the unused line in the broken line) causes a problem of flammable gas or toxic gas leakage, when the normal temperature medium is injected only in the A system without utilizing the system. Is shown.

【0022】図7に第2の実施例の特徴部を示す。化学
反応容器外表面の温度が外気温と大きく隔たっている場
合、外気の対流を利用し、外表面での熱交換を促進させ
る方法が考えられる。即ち、化学反応容器が屋内に設置
されている場合、図7の様に建屋の低い位置、好ましく
は化学反応容器よりも低い位置に吸気口71を設け、建屋
の高い位置、好ましくは化学反応容器よりも高い位置に
排気口72を設け、外気の対流により熱交換を促進させて
常温化時間を短縮するものである。
FIG. 7 shows a characteristic part of the second embodiment. When the temperature of the outer surface of the chemical reaction container is largely separated from the outside air temperature, convection of the outside air may be used to accelerate heat exchange on the outer surface. That is, when the chemical reaction container is installed indoors, the intake port 71 is provided at a lower position of the building, preferably lower than the chemical reaction container, as shown in FIG. The exhaust port 72 is provided at a higher position than that, and heat exchange is promoted by convection of the outside air to shorten the normal temperature time.

【0023】図8に第3の実施例の特徴部を示す。本実
施例は容器外表面の熱輻射を効果的に行なわせるために
反応容器13の外側に外側容器81を設けた例である。図8
に示す様に、内側の化学反応容器13の表面積を大きくし
運転終了後、外側の容器81を取り外し、内側反応容器の
外表面での熱交換を促進させるようにしたものである。
また、この構成により通常の運転中における保温性を良
くすることができる。更に、可燃性ガスや有毒ガスのリ
ークに対する安全性を増すことが可能となる。
FIG. 8 shows a characteristic part of the third embodiment. The present embodiment is an example in which an outer container 81 is provided outside the reaction container 13 in order to effectively perform heat radiation on the outer surface of the container. Figure 8
As shown in, the surface area of the inner chemical reaction vessel 13 is increased, and after the operation is completed, the outer vessel 81 is removed to promote heat exchange on the outer surface of the inner reaction vessel.
Further, with this configuration, it is possible to improve heat retention during normal operation. Further, it becomes possible to increase the safety against leakage of flammable gas and toxic gas.

【0024】第3の実施例のように、化学反応容器13の
外側に外側容器81が設けられ、外側容器内封入ガスが容
器外部と交換可能な場合の他の実施例を図9を参照して
説明する。図9の(a)に示す第4の実施例は、外側容
器上下部に吸排気口を設けることができる場合である。
この場合、冷却用媒体を通じる時は、上方の口を排気口
として使用する。既ち、容器外部気体との温度の違いに
より、対流を生じさせてその流れで反応容器13外表面で
の熱交換を促進するものである。下の口からは冷媒とし
ての外部ガスが導かれることになる。昇温用媒体を通じ
る場合は、下方の口を排出口として利用することで熱循
環を良くし媒体を給排することにより容器の熱交換を促
進させる。
[0024] As in the third embodiment, the chemical outer container 81 on the outside of the reaction vessel 13 is provided another embodiment in the outer container enclosing the gas is interchangeable with the container outside with reference to FIG. 9 Explain. The fourth embodiment shown in FIG. 9 (a) is a case where intake and exhaust ports can be provided in the upper and lower parts of the outer container.
In this case, when passing through the cooling medium, the upper port is used as an exhaust port. The convection is generated due to the difference in temperature with the gas outside the container, and the flow facilitates heat exchange on the outer surface of the reaction container 13. External gas as a refrigerant is introduced from the lower port. When passing through the temperature raising medium, the lower port is used as a discharge port to improve heat circulation and supply and discharge of the medium to promote heat exchange of the container.

【0025】図9の(b)に第5の実施例を示す。本実
施例は、外側反応容器81内の封入ガスの強制循環によっ
て反応容器13の常温化を促進させるもので、封入ガスの
出入口を外側容器81底部の反応容器13を挟んで互いに反
対の側に設けて強制循環させる例である。
FIG. 9B shows the fifth embodiment. In this embodiment, the forced circulation of the enclosed gas in the outer reaction vessel 81 promotes the normalization of the temperature of the reaction vessel 13, and the inlet and outlet of the enclosed gas are on opposite sides of the reaction vessel 13 at the bottom of the outer vessel 81. This is an example of providing and forcibly circulating .

【0026】また、図9の(c)に示す第6の実施例
は、図1〜図4までの主プロセス系を使用した反応容器
13内に常温化媒体を送りこむ方法と、図9の(b)に示
す反応容器13外表面の熱交換を促進させる方法を組合せ
た例を示すものである。
A sixth embodiment shown in FIG. 9 (c) is a reaction vessel using the main process system shown in FIGS.
9 shows an example in which a method of feeding a room temperature medium into the chamber 13 and a method of promoting heat exchange on the outer surface of the reaction vessel 13 shown in FIG. 9B are combined.

【0027】次に本発明を溶融炭酸塩型燃料電池発電シ
ステムに適用した第7の実施例を説明する。
Next, a seventh embodiment in which the present invention is applied to a molten carbonate fuel cell power generation system will be described.

【0028】図10は、溶融炭酸塩型燃料電池発電プラン
トの通常運転時における系統図を示したものである。図
示の溶融炭酸塩型燃料電池発電プラントは、リフォーマ
(改質器)117と、該リフォーマ117に管路124,125を介
して接続された燃料電池111と、該燃料電池111のカソー
ド側にカソード排ガス流路118を介して駆動流体入り口
側を接続されたターボコンプレッサ115と、該ターボコ
ンプレッサ115の吐出側とリフォーマ117を弁119を介し
て接続する管路120と、前記カソード排ガス流路118に吸
入側を接続されたカソードブロワ112と、該カソードブ
ロワ112の吐出側と電料電池111のカソード側を調整弁11
3を介して接続する管路121と、前記弁119下流側の管路1
20とカソードブロワ112の吐出側の管路121を弁114を介
して接続する管路122と、該管路122とリフォーマ117を
接続する管路123と、前記ターボコンプレッサ115の駆動
流体入り口側のカソード排ガス流路118とターボコンプ
レッサ115の吐出側の管路120とを接続する管路126と、
ターボコンプレッサ115の駆動流体出側に管路127を介し
て接続された排熱回収ボイラ(HRSG)116と、管路1
27と前記弁119下流側の管路120とを接続してターボコン
プレッサバイパス系をなす管路128と、燃料電池111に接
続された送電線129を含んで構成されている。
FIG. 10 is a system diagram of the molten carbonate fuel cell power plant during normal operation. The molten carbonate fuel cell power plant shown in the figure has a reformer (reformer) 117, a fuel cell 111 connected to the reformer 117 via pipes 124 and 125, and a cathode on the cathode side of the fuel cell 111. A turbo compressor 115 having a drive fluid inlet side connected through an exhaust gas channel 118, a pipe line 120 connecting a discharge side of the turbo compressor 115 and a reformer 117 through a valve 119, and the cathode exhaust gas channel 118. A cathode blower 112 connected to the suction side, and a regulating valve 11 for connecting the discharge side of the cathode blower 112 and the cathode side of the electric battery 111.
The conduit 121 connected via 3 and the conduit 1 on the downstream side of the valve 119.
20 and a conduit 122 connecting the discharge side conduit 121 of the cathode blower 112 via a valve 114, a conduit 123 connecting the conduit 122 and the reformer 117, and a drive fluid inlet side of the turbo compressor 115. A conduit 126 connecting the cathode exhaust gas flow path 118 and the discharge-side conduit 120 of the turbo compressor 115,
An exhaust heat recovery boiler (HRSG) 116 connected to the driving fluid outlet side of the turbo compressor 115 via a pipe 127, and a pipe 1
It is configured to include a transmission line 129 connected to the fuel cell 111, and a pipe line 128 connecting the 27 and the pipe line 120 on the downstream side of the valve 119 to form a turbo compressor bypass system.

【0029】上記構成の溶融炭酸塩型燃料電池発電プラ
ントにおいて、炭化水素系燃料と水蒸気を混合したプロ
セスガスがリフォーマ117に供給され、ここで水素に改
質され、生成した水素は管路124を経て燃料電池111のア
ノード側に注入される。また、ターボコンプレッサ115
により圧縮された空気が、弁119,114を通り、リフォー
マ117から管路123を経て供給される二酸化炭素と混合さ
れ、調整弁113を経て燃料電池111のカソード側に注入さ
れる。アノード側ガスとカソード側ガスが電気化学的に
反応し発電を行なう。反応後のアノード排ガスは、水素
が10%含まれているので管路125を経てリフォーマ117に
送られ、ここで燃料として使用される。燃料電池111の
カソード排ガスの一部は、カソード排ガス流路118を経
てカソードブロワ112により昇圧され、調整弁113を通っ
て燃料電池111へリサイクルされ、残りはターボコンプ
レッサ115のタービンを駆動し、排熱回収ボイラ116へ排
出される。
In the molten carbonate fuel cell power plant having the above structure, the process gas obtained by mixing the hydrocarbon fuel and steam is supplied to the reformer 117, where it is reformed into hydrogen, and the generated hydrogen passes through the pipe 124. Then, it is injected into the anode side of the fuel cell 111. In addition, the turbo compressor 115
The air compressed by is mixed with carbon dioxide supplied from the reformer 117 through the pipe 123 through the valves 119 and 114, and is injected into the cathode side of the fuel cell 111 through the adjustment valve 113. The gas on the anode side and the gas on the cathode side react electrochemically to generate electricity. Since the anode exhaust gas after the reaction contains 10% of hydrogen, the anode exhaust gas is sent to the reformer 117 via the pipe 125 and used as a fuel there. A part of the cathode exhaust gas of the fuel cell 111 is boosted by the cathode blower 112 through the cathode exhaust gas passage 118, is recycled to the fuel cell 111 through the adjusting valve 113, and the rest drives the turbine of the turbo compressor 115 and discharges it. It is discharged to the heat recovery boiler 116.

【0030】発電プラント運転終了後、カソード側系統
を利用し、燃料電池内温度を冷却する場合を示した各ガ
スの流れを図11に示す。運転終了後は、ターボコンプレ
ッサ115が停止され、弁119が閉じられる。カソードブロ
112を運転することで、ターボコンプレッサ115の空気
取入口から外気が取り入れられ、停止したターボコンプ
レッサ115内部及び管路126,118,121,調整弁113を経
て燃料電池111に送りこまれる。この空気の流れによ
り、カソード側系統及び、燃料電池111が強制循環流に
より冷却される。また、外気と、冷却媒体の混合部を形
成することにより、冷却効果が増すことはいうまでもな
い。
FIG. 11 shows the flow of each gas showing the case where the temperature inside the fuel cell is cooled by utilizing the cathode side system after the operation of the power plant is completed. After the operation ends, the turbo compressor 115 is stopped and the valve 119 is closed. By operating the cathode blower 112 , the outside air is taken in from the air intake of the turbo compressor 115, and is sent to the fuel cell 111 through the inside of the stopped turbo compressor 115, the pipelines 126, 118, 121, and the adjusting valve 113. Due to this air flow, the cathode side system and the fuel cell 111 are cooled by the forced circulation flow. Further, it goes without saying that the cooling effect is enhanced by forming a mixed portion of the outside air and the cooling medium.

【0031】また、燃料電池111のカソード側入口、出
口に温度測定器101及び極間差圧を検出する圧力検出器1
02を設け、出力される温度信号及び圧力信号を入力とし
て弁113またはカソードブロワ112を制御する図示されて
いない制御手段を設けた。この制御手段は、電池内部の
耐圧上の制限値及び温度変化率の制限値に基づき、燃料
電池に送りこまれる循環流による燃料電池の圧力/温度
変化率が上記制限値を逸脱しないように弁113または
ソードブロワ112を制御する。したがって、発電プラン
ト運転終了後、強制的に燃料電池111やその他の機器を
冷却しても、燃料電池111やその他の機器に急激な温度
変化を生じて過大な熱応力が発生するのを防止するのが
可能となった。なお、前記制御手段の操作端としては、
弁113のほか、弁114をくわえてもよい。また、温度変化
率の制限値は、電解質融点/凝固点温度を境にその値を
変更するようにしてもよい。
Further, a temperature measuring device 101 at the cathode side inlet and outlet of the fuel cell 111 and a pressure detector 1 for detecting the inter-electrode differential pressure.
02 is provided, and a control means (not shown) for controlling the valve 113 or the cathode blower 112 by using the output temperature signal and pressure signal as input is provided. This control means controls the valve 113 so that the pressure / temperature change rate of the fuel cell due to the circulating flow sent to the fuel cell does not deviate from the above limit value based on the limit value of the pressure resistance inside the cell and the limit value of the temperature change rate. Or mosquito
To control the Sword blower 112. Therefore, even after forcibly cooling the fuel cell 111 or other equipment after the operation of the power plant, it is possible to prevent the fuel cell 111 and other equipment from abruptly changing the temperature and causing excessive thermal stress. It became possible. In addition, as the operation end of the control means,
In addition to the valve 113, the valve 114 may be added. Further, the limit value of the temperature change rate may be changed at the electrolyte melting point / freezing point temperature as a boundary.

【0032】[0032]

【発明の効果】本発明によれば、化学反応容器の反応運
転終了後、容器内の温度が迅速に常温レベルまで移行さ
れるので、化学反応容器の保守・点検の開始を早めるこ
とができる。例えば、燃料電池プラント等の化学反応プ
ラントにおいて、無駄な待機時間を短くすることができ
る。
According to the present invention, after the reaction operation of the chemical reaction container is completed, the temperature in the container is rapidly changed to the normal temperature level, so that the maintenance and inspection of the chemical reaction container can be started earlier. For example, in a chemical reaction plant such as a fuel cell plant, useless waiting time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明する参考例の系統図であ
る。
FIG. 1 is a system diagram of a reference example for explaining the principle of the present invention.

【図2】本発明の第1の実施例を示す系統図である。FIG. 2 is a system diagram showing a first embodiment of the present invention.

【図3】本発明を適用可能な参考例の系統図である。FIG. 3 is a system diagram of a reference example to which the present invention can be applied .

【図4】図3に示す参考例における弁の開閉例を示す系
統図である。
FIG. 4 is a system diagram showing an example of opening and closing a valve in the reference example shown in FIG.

【図5】本発明を適用可能な他の参考例の系統図であ
る。
FIG. 5 is a system diagram of another reference example to which the present invention can be applied .

【図6】本発明を適用可能なさらに他の参考例の系統図
である。
FIG. 6 is a system diagram of still another reference example to which the present invention can be applied .

【図7】本発明の第2の実施例の特徴部を示す概念図で
ある。
FIG. 7 is a conceptual diagram showing a characteristic part of a second exemplary embodiment of the present invention.

【図8】本発明の第3の実施例の特徴部を示す概念図で
ある。
FIG. 8 is a conceptual diagram showing a characteristic part of a third exemplary embodiment of the present invention.

【図9】本発明の第3の実施例を変形した第4〜第6の
実施例の特徴部を示す概念図である。
FIG. 9 is a fourth to sixth modification of the third embodiment of the present invention.
It is a conceptual diagram which shows the characteristic part of an Example .

【図10】燃料電池発電プラントの通常運転時系統図で
ある。
FIG. 10 is a system diagram of a fuel cell power plant during normal operation.

【図11】図10に示す燃料電池発電プラントに本発明
を適用した第7の実施例を示す図である。
11 is a diagram showing a seventh embodiment in which the present invention is applied to the fuel cell power plant shown in FIG.

【図12】本発明が適用される一般的な化学反応プラン
トの構成例を示す系統図である。
FIG. 12 is a system diagram showing a configuration example of a general chemical reaction plant to which the present invention is applied.

【符号の説明】 11 反応生成物回収タンク 12
弁 13 化学反応容器 14
A,14B 調整弁 15A,15B ブロワ 16
A,16B 弁 17A,17B 反応基供給源 18
A,18B 反応基流路 19 反応生成物流路 20
媒体流路 21 常温化時熱交換用ガス排出部 22
排出調節弁 23A,23B 常温化時熱交換用ガス吸入部 24
A,24B 吸入調節弁 28 熱交換器 71
吸気口 72 排気口 81
外側容器 101 温度測定器 111
燃料電池 112 カソードブロワ 113
調整弁 114 弁 115
ターボコンプレッサ 116 排熱回収ボイラ 117
リフォーマ 118 カソード排ガス流路 119
弁 120〜128 管路 129
送電線
[Explanation of Codes] 11 Reaction Product Recovery Tank 12
Valve 13 Chemical reaction vessel 14
A, 14B Regulator valve 15A, 15B Blower 16
A, 16B Valve 17A, 17B Reactive group supply source 18
A, 18B Reaction group flow path 19 Reaction product flow path 20
Medium flow path 21 Heat exchange gas discharge part at normal temperature 22
Emission control valves 23A, 23B Gas suction part for heat exchange at normal temperature 24
A, 24B Intake control valve 28 Heat exchanger 71
Intake port 72 Exhaust port 81
Outer container 101 Temperature measuring device 111
Fuel cell 112 Cathode blower 113
Regulator valve 114 Valve 115
Turbo compressor 116 Exhaust heat recovery boiler 117
Reformer 118 Cathode exhaust gas passage 119
Valve 120-128 Pipeline 129
power line

フロントページの続き (72)発明者 吉田 正 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 清木 信宏 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (56)参考文献 特開 昭63−254677(JP,A) 特開 昭60−65471(JP,A) 特開 昭61−179067(JP,A) 特開 昭62−259356(JP,A) 特開 昭61−176077(JP,A) 実開 昭61−204365(JP,U) (58)調査した分野(Int.Cl.7,DB名) B01J 19/00 H01M 8/00 - 8/24 Front page continuation (72) Inventor Tadashi Yoshida 3-1-1, Sachimachi, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Factory (72) Inventor Nobuhiro Kiyoki, 502 Kandachimachi, Tsuchiura, Ibaraki Hitachi Machinery Co., Ltd. In the laboratory (56) Reference JP 63-254677 (JP, A) JP 60-65471 (JP, A) JP 61-179067 (JP, A) JP 62-259356 (JP, A) ) Japanese Patent Laid-Open No. 61-176077 (JP, A) Actual development 61-204365 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 19/00 H01M 8/00-8 / twenty four

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 常温に較べ、高温または低温領域で運転
される化学反応を利用する化学プラントにおける化学反
応容器の常温化操作方法において、通常運転時に化学反
応容器への化学反応基の供給、排出に使用される配管類
に、予め、それら配管と化学反応容器を含む循環流路を
形成するように、前記排出に使用される配管と供給に使
用される配管を熱交換器を介装した管路で接続してお
き、化学反応容器の運転終了後の常温化操作時に、前記
循環流路に冷却または昇温用媒体を通ずるとともに、冷
却または昇温用媒体に回収された熱を、前記管路に介装
された熱交換器を介して系外に放出することを特徴とす
る化学反応容器の常温化操作方法。
1. A method for normalizing a temperature of a chemical reaction container in a chemical plant that uses a chemical reaction operating in a high temperature or low temperature region as compared with normal temperature, in which a chemical reaction group is supplied to and discharged from the chemical reaction container during normal operation. The pipes used for the exhaust pipe and the pipe used for the supply in advance so as to form a circulation flow path including the pipes and the chemical reaction vessel through a heat exchanger. The cooling or heating medium is passed through the circulation channel during normal temperature operation after the end of the operation of the chemical reaction container, and the heat recovered in the cooling or heating medium is transferred to the pipe. A method for normalizing the temperature of a chemical reaction vessel, characterized in that the chemical reaction vessel is discharged to the outside of the system through a heat exchanger installed in the passage.
【請求項2】 請求項1に記載の化学反応容器の常温化
操作方法において、冷却または昇温用媒体として、不活
性ガス及びまたは空気を用いることを特徴とする化学反
応容器の常温化操作方法。
2. The method for normalizing the temperature of a chemical reaction container according to claim 1, wherein an inert gas and / or air is used as a cooling or heating medium. .
【請求項3】 請求項1または2に記載の化学反応容器
の常温化操作方法において、化学反応容器の外側に外側
容器を設け、該外側容器の上下部に吸排気口を形成し、
冷却用媒体を用いる時には前記外側容器の上方に設けら
れた口を排気口として使用し、また昇温用媒体を用いる
時には前記外側容器の下方に設けられた口を排気口とし
て使用することを特徴とする化学反応容器の常温化操作
方法。
3. The method for normalizing the temperature of the chemical reaction container according to claim 1 or 2, wherein the chemical reaction container has an outside and an outside.
A container is provided, and intake and exhaust ports are formed in the upper and lower parts of the outer container,
When using a cooling medium uses mouth provided above the outer container as an exhaust port, also when using the medium for heating the mouth that is provided under the outer container and an exhaust port
A method for operating a chemical reaction container at room temperature, which is characterized by using the same.
【請求項4】 請求項1乃至3のいずれかに記載の化学
反応容器の常温化操作方法において、冷却または昇温用
媒体を、通常運転中に反応基の送給に使用される流体駆
動用の回転機械を経て送りこむことを特徴とする化学反
応容器の常温化操作方法。
4. The method for normalizing the temperature of a chemical reaction container according to claim 1, wherein a cooling or heating medium is used for driving a fluid used for feeding a reaction group during normal operation. The method for normalizing the temperature of a chemical reaction container, characterized in that the chemical reaction container is fed through a rotary machine.
【請求項5】 請求項4に記載の化学反応容器の常温化
操作方法において、化学反応容器及びまたは該化学反応
容器に送りこまれる冷却または昇温用媒体の温度を検出
し、該検出された温度を入力として前記冷却または昇温
用媒体の温度及びまたは流量を制御することを特徴とす
る化学反応容器の常温化操作方法。
5. The method for normalizing the temperature of a chemical reaction container according to claim 4, wherein the temperature of the chemical reaction container and / or the cooling or temperature raising medium fed into the chemical reaction container is detected, and the detected temperature is detected. Is used to control the temperature and / or the flow rate of the cooling or heating medium, and a method for normalizing the temperature of the chemical reaction container.
【請求項6】 請求項4に記載の化学反応容器の常温化
操作方法において、冷却または昇温用媒体を通ずること
で生ずる化学反応容器内部或いは、内部と外部の相対的
圧力差によって、機械が力学的に損傷しない許容範囲に
おいて回転機械を運転させることを特徴とする化学反応
容器の常温化操作方法。
6. The method for normalizing the temperature of a chemical reaction container according to claim 4, wherein the machine is operated by the internal pressure of the chemical reaction container or the relative pressure difference between the inside and the outside of the chemical reaction container caused by passing a medium for cooling or heating. A method for operating a chemical reaction container at room temperature, which comprises operating a rotating machine within an allowable range that does not cause mechanical damage.
【請求項7】 請求項1に記載の化学反応容器の常温化
操作方法において、化学反応容器が屋内に設置されてい
る場合、該化学反応容器の運転終了後の常温化操作時
に、建屋上部と側面若しくは下部に形成された通風孔に
より、建屋外部大気との対流を生ぜしめ、該対流を利用
して常温化することを特徴とする化学反応容器の常温化
操作方法。
7. The method for normalizing the temperature of a chemical reaction container according to claim 1, wherein the chemical reaction container is installed indoors.
If we, the normal temperature of operation of the completion of the run of the chemical reaction vessel, a building top and sides or bottom which is formed in the ventilation holes give rise to convection and building external air to room temperature reduction by utilizing convection A method for operating a chemical reaction container at room temperature, which is characterized in that
【請求項8】 請求項1に記載の化学反応容器の常温化
操作方法において、化学反応容器を事前に二重化してお
き、化学反応容器の運転終了後の常温化操作時に、該化
学反応容器の外側容器を外すことを特徴とする化学反応
容器の常温化操作方法。
8. The method for normalizing the temperature of a chemical reaction container according to claim 1, wherein the chemical reaction container is duplicated in advance, and the chemical reaction container is operated at a normal temperature after completion of operation of the chemical reaction container. A method for normalizing a temperature of a chemical reaction container, which comprises removing an outer container.
【請求項9】 請求項1に記載の化学反応容器の常温化
操作方法において、化学反応容器が内側容器と外側容器
に二重化され、該内側容器の外表面積がフィン等を設け
て大きくされていることを特徴とする化学反応容器。
9. The method for normalizing the temperature of a chemical reaction container according to claim 1, wherein the chemical reaction container is duplicated into an inner container and an outer container, and the outer surface area of the inner container is increased by providing fins or the like. A chemical reaction container characterized by the above.
【請求項10】 燃料電池のカソードガス出側とカソー
ドガス入り側とに接続され、カソード排ガスの一部を調
整弁を介して前記燃料電池にリサイクルするカソードガ
スブロワと、該カソードガス出側に第1の管路を介して
連通され、該管路を介して供給されるカソード排ガスを
駆動流体として空気を圧縮するターボコンプレッサと、
該ターボコンプレッサにより圧縮された空気を第1の弁
と前記調整弁とを介して前記燃料電池のカソードガス入
り側に供給する第2の管路と、該第2の管路の前記ター
ボコンプレッサと前記第1の弁との間を前記第1の管路
に連通させて設けられた第3の管路とを有してなる燃料
電池発電プラントの発電停止後の電気化学反応部を降温
する方法において、前記発電停止後、前記第1の弁を閉じ、前記カソードガ
スブロワを運転して、停止している前記ターボコンプレ
ッサから第3の管路と第1の管路とを介して空気を吸引
するとともに、前記燃料電池のカソードガス出側からガ
スを吸引してなる混合ガスの一部を前記燃料電池のカソ
ードに循環させ、残りの混合ガスを前記第 2の管路を介
して系外に放出することを特徴とする 燃料電池発電プラ
ントの降温方法。
10. A cathode gas outlet side and a cathode gas inlet side of a fuel cell are connected to control a part of cathode exhaust gas.
Cathode gas recycled to the fuel cell through a valve
A sub-blower and a first conduit on the cathode gas outlet side
Cathode exhaust gas that is communicated and supplied through the pipe
A turbo compressor that compresses air as the driving fluid,
Air compressed by the turbocompressor has a first valve
And the cathode gas of the fuel cell through the adjusting valve
And a second pipe line for supplying the second pipe line
The first line between the vocompressor and the first valve
In the method of lowering the temperature of the electrochemical reaction part of the fuel cell power plant having the third conduit provided so as to communicate with, after the power generation is stopped, the first valve is closed, The cathode gas
Operate the sub-blower and stop the turbo compressor.
Intake air from the chamber through the third and first conduits
Gas from the cathode gas outlet side of the fuel cell.
A part of the mixed gas formed by sucking the gas
And the remaining mixed gas is circulated through the second conduit.
And releasing it outside the system .
【請求項11】 請求項10に記載の燃料電池発電プラ
ントの降温方法において、前記燃料電池のカソードに循
環される混合ガスはその流量を電池内部の耐圧上の条件
及び温度変化率の制限に基づいて制御されて燃料電池内
部に導入されることを特徴とする燃料電池発電プラント
の降温方法。
11. The method for lowering the temperature of a fuel cell power plant according to claim 10 , wherein the fuel cell is circulated to the cathode of the fuel cell.
A method for lowering the temperature of a fuel cell power plant, wherein the mixed gas to be circulated is introduced into the fuel cell by controlling the flow rate of the mixed gas based on a condition of pressure resistance inside the cell and limitation of a temperature change rate.
【請求項12】 請求項10または11に記載の燃料電
池発電プラントの降温方法において、前記燃料電池のカ
ソードに循環される混合ガス流量は、回転機械の回転制
御或はカソードガスリサイクル系統中の調節弁、外部給
排系上の調節弁を操作端とし、燃料電池の極間差圧かつ
/または、電池出入口温度差かつ/または、電池出口温
度かつ/または、電池入口温度を制御量として制御され
ることを特徴とする燃料電池発電プラントの降温方法。
12. The temperature decreasing method for a fuel cell power plant according to claim 10 , wherein the fuel cell unit
The flow rate of the mixed gas circulated in the sword is controlled by the rotation control of the rotating machine or the control valve in the cathode gas recycle system, or the control valve on the external supply / discharge system as the operating end, and the differential pressure between the electrodes of the fuel cell and / or A temperature decreasing method for a fuel cell power plant, wherein the temperature difference between the cell inlet and outlet and / or the cell outlet temperature and / or the cell inlet temperature is controlled as a controlled variable.
【請求項13】 請求項10〜12のいずれか1項に記
載の燃料電池発電プラントの降温方法において、燃料電
池が溶融炭酸塩型であり、電解質融点/凝固点温度を境
として温度変化率の制限値を変更することを特徴とする
燃料電池プラントの降温方法。
13. The temperature decreasing method for a fuel cell power plant according to claim 10 , wherein the fuel cell is a molten carbonate type, and the temperature change rate is limited with respect to the electrolyte melting point / freezing point temperature. A method for lowering the temperature of a fuel cell plant, which comprises changing a value.
JP26199693A 1993-10-20 1993-10-20 Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant Expired - Fee Related JP3465198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26199693A JP3465198B2 (en) 1993-10-20 1993-10-20 Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26199693A JP3465198B2 (en) 1993-10-20 1993-10-20 Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant

Publications (2)

Publication Number Publication Date
JPH07114934A JPH07114934A (en) 1995-05-02
JP3465198B2 true JP3465198B2 (en) 2003-11-10

Family

ID=17369570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26199693A Expired - Fee Related JP3465198B2 (en) 1993-10-20 1993-10-20 Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant

Country Status (1)

Country Link
JP (1) JP3465198B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613374B2 (en) * 2009-01-22 2014-10-22 パナソニック株式会社 Fuel cell system
JP5806862B2 (en) * 2011-06-23 2015-11-10 シャープ株式会社 Direct alcohol fuel cell system

Also Published As

Publication number Publication date
JPH07114934A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JP4263912B2 (en) Method for stopping a fuel cell device having an anode exhaust recirculation loop
KR100496223B1 (en) Reactant flow arrangement of a power system of several internal reforming fuel cell stack
EP1402588B1 (en) Shut-down procedure for hydrogen-air fuel cell system
EP1747597B1 (en) Fuel release management for fuel cell systems
JP4730643B2 (en) Gas processing equipment
JP2701990B2 (en) Pressurized reactor system and its operation method
KR102038716B1 (en) A solid oxide fuel cell system
CN113629277A (en) Fuel cell system and shutdown purging method thereof
CN101385177B (en) Fuel cell system
CN104756296B (en) The startup method of the fuel cell in electricity generation system and electricity generation system and operation method
CN109860660A (en) A kind of high-performance solid oxide fuel battery system
CN106169593A (en) Fuel cell system
CN109088082A (en) A kind of metal stack fuel cell cold-starting thermal control system and operation method
US9422862B2 (en) Combined cycle power system including a fuel cell and a gas turbine
JP3465198B2 (en) Method of operating a chemical reaction vessel at normal temperature and method of lowering the temperature of a fuel cell power plant
CN112993316A (en) Raw material supply system for fuel cell
JP6066662B2 (en) Combined power generation system and method of operating combined power generation system
JP2009127633A (en) Opening and closing valve, fuel cell system, and control method of fuel cell system
JP2004296340A (en) Fuel cell system
JP2004234892A (en) Fuel cell system
JP2004158221A (en) Fuel cell system
JP2008258024A (en) Package type fuel cell
JPS62296371A (en) Fuel cell system
JPH03138312A (en) Pressurizing-type converter exhaust gas treating apparatus and its operating method
KR101282689B1 (en) Hydrogen off-gas exhausting apparatus and method for fuel cell vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees