JP3464753B2 - Assembled integrated impeller and method of manufacturing the same - Google Patents

Assembled integrated impeller and method of manufacturing the same

Info

Publication number
JP3464753B2
JP3464753B2 JP24100097A JP24100097A JP3464753B2 JP 3464753 B2 JP3464753 B2 JP 3464753B2 JP 24100097 A JP24100097 A JP 24100097A JP 24100097 A JP24100097 A JP 24100097A JP 3464753 B2 JP3464753 B2 JP 3464753B2
Authority
JP
Japan
Prior art keywords
shaft
impeller
cylindrical shaft
peripheral surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24100097A
Other languages
Japanese (ja)
Other versions
JPH1181914A (en
Inventor
一幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Power Systems Co Ltd
Original Assignee
Niigata Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Power Systems Co Ltd filed Critical Niigata Power Systems Co Ltd
Priority to JP24100097A priority Critical patent/JP3464753B2/en
Publication of JPH1181914A publication Critical patent/JPH1181914A/en
Application granted granted Critical
Publication of JP3464753B2 publication Critical patent/JP3464753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、回転機械
に用いられる組立て一体型翼車及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembly-integrated impeller used for, for example, a rotary machine and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、例えば回転機械としてのガスター
ビンに圧縮機が用いられているが、圧縮機を回転させる
ための手段としての翼車に、例えば、図6に示すものが
知られている。図6,図7に示すように、翼車101
は、複数の羽根102Aを配置してなる翼車本体102
と、翼車本体102の両側に連続する第1軸103,第
2軸104とで構成され、材料として機械構造用合金鋼
(例えばSCM435またはSCM440)が用いられ
ている。第1軸103,翼車本体102,第2軸104
を軸孔105が貫通した状態で形成されている。
2. Description of the Related Art Conventionally, a compressor has been used in a gas turbine as a rotary machine, for example, and as an impeller as a means for rotating the compressor, for example, one shown in FIG. 6 is known. . As shown in FIGS. 6 and 7, the impeller 101
Is an impeller main body 102 formed by arranging a plurality of blades 102A.
And a first shaft 103 and a second shaft 104 which are continuous on both sides of the impeller body 102, and alloy steel for machine structure (for example, SCM435 or SCM440) is used as a material. First shaft 103, impeller body 102, second shaft 104
Is formed with the shaft hole 105 penetrating therethrough.

【0003】上記の翼車101は、機械加工により、次
のように削り出される。素材が準備され、焼入れ等の熱
処理が施された後、適当な工作機械により、第1軸10
3の軸受用支持面103A,第2軸104の軸受用支持
面104A,軸孔105の内周面105Aの係合部10
5B,翼車本体102の羽根102A及び羽根102A
の径方向先端部102Bの外周面が機械加工される。こ
の場合、軸孔105の中心軸線から羽根102Aの径方
向先端部102Bの外周面までの径寸法に精度が要求さ
れ、第1軸103の軸受用支持面103A,第2軸10
4の軸受用支持面104Aに軸孔105の中心軸線から
の径寸法の精度が要求される。
The above-mentioned impeller 101 is machined out as follows. After the material is prepared and subjected to heat treatment such as quenching, the first shaft 10 is
No. 3 bearing support surface 103A, second shaft 104 bearing support surface 104A, and shaft hole 105 inner peripheral surface 105A engaging portion 10
5B, blade 102A of blade main body 102 and blade 102A
The outer peripheral surface of the radial tip end portion 102B is machined. In this case, accuracy is required for the radial dimension from the central axis of the shaft hole 105 to the outer peripheral surface of the radial tip portion 102B of the blade 102A, and the bearing support surface 103A of the first shaft 103 and the second shaft 10 are provided.
The bearing supporting surface 104A of No. 4 is required to have accuracy of the radial dimension from the central axis of the shaft hole 105.

【0004】そして、翼車101の軸孔105をシャフ
ト106が貫通し、シャフト106は螺子107により
翼車101に締め付けられている。第1軸103の外周
面の軸受用支持面103Aは第1軸受108に支持さ
れ、第2軸104の外周面の軸受用支持面104Aは第
2軸受109に支持される。
A shaft 106 penetrates the shaft hole 105 of the impeller 101, and the shaft 106 is fastened to the impeller 101 by a screw 107. The bearing support surface 103A on the outer peripheral surface of the first shaft 103 is supported by the first bearing 108, and the bearing support surface 104A on the outer peripheral surface of the second shaft 104 is supported by the second bearing 109.

【0005】[0005]

【発明が解決しようとする課題】ところが、翼車101
は焼入れ等の熱処理を施した機械構造用合金鋼を用いて
機械加工して造られることから、高精度に加工できる
が、焼入れ等の熱処理を施した機械構造用合金鋼は硬
く、加工時間が長く、生産性が低いという問題がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Can be processed with high precision because it is machined using alloy steel for machine structure that has been heat treated such as quenching, but the alloy steel for machine structure that has been heat treated such as quenching is hard and There is a problem that it is long and the productivity is low.

【0006】また、加工部位として、第1軸103の軸
受用支持面103A,第2軸104の軸受用支持面10
4A,軸孔105の内周面105Aの係合部105B,
翼車本体102の羽根102A及び羽根102Aの径方
向先端部102Bがある。このような加工部位が多い翼
車101は、単一の工程における単一の工作機械で種々
の加工部位を加工しなければならず、加工時間が長く、
生産性が低いという問題がある。なお、機械工程を複数
の工程に分割してラインを構成することも考えられる
が、設備規模が大きくなり、搬送にも時間が掛かり、特
に多品種少量生産の場合には好ましくない。
[0006] Further, as a processed portion, a bearing support surface 103A of the first shaft 103 and a bearing support surface 10 of the second shaft 104.
4A, the engaging portion 105B of the inner peripheral surface 105A of the shaft hole 105,
There is a blade 102A of the impeller body 102 and a radial tip portion 102B of the blade 102A. The impeller 101 having many such processing parts has to process various processing parts with a single machine tool in a single process, which requires a long processing time.
There is a problem of low productivity. Although it is conceivable that the machine process is divided into a plurality of processes to configure the line, the equipment scale becomes large and it takes a long time to carry, which is not preferable especially in the case of high-mix low-volume production.

【0007】また、翼車の全体を精密鋳造で製造するこ
ともできる。この場合には、翼車の全体の体積が大きく
なり、材料欠陥が発生する可能性が高くなり、信頼性が
低下する。また、鋳造の歩止りが悪くなるという問題が
あり、好ましくない。また、翼車101を、翼車本体1
02,第1軸103,第2軸104の3つに分割して、
摩擦圧接で一体化することも考えられるが、摩擦圧接で
は、接合する径の大きさに限界があり、小物部品に限定
される。その上、摩擦圧接に「バリ」が大きく発生し、
「バリ」を除去する仕上作業が必要となり、後処理に時
間がかかり、好ましくない。
Further, the entire impeller can be manufactured by precision casting. In this case, the entire volume of the impeller is increased, the possibility of material defects is increased, and the reliability is reduced. In addition, there is a problem that casting yield is deteriorated, which is not preferable. Further, the impeller 101 is replaced by the impeller body 1
02, first axis 103, second axis 104,
Although it is conceivable that they are integrated by friction welding, there is a limit to the size of the diameter to be joined in friction welding, and it is limited to small parts. Moreover, a large amount of "burr" occurs in friction welding.
A finishing operation for removing "burrs" is required, and post-processing takes time, which is not preferable.

【0008】本発明は、上述の問題点を解決するために
なされたもので、その目的は、複数の部位で加工精度が
要求される場合において、複数の部位を高精度に加工で
き且つ高生産性を確保できる組立て一体型翼車及びその
製造方法を提供することである。
The present invention has been made in order to solve the above-mentioned problems, and an object thereof is to process a plurality of parts with high accuracy and to achieve high productivity when processing accuracy is required for a plurality of parts. It is an object of the present invention to provide an assembly-integrated impeller capable of ensuring the property and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
軸孔を有する胴体部と、胴体部を囲んで該胴体部に連続
して配置された複数の羽根と、胴体部の端面に突設した
円形軸部とで構成された翼車本体と、翼車本体の両端に
軸孔を有する環状フランジを一端に設けてなる円筒軸と
を備え、翼車本体の軸孔の中心軸線と円筒軸の軸線が一
致した状態で翼車本体,円筒軸は焼嵌め処理にて一体に
組み付けられていることを特徴とする。
The invention according to claim 1 is
An impeller body including a body portion having an axial hole, a plurality of blades surrounding the body portion and continuously arranged in the body portion, and a circular shaft portion protruding from an end surface of the body portion, and a wing. A cylindrical shaft having annular flanges having shaft holes at both ends of the car body is provided at one end, and the impeller body and the cylinder shaft are burned in a state where the center axis of the shaft hole of the impeller body and the axis of the cylinder shaft coincide with each other. It is characterized by being integrally assembled by a fitting process.

【0010】請求項2記載の発明は、請求項1記載の組
立て一体型翼車において、翼車本体の円形軸部の外周面
に円筒軸の環状フランジの内周面が焼嵌め処理にて一体
に組み付けられていることを特徴とする。請求項3記載
の発明は、軸孔を有する胴体部と、胴体部を囲んで該胴
体部に連続して配置された複数の羽根と、胴体部の端面
に設けられた円形軸部とで構成された翼車本体を、精密
鋳造により造り、翼車本体の胴体部の外径とほぼ同等の
外径を有し軸孔の回りに環状フランジを一端に設けてな
る円筒軸の外周面に形成された軸受面を、仕上げ精度に
近い精度に加工し、翼車本体の円形軸部の外周面に、円
筒軸の環状フランジの内周面を嵌合させて、翼車本体に
円筒軸を、その軸線を翼車本体の軸孔の中心軸線に一致
させて焼嵌め処理にて組み付け、次に、翼車本体の羽根
の径方向先端部の外周面及び円筒軸の軸受面を仕上げ加
工することを特徴とする。
According to a second aspect of the present invention, in the assembly-integrated type impeller according to the first aspect, the inner peripheral surface of the annular flange of the cylindrical shaft is integrated with the outer peripheral surface of the circular shaft portion of the main body of the impeller by shrink fitting. It is characterized by being attached to. The invention according to claim 3 is composed of a body portion having an axial hole, a plurality of blades surrounding the body portion and continuously arranged on the body portion, and a circular shaft portion provided on an end surface of the body portion. The impeller body is made by precision casting and is formed on the outer peripheral surface of a cylindrical shaft that has an outer diameter approximately equal to the outer diameter of the body of the impeller body and has an annular flange at one end around the shaft hole. The bearing surface thus processed is processed to an accuracy close to finishing accuracy, the outer peripheral surface of the circular shaft portion of the impeller body is fitted with the inner peripheral surface of the annular flange of the cylindrical shaft, and the cylindrical shaft is attached to the impeller body. Align the axis with the central axis of the shaft hole of the impeller body and assemble by shrink fitting, and then finish the outer peripheral surface of the radial tip of the blade of the impeller body and the bearing surface of the cylindrical shaft. Is characterized by.

【0011】(作用)請求項1記載の発明においては、
翼車本体の軸孔の中心軸線と円筒軸の軸線が一致した状
態で翼車本体,円筒軸は焼嵌めにて一体に組み付けら
れ、請求項2記載の発明においては、翼車本体の円形軸
部の外周面と円筒軸の環状フランジの内周面は焼嵌め処
理にて一体化されている。
(Operation) In the invention according to claim 1,
The impeller body and the cylindrical shaft are integrally assembled by shrink fitting with the central axis of the shaft hole of the impeller body and the axis of the cylindrical shaft aligned. The outer peripheral surface of the portion and the inner peripheral surface of the annular flange of the cylindrical shaft are integrated by shrink fitting.

【0012】この時、組立て一体型翼車が回転すると、
翼車本体,円筒軸は遠心力を受け、遠心力により、翼車
本体の円形軸部,円筒軸の環状フランジは、径外方に変
形する。ここで、円筒軸は、翼車本体の胴体部の外径と
ほぼ同等の外径を有しているから、翼車本体に作用する
遠心力は円筒軸に作用する遠心力より大きい。従って、
翼車本体の円形軸部の径外方への変形量は、円筒軸の環
状フランジの径外方への変形量より大きい。
At this time, when the assembly-integrated impeller rotates,
The impeller body and the cylindrical shaft are subjected to centrifugal force, and the circular shaft portion of the impeller body and the annular flange of the cylindrical shaft are deformed radially outward by the centrifugal force. Here, since the cylindrical shaft has an outer diameter substantially equal to the outer diameter of the body portion of the impeller body, the centrifugal force acting on the impeller body is larger than the centrifugal force acting on the cylindrical shaft. Therefore,
The amount of radial deformation of the circular shaft portion of the impeller body is larger than the amount of radial deformation of the annular flange of the cylindrical shaft.

【0013】翼車本体の円形軸部の外周面と円筒軸の環
状フランジの内周面の締まり代は、増大し、翼車本体と
円筒軸の結合はさらに強固になる。請求項3記載の発明
においては、各翼車本体,円筒軸毎に加工工程が分割さ
れ、サブ工程として翼車本体,円筒軸を並行に、予め仕
上げ精度に近い精度に機械加工される。
The tightening margin between the outer peripheral surface of the circular shaft portion of the impeller body and the inner peripheral surface of the annular flange of the cylindrical shaft is increased, and the connection between the impeller body and the cylindrical shaft is further strengthened. In the invention according to claim 3, the machining process is divided for each impeller body and the cylindrical shaft, and as a sub-process, the impeller body and the cylindrical shaft are machined in parallel to each other in advance to a precision close to finishing accuracy.

【0014】すなわち、軸孔を有する胴体部と、胴体部
を囲んで該胴体部に連続して配置された複数の羽根と、
胴体部の端面に設けられた円形軸部とで構成された翼車
本体は、精密鋳造により造られる。また、翼車本体の胴
体部の外径とほぼ同等の外径を有し軸孔の回りに環状フ
ランジを一端に設けてなる円筒軸の外周面に形成された
軸受面が、仕上げ精度に近い精度に加工される。
That is, a body portion having an axial hole, and a plurality of blades surrounding the body portion and continuously arranged on the body portion,
The impeller body including a circular shaft portion provided on the end surface of the body portion is manufactured by precision casting. Further, the bearing surface formed on the outer peripheral surface of the cylindrical shaft having an outer diameter substantially equal to the outer diameter of the body portion of the impeller body and having an annular flange at one end around the shaft hole is close to finishing accuracy. Processed to precision.

【0015】そして、翼車本体の円形軸部の外周面に、
円筒軸の環状フランジの内周面を嵌合させて、翼車本体
に円筒軸が、その軸線を翼車本体の軸孔の中心軸線に一
致させて組み付けられる。次に、翼車本体の羽根の径方
向先端部の外周面及び円筒軸の軸受面が仕上げ加工され
る。
Then, on the outer peripheral surface of the circular shaft portion of the impeller body,
The inner peripheral surface of the annular flange of the cylindrical shaft is fitted, and the cylindrical shaft is assembled to the impeller body with its axis aligned with the central axis of the axial hole of the impeller body. Next, the outer peripheral surface of the radial tip of the blade of the impeller body and the bearing surface of the cylindrical shaft are finished.

【0016】[0016]

【発明の実施の形態】以下、図面により本発明の実施の
形態について説明する。図1ないし図5により、請求項
1ないし請求項3記載の発明の実施の形態に係わる組立
て一体型翼車及びその製造方法について、ガスタービン
に適用して説明する。 最初に組立て一体型翼車につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 to 5, an assembly-integrated impeller according to an embodiment of the invention described in claims 1 to 3 and a method for manufacturing the same will be described with reference to a gas turbine. First, the assembly-integrated type impeller will be described.

【0017】図1において、組立て一体型翼車1は、翼
車本体2と、翼車本体2の両端に突設した第1円筒軸
3,第2円筒軸4とを焼嵌め処理にて一体に組み付けら
れている。一体に組み付けられた状態において、翼車本
体2の軸孔5Bの中心軸線5A,第1円筒軸3の軸線1
0A,第2円筒軸4の軸線14Aは一致しており、翼車
本体2の第1円形軸部8の外周面8Bに第1円筒軸3の
環状フランジ11の内周面11Aは焼嵌め処理にて一体
に組み付けられている。
In FIG. 1, an assembly-integrated impeller 1 has an impeller main body 2 and a first cylindrical shaft 3 and a second cylindrical shaft 4 projecting from both ends of the impeller main body 2, which are integrally formed by shrink fitting. Is installed in. The central axis 5A of the shaft hole 5B of the impeller body 2 and the axis 1 of the first cylindrical shaft 3 in the assembled state
0A, the axis line 14A of the second cylindrical shaft 4 coincides, and the inner peripheral surface 11A of the annular flange 11 of the first cylindrical shaft 3 is shrink-fitted to the outer peripheral surface 8B of the first circular shaft portion 8 of the impeller body 2. Are assembled together.

【0018】以下、詳しく説明する。翼車本体2は、軸
孔5Bを有する胴体部5と、胴体部5を囲んで該胴体部
5に連続して配置された複数の羽根6と、胴体部5の端
面5C,5Dに突設された第1円形軸部8,第2円形軸
部9とで構成されている。胴体部5には、両側の端面5
Cから端面5Dにかけて貫通する軸孔5Bが形成されて
いる。
A detailed description will be given below. The impeller body 2 has a body portion 5 having an axial hole 5B, a plurality of blades 6 surrounding the body portion 5 and arranged continuously with the body portion 5, and projecting from the end surfaces 5C and 5D of the body portion 5. The first circular shaft portion 8 and the second circular shaft portion 9 are formed. The body part 5 has end faces 5 on both sides.
A shaft hole 5B penetrating from C to the end surface 5D is formed.

【0019】図1,図3において、軸孔5Bの中心軸線
5Aの回りに、3次元形状に捻った羽根6が放射状に複
数個一体となって胴体部5に設けられている。各羽根6
の間には空気を流通させる翼車流路7がそれぞれ3次元
形状に形成されている。翼車本体2の胴体部5の軸孔5
B付近の厚さ寸法(第1円形軸部8の端面8Aから第2
円形軸部9の端面9Aまでの距離)は、羽根6の径方向
先端部6Aの厚さ寸法L1より、大きくなっている。
In FIGS. 1 and 3, a plurality of blades 6 twisted into a three-dimensional shape are integrally provided in the body portion 5 around the central axis 5A of the shaft hole 5B. Each feather 6
The impeller flow paths 7 for circulating the air are formed in a three-dimensional shape. Shaft hole 5 of body part 5 of impeller body 2
Thickness near B (from the end surface 8A of the first circular shaft portion 8 to the second
The distance to the end surface 9A of the circular shaft portion 9 is larger than the thickness dimension L1 of the radial tip portion 6A of the blade 6.

【0020】翼車本体2の材料として例えばSUS63
0相当或いはSUS631相当のものが用いられてい
る。後述のように、羽根6を含んだ翼車本体2は精密鋳
造により造られ、羽根6の面の形状,精度に比して、羽
根6の軸孔5Bの中心軸線5Aから羽根6の径方向先端
部6Aの外周面6Bまでの径寸法に精度が要求される。
これは、組立て一体型翼車1の回転時、遠心力のアンバ
ランスを無くすためである。
As a material of the main body 2 of the impeller, for example, SUS63
Equivalent to 0 or SUS631 is used. As will be described later, the impeller main body 2 including the blades 6 is manufactured by precision casting, and compared with the shape and accuracy of the surface of the blades 6, the blade 6 has a radial direction from the central axis 5A of the shaft hole 5B to the blades 6. Accuracy is required for the diameter dimension of the tip portion 6A up to the outer peripheral surface 6B.
This is to eliminate the imbalance of centrifugal force during rotation of the assembly-integrated impeller 1.

【0021】第1円形軸部8,第2円形軸部9が胴体部
5の端面5C,5Dに突設されて軸孔5Bの中心軸線5
Aの回りに位置している。第1円筒軸3は、一端側に形
成された大径部3Cと、大径部3Cに連続する小径部3
Aとで構成され、材料として機械構造用合金鋼(例えば
SCM435またはSCM440)が用いられている。
SCM材は、Cr鋼にMoを加えて焼入れ性と靱性に優
れており、その熱膨張率は翼車本体2の材料の熱膨張率
とほぼ同じとされている。
A first circular shaft portion 8 and a second circular shaft portion 9 are provided on the end surfaces 5C and 5D of the body portion 5 so as to project, and the central axis line 5 of the shaft hole 5B.
It is located around A. The first cylindrical shaft 3 has a large diameter portion 3C formed on one end side and a small diameter portion 3 continuous with the large diameter portion 3C.
A and alloy steel for machine structure (for example, SCM435 or SCM440) is used as a material.
The SCM material is excellent in hardenability and toughness by adding Mo to Cr steel, and its coefficient of thermal expansion is almost the same as that of the material of the impeller body 2.

【0022】第1円筒軸3の小径部3A,大径部3Cに
は軸孔10が形成され、軸孔10の軸線10Aは、翼車
本体2の軸孔5Bの中心軸線5Aと一致している。大径
部3Cには、軸孔10の軸線10Aの回りに環状フラン
ジ11が設けられている。小径部3A,大径部3Cの径
は、胴体部5の外径より小さくなっているが、羽根6の
大きさを基準としてみれば、第1円筒軸3の大径部3
C,小径部3Aは、翼車本体2の胴体部5の外径とほぼ
同等の外径となっている。従って、第1円筒軸3の重量
は翼車本体2の重量より小さくなっている。また、回転
時の第1円筒軸3の軸線10Aから遠心力作用点G2
での距離は、翼車本体2の中心軸線5Aから遠心力作用
点G1までの距離より小さくなっている。
A shaft hole 10 is formed in the small diameter portion 3A and the large diameter portion 3C of the first cylindrical shaft 3, and the axis line 10A of the shaft hole 10 coincides with the central axis line 5A of the shaft hole 5B of the impeller body 2. There is. The large diameter portion 3C is provided with an annular flange 11 around the axis 10A of the shaft hole 10. The diameters of the small-diameter portion 3A and the large-diameter portion 3C are smaller than the outer diameter of the body portion 5, but when the size of the blade 6 is taken as a reference, the large-diameter portion 3 of the first cylindrical shaft 3 is used.
C, the small diameter portion 3A has an outer diameter substantially equal to the outer diameter of the body portion 5 of the impeller body 2. Therefore, the weight of the first cylindrical shaft 3 is smaller than the weight of the impeller body 2. Further, the distance from the axis line 10A of the first cylindrical shaft 3 to the centrifugal force acting point G 2 during rotation is smaller than the distance from the central axis line 5A of the impeller body 2 to the centrifugal force acting point G 1 .

【0023】軸孔10の内周面10Bに後述するシャフ
ト29との結合部位として2つの平坦面からなる駆動伝
達用係合部12が形成されている。駆動伝達用係合部1
2は軸孔10の方向で大径部3Cと同じ位置にある。ま
た、第1円筒軸3の小径部3Aの段差部3Eの図1の右
側部分における外周面3Bに軸受面13が形成されてい
る。この軸受面13には後述する第1軸受34を取り付
けるための精度(第1円筒軸3の軸線10Aから軸受面
13までの径寸法)が要求されている。
On the inner peripheral surface 10B of the shaft hole 10, a drive transmission engaging portion 12 composed of two flat surfaces is formed as a connecting portion with a shaft 29 described later. Drive transmission engaging portion 1
2 is in the same position as the large diameter portion 3C in the direction of the shaft hole 10. A bearing surface 13 is formed on the outer peripheral surface 3B of the step portion 3E of the small diameter portion 3A of the first cylindrical shaft 3 on the right side of FIG. The bearing surface 13 is required to have accuracy (a diameter dimension from the axis 10A of the first cylindrical shaft 3 to the bearing surface 13) for mounting a first bearing 34 described later.

【0024】環状フランジ11は、第1円筒軸3の軸線
から内周面11Aまでの径寸法は精度が要求されてい
る。なお、第1円形軸部8の端面8Aと第1円筒軸3の
環状フランジ11の内側底部11Bの間に隙間Dが形成
されており、第1円筒軸3には、隙間Dから大径部3C
の外周面3Dにかけて空気通路Cが形成されている。
The annular flange 11 is required to have a high accuracy in diameter dimension from the axis of the first cylindrical shaft 3 to the inner peripheral surface 11A. A gap D is formed between the end surface 8A of the first circular shaft portion 8 and the inner bottom portion 11B of the annular flange 11 of the first cylindrical shaft 3, and the first cylindrical shaft 3 has a large diameter portion from the gap D. 3C
An air passage C is formed over the outer peripheral surface 3D.

【0025】第2円筒軸4は、一端側に形成された大径
部4Aと、大径部4Aに連続する小径部4Bとで構成さ
れ、材料として機械構造用合金鋼(例えばSCM435
またはSCM440)が用いられ、その熱膨張率は翼車
本体2とほぼ同じとされている。
The second cylindrical shaft 4 is composed of a large-diameter portion 4A formed on one end side and a small-diameter portion 4B continuous with the large-diameter portion 4A, and is made of alloy steel for machine structure (for example, SCM435).
Alternatively, SCM440) is used, and its coefficient of thermal expansion is almost the same as that of the impeller body 2.

【0026】第2円筒軸4の大径部4A,小径部4Bに
は軸孔14が形成され、軸孔14の軸線14Aは、翼車
本体2の軸孔5Bの中心軸線5Aと一致している。大径
部4A,小径部4Bの径は、胴体部5の外径より小さく
なっているが、羽根6の大きさを基準としてみれば、第
2円筒軸4の大径部4A,小径部4Bは、翼車本体2の
胴体部5の外径とほぼ同等の外径となっている。従っ
て、第2円筒軸4の重量は翼車本体2の重量より小さく
なっている。また、回転時の第2円筒軸4の軸線14A
から遠心力作用点G3 までの距離は、翼車本体2の中心
軸線5Aから遠心力作用点G1までの距離より小さくな
っている。
A shaft hole 14 is formed in the large diameter portion 4A and the small diameter portion 4B of the second cylindrical shaft 4, and the axis line 14A of the shaft hole 14 coincides with the central axis line 5A of the shaft hole 5B of the impeller body 2. There is. The diameters of the large diameter portion 4A and the small diameter portion 4B are smaller than the outer diameter of the body portion 5, but when the size of the blade 6 is taken as a reference, the large diameter portion 4A and the small diameter portion 4B of the second cylindrical shaft 4 are used. Has an outer diameter substantially equal to the outer diameter of the body portion 5 of the impeller body 2. Therefore, the weight of the second cylindrical shaft 4 is smaller than that of the impeller body 2. Also, the axis line 14A of the second cylindrical shaft 4 during rotation
To the centrifugal force acting point G 3 is smaller than the distance from the central axis 5A of the impeller body 2 to the centrifugal force acting point G 1 .

【0027】第2円筒軸4の一端側の大径部4Aには、
軸孔14の回りに環状フランジ15が設けられている。
環状フランジ15の第2円筒軸4の軸線14Aから内周
面15Aまでの径寸法は精度が要求されている。第2円
筒軸4の小径部4Bの外周面4Cには、スプライン係合
部16と、スプライン係合部16の図1の右方に位置す
る軸受面17と、段差部4Eとが順番に図1の左側から
形成されている。この軸受面17には後述する第2軸受
35を取り付けるため精度(第2円筒軸4の軸線から軸
受面17までの径寸法)が要求されている。
In the large diameter portion 4A on one end side of the second cylindrical shaft 4,
An annular flange 15 is provided around the shaft hole 14.
Precision is required for the diameter dimension from the axis 14A of the second cylindrical shaft 4 of the annular flange 15 to the inner peripheral surface 15A. On the outer peripheral surface 4C of the small diameter portion 4B of the second cylindrical shaft 4, a spline engaging portion 16, a bearing surface 17 located on the right side of FIG. 1 of the spline engaging portion 16, and a step portion 4E are sequentially illustrated. 1 is formed from the left side. The bearing surface 17 is required to have accuracy (a diameter dimension from the axis of the second cylindrical shaft 4 to the bearing surface 17) for mounting a second bearing 35 described later.

【0028】軸孔14の内周面14Bから大径部4Aの
外周面4Dにかけて空気通路18,18が形成されてい
る。図1,図2に示すように、空気通路18,18から
後述の吸気用案内ケーシング19の先端と第2円筒軸4
の大径部4Aの外周面4Dの間の隙間に空気を導くこと
により、後述のラビリンスシール43とともに第2軸受
35の油粒子の組立て一体型翼車1への飛散の防止を確
実にしている。
Air passages 18, 18 are formed from the inner peripheral surface 14B of the shaft hole 14 to the outer peripheral surface 4D of the large diameter portion 4A. As shown in FIGS. 1 and 2, from the air passages 18, 18 to the tip of an intake guide casing 19 described later and the second cylindrical shaft 4
By guiding the air into the gap between the outer peripheral surfaces 4D of the large diameter portion 4A, the oil particles of the second bearing 35 as well as the labyrinth seal 43, which will be described later, are reliably prevented from being scattered to the assembled integrated impeller 1. .

【0029】そして、符号Sは締付手段で、締付手段S
は、翼車本体2の軸孔5B,第1円筒軸3の軸孔10,
第2円筒軸4の軸孔14を貫通して出力軸からなるシャ
フト29と、シャフト29の両端に設けられ翼車本体
2,第1円筒軸3,第2円筒軸4の両側の一対の挟持部
29A,挟持部29Bとで構成され、該挟持部29B
(螺子39)を締め付けることにより一体化されてい
る。挟持部29Aは、タービン翼車27の段部からな
る。
Further, reference numeral S is a fastening means, and the fastening means S
Is the shaft hole 5B of the impeller body 2, the shaft hole 10 of the first cylindrical shaft 3,
A shaft 29 that penetrates the shaft hole 14 of the second cylindrical shaft 4 and is an output shaft, and a pair of nips on both sides of the impeller body 2, the first cylindrical shaft 3, and the second cylindrical shaft 4 that are provided at both ends of the shaft 29. And a sandwiching portion 29B, and the sandwiching portion 29B.
They are integrated by tightening the (screw 39). 29 A of clamping parts consist of the step part of the turbine impeller 27.

【0030】次に、組立て一体型翼車1を適用したガス
タービンについて説明する。図2に示すように、ガスタ
ービンGTには、吸気用案内ケーシング19,コンプレ
ッサ用ケーシング20,支持部材21,排出側ケーシン
グ22が図面上の左側から順番に配置されている。吸気
用案内ケーシング19は傘形形状に構成されており、そ
の先端には孔部19Bが形成されている。
Next, a gas turbine to which the assembly-integrated impeller 1 is applied will be described. As shown in FIG. 2, in the gas turbine GT, an intake guide casing 19, a compressor casing 20, a support member 21, and a discharge side casing 22 are sequentially arranged from the left side in the drawing. The intake guide casing 19 is formed in an umbrella shape, and a hole 19B is formed at the tip thereof.

【0031】吸気用案内ケーシング19の外周面19A
とコンプレッサ用ケーシング20の間に環状吸気口23
が形成されている。コンプレッサ用ケーシング20には
径方向に沿って圧縮空気を燃焼器(図示せず)に導く導
出路24が形成されている。支持部材21の一側には第
1孔部21Aが形成され、他側には第2孔部21Bが形
成され、第1孔部21Aと第2孔部21Bは連通してい
る。
Outer peripheral surface 19A of the intake guide casing 19
Between the compressor and the casing 20 for compressor
Are formed. The compressor casing 20 is formed with a discharge path 24 that guides the compressed air to a combustor (not shown) along the radial direction. A first hole portion 21A is formed on one side of the support member 21, and a second hole portion 21B is formed on the other side, so that the first hole portion 21A and the second hole portion 21B communicate with each other.

【0032】支持部材21の両側にコンプレッサ用ケー
シング20,排出側ケーシング22が取り付けられてい
る。排出側ケーシング22は、円筒状の排出口25と、
排出口25の一側に形成されて燃焼器から燃焼ガスを導
くガス導入路26を備えてなる。コンプレッサ用ケーシ
ング20と支持部材21の一側の間に前記組立て一体型
翼車1が配置され、排出側ケーシング22と支持部材2
1の他側の間に、タービン翼車27が配置されている。
A compressor casing 20 and a discharge side casing 22 are attached to both sides of the support member 21. The discharge side casing 22 has a cylindrical discharge port 25,
A gas introduction path 26 is formed on one side of the exhaust port 25 and guides combustion gas from the combustor. The assembly-integrated impeller 1 is arranged between the compressor casing 20 and one side of the support member 21, and the discharge side casing 22 and the support member 2 are arranged.
A turbine wheel 27 is arranged between the other side of the turbine 1.

【0033】タービン翼車27は、捻った羽根28Aを
放射状にかつ3次元形状に複数個配置したタービン翼車
本体28と、タービン翼車本体28に一体化された前記
シャフト29とで構成されている。
The turbine impeller 27 is composed of a turbine impeller main body 28 in which a plurality of twisted blades 28A are radially and three-dimensionally arranged, and the shaft 29 integrated with the turbine impeller main body 28. There is.

【0034】各羽根28Aの間には空気を流通させる翼
車流路(図示せず)がそれぞれ3次元形状に形成されて
いる。シャフト29は、組立て一体型翼車1の翼車本体
2の軸孔5B,第1円筒軸3の軸孔10,第2円筒軸4
の軸孔14を貫通しており、シャフト29と組立て一体
型翼車1の間には、径方向で第1環状隙間30A,第2
環状隙間30Bが形成されている。
Impeller flow paths (not shown) for circulating air are formed in a three-dimensional shape between the blades 28A. The shaft 29 includes the shaft hole 5B of the impeller body 2 of the assembly-integrated impeller 1, the shaft hole 10 of the first cylindrical shaft 3, and the second cylindrical shaft 4.
Of the first annular gap 30A and the second annular gap 30A in the radial direction between the shaft 29 and the assembly-integrated impeller 1.
An annular gap 30B is formed.

【0035】シャフト29の途中には面取り部31,断
面D型形状の支持部32が形成され、先端には螺子部3
3が形成されている。支持部32には、隙間32Aが形
成され、前記第1環状隙間30Aと前記第2環状隙間3
0Bは、隙間32Aを介して連通している。第1円筒軸
3の軸受面13には第1軸受34が嵌合され、第1軸受
34は、支持部材21に装着されている。
A chamfered portion 31 and a support portion 32 having a D-shaped cross section are formed in the middle of the shaft 29, and the screw portion 3 is provided at the tip.
3 is formed. A gap 32A is formed in the support portion 32, and the first annular gap 30A and the second annular gap 3 are formed.
0B communicates with each other through the gap 32A. A first bearing 34 is fitted on the bearing surface 13 of the first cylindrical shaft 3, and the first bearing 34 is attached to the support member 21.

【0036】第2円筒軸4の軸受面17には第2軸受3
5が嵌合され、第2軸受35は、吸気用案内ケーシング
19の裏側に設けたブロック36に装着されている。第
2円筒軸4のスプライン係合部16には、スリーブ38
がスプライン結合され、第2円筒軸4に螺合された螺子
40を締め付けることにより、スリーブ38を螺子40
と第2軸受35の間に保持している。
On the bearing surface 17 of the second cylindrical shaft 4, the second bearing 3
5 is fitted, and the second bearing 35 is mounted on a block 36 provided on the back side of the intake guide casing 19. A sleeve 38 is attached to the spline engagement portion 16 of the second cylindrical shaft 4.
Are splined together, and the sleeve 40 is screwed onto the sleeve 38 by tightening the screw 40 screwed onto the second cylindrical shaft 4.
And the second bearing 35.

【0037】締付手段Sの一対の挟持部29A,29B
により、翼車本体2,第1円筒軸3,第2円筒軸4は両
側から挟持され、シャフト29の先端の螺子部33に螺
合された螺子39を締め付けて一体化されている。従っ
て、タービン翼車27,組立て一体型翼車1は、一体化
され、第1軸受34,第2軸受35に回転自在に支持さ
れた状態になっている。
A pair of holding portions 29A, 29B of the fastening means S
Thereby, the impeller body 2, the first cylindrical shaft 3, and the second cylindrical shaft 4 are sandwiched from both sides, and the screw 39 screwed into the screw portion 33 at the tip of the shaft 29 is tightened to be integrated. Therefore, the turbine impeller 27 and the assembly-integrated impeller 1 are integrated and are rotatably supported by the first bearing 34 and the second bearing 35.

【0038】また、スリーブ38には駆動力取出部材3
8A(2点鎖線で示す)が連結されているまた、シャフ
ト29の付根部の外周面29Dと支持部材21の第1孔
部21Aの内周面の間にはラビリンスシール41が介装
されている。ラビリンスシール41により、第1軸受3
4の油粒子がタービン翼車本体28に飛散するのが防止
されている。
The sleeve 38 has a driving force extracting member 3
8A (indicated by a chain double-dashed line) is connected. Further, a labyrinth seal 41 is interposed between the outer peripheral surface 29D of the root portion of the shaft 29 and the inner peripheral surface of the first hole portion 21A of the support member 21. There is. The labyrinth seal 41 allows the first bearing 3
The oil particles of No. 4 are prevented from scattering on the turbine wheel main body 28.

【0039】第1円筒軸3の大径部3Cの外周面3Dと
支持部材21の第2孔部21Bの内周面の間にはラビリ
ンスシール42が介装されている。ラビリンスシール4
2により、第1軸受34の油粒子が組立て一体型翼車1
に飛散するのが防止されている。第2円筒軸4の大径部
4Aの外周面4Dと吸気用案内ケーシング19の孔部1
9Bの内周面の間にラビリンスシール43が介装されて
いる。ラビリンスシール43により、第2軸受35の油
粒子が組立て一体型翼車1に飛散するのが防止されてい
る。
A labyrinth seal 42 is interposed between the outer peripheral surface 3D of the large diameter portion 3C of the first cylindrical shaft 3 and the inner peripheral surface of the second hole portion 21B of the support member 21. Labyrinth seal 4
2, the oil particles of the first bearing 34 are assembled to form the integrated impeller 1
It is prevented from scattering to. Outer peripheral surface 4D of large-diameter portion 4A of second cylindrical shaft 4 and hole 1 of intake guide casing 19
A labyrinth seal 43 is interposed between the inner peripheral surfaces of 9B. The labyrinth seal 43 prevents the oil particles of the second bearing 35 from being assembled and scattered to the integrated impeller 1.

【0040】しかして、環状吸気口23に導かれた空気
は、組立て一体型翼車1の回転により、圧縮されて圧縮
空気となる。圧縮空気は、導出路24を介して燃焼器
(図示せず)に導かれ、燃焼器により燃焼ガスが生成さ
れる。燃焼ガスは、燃焼器からガス導入路26を介して
タービン翼車27に導かれて、該タービン翼車27に回
転力を与え、排出口25へ排出される。
The air guided to the annular intake port 23 is compressed into compressed air by the rotation of the assembly-integrated impeller 1. The compressed air is guided to a combustor (not shown) via the outlet passage 24, and combustion gas is generated by the combustor. The combustion gas is guided from the combustor to the turbine impeller 27 via the gas introduction path 26, imparts a rotational force to the turbine impeller 27, and is discharged to the discharge port 25.

【0041】タービン翼車27の回転力は、タービン翼
車本体28→面取り部31→第1円筒軸3→組立て一体
型翼車1→第2円筒軸4→スリーブ38→駆動力取出部
材38Aの順序で駆動力取出部材38Aに伝達される。
次に、組立て一体型翼車1における作用を説明する。翼
車本体2の第1円形軸部8の外周面8Bと第1円筒軸3
の環状フランジ11の内周面11Aは焼嵌め処理にて一
体化した状態になっており、翼車本体2の第2円形軸部
9の外周面9Bと第2円筒軸4の環状フランジ15の内
周面15Aは焼嵌め処理にて一体化した状態になってお
り、締付手段Sの一対の挟持部29A,29Bにより、
翼車本体2,第1円形軸部8,第2円形軸部9は両側か
ら挟持され、シャフト29の先端の螺子部33に螺合さ
れた螺子39で締め付けられて一体化されている。
The rotational force of the turbine impeller 27 is the turbine impeller main body 28 → the chamfered portion 31 → the first cylindrical shaft 3 → the integrally assembled impeller 1 → the second cylindrical shaft 4 → the sleeve 38 → the driving force extracting member 38A. The driving force is transmitted to the driving force extracting member 38A in order.
Next, the operation of the assembly-integrated impeller 1 will be described. The outer peripheral surface 8B of the first circular shaft portion 8 of the impeller body 2 and the first cylindrical shaft 3
The inner peripheral surface 11A of the annular flange 11 is integrated by shrink fitting, and the outer peripheral surface 9B of the second circular shaft portion 9 of the impeller body 2 and the annular flange 15 of the second cylindrical shaft 4 are The inner peripheral surface 15A is in a state of being integrated by shrink fitting, and by the pair of clamping portions 29A and 29B of the tightening means S,
The impeller main body 2, the first circular shaft portion 8 and the second circular shaft portion 9 are sandwiched from both sides, and are fastened and integrated by a screw 39 screwed to a screw portion 33 at the tip of the shaft 29.

【0042】この時、組立て一体型翼車1が回転する
と、翼車本体2,第1円筒軸3,第2円筒軸4は遠心力
を受ける。遠心力により、翼車本体2の第1円形軸部8
の環状フランジ11は、径外方に変形する。また、遠心
力により、翼車本体2の第2円形軸部9の環状フランジ
15は、径外方に変形する。
At this time, when the assembly-integrated impeller 1 rotates, the impeller body 2, the first cylindrical shaft 3, and the second cylindrical shaft 4 receive a centrifugal force. Due to the centrifugal force, the first circular shaft portion 8 of the impeller body 2
The annular flange 11 is deformed radially outward. Further, due to the centrifugal force, the annular flange 15 of the second circular shaft portion 9 of the impeller body 2 is deformed radially outward.

【0043】第1円筒軸3,第2円筒軸4は翼車本体2
の胴体部5の外径とほぼ同等の外径を有していることか
ら、翼車本体2に作用する遠心力は第1円筒軸3,第2
円筒軸4に作用する遠心力より大きくなっている。従っ
て、翼車本体2の第1円形軸部8の径外方への変形量
は、第1円筒軸3の環状フランジ11の径外方への変形
量より大きくなっており、翼車本体2の第2円形軸部9
の径外方への変形量は、第2円筒軸4の環状フランジ1
5の径外方への変形量より大きくなっている。
The first cylindrical shaft 3 and the second cylindrical shaft 4 are the impeller body 2
The centrifugal force acting on the impeller main body 2 has the same outer diameter as the outer diameter of the body portion 5 of the first cylindrical shaft 3,
It is larger than the centrifugal force acting on the cylindrical shaft 4. Therefore, the radial deformation amount of the first circular shaft portion 8 of the impeller body 2 is larger than the radial deformation amount of the annular flange 11 of the first cylindrical shaft 3, and the impeller body 2 Second circular shank 9
The amount of deformation of the circular flange 1 of the second cylindrical shaft 4 is
It is larger than the amount of outward deformation of No. 5.

【0044】従って、翼車本体2の第1円形軸部8の外
周面8Bと第1円筒軸3の環状フランジ11の内周面1
1Aの締まり代は、増大し、翼車本体2と第1円筒軸3
の結合は強固になる。翼車本体2の第2円形軸部9の外
周面と第2円筒軸4の環状フランジ15の内周面の締ま
り代は、増大する。翼車本体2と第2円筒軸4の結合は
強固になる。
Therefore, the outer peripheral surface 8B of the first circular shaft portion 8 of the impeller body 2 and the inner peripheral surface 1 of the annular flange 11 of the first cylindrical shaft 3 are arranged.
The tightening margin of 1A increases, and the impeller body 2 and the first cylindrical shaft 3
Will be tightly bound. The tightening margin between the outer peripheral surface of the second circular shaft portion 9 of the impeller body 2 and the inner peripheral surface of the annular flange 15 of the second cylindrical shaft 4 increases. The connection between the impeller body 2 and the second cylindrical shaft 4 becomes strong.

【0045】また、組立て一体型翼車1の回転時、翼車
本体2においては、遠心力による応力は、その内径側で
最大になり、翼車本体2の外径寸法は第1円筒軸3,第
2円筒軸4の外径寸法より大きいことから、翼車本体2
の内径側の応力が大きくなるが、翼車本体2の軸孔5B
付近の厚さ寸法(第1円形軸部8の端面8Aから第2円
形軸部9の端面9Aまでの距離)は、羽根6の径方向先
端部6Aの厚さ寸法L1より大きくなっていることか
ら、応力が緩和されている。
When the assembly-integrated impeller 1 is rotated, the centrifugal force in the impeller body 2 is maximized on the inner diameter side, and the outer diameter of the impeller body 2 is the first cylindrical shaft 3 Since the outer diameter of the second cylindrical shaft 4 is larger, the impeller body 2
The stress on the inner diameter side of the shaft becomes large, but the shaft hole 5B of the impeller body 2
The thickness dimension in the vicinity (the distance from the end surface 8A of the first circular shaft portion 8 to the end surface 9A of the second circular shaft portion 9) is larger than the thickness dimension L1 of the radial tip portion 6A of the blade 6. Therefore, the stress is relieved.

【0046】なお、組立て一体型翼車1の回転により、
A部における空気は高圧となっており、B部における空
気は負圧になっていることから、空気は、A部→空気通
路C→隙間D→第1環状隙間30A→図5の支持部32
の横の隙間32A→第2環状隙間30B→空気通路1
8,18の順序でラビリンスシール43に導かれ、ラビ
リンスシール43とともに第2軸受35の油粒子の組立
て一体型翼車1への飛散の防止を確実にしている。
By the rotation of the assembly-integrated impeller 1,
Since the air in the portion A has a high pressure and the air in the portion B has a negative pressure, the air is in the portion A → air passage C → gap D → first annular gap 30A → support portion 32 in FIG.
32A on the side of → the second annular gap 30B → the air passage 1
It is guided to the labyrinth seal 43 in the order of 8 and 18, and together with the labyrinth seal 43, the oil particles of the second bearing 35 are surely prevented from scattering to the assembled integrated impeller 1.

【0047】以上の如き構成によれば、翼車本体2と第
1円筒軸3,第2円筒軸4を別体にして焼嵌め処理にて
一体に組み立てても、組立て一体型翼車1の回転時に
は、翼車本体2の遠心力は第1円筒軸3,第2円筒軸4
の遠心力よりも大きくなり、翼車本体2の第1円形軸部
8の外周面8Bと第1円筒軸3の環状フランジ11の内
周面11Bの締まり代は、増大するとともに、第2円形
軸部9の外周面9Bと第2円筒軸4の環状フランジ11
の内周面11Bの締まり代は、増大し、結合を強固に
し、組立て一体型翼車の強度を確保できる。
According to the above-mentioned structure, even if the impeller body 2 and the first cylindrical shaft 3 and the second cylindrical shaft 4 are separately assembled and integrally assembled by shrink fitting, the assembly-integrated impeller 1 During rotation, the centrifugal force of the impeller body 2 causes the first cylindrical shaft 3 and the second cylindrical shaft 4 to rotate.
And the tightening margin of the outer peripheral surface 8B of the first circular shaft portion 8 of the impeller main body 2 and the inner peripheral surface 11B of the annular flange 11 of the first cylindrical shaft 3 increases and the second circular shape increases. Outer peripheral surface 9B of shaft portion 9 and annular flange 11 of second cylindrical shaft 4
The tightening margin of the inner peripheral surface 11B can be increased, the connection can be strengthened, and the strength of the assembled integrated impeller can be secured.

【0048】また、組立て一体型翼車1は翼車本体2,
第1円筒軸3,第2円筒軸4と3つの部品で構成されて
いるので、各部品毎に加工工程を分割してサブ工程とし
て翼車本体2,第1円筒軸3,第2円筒軸4を並行に、
予め仕上げ精度に近い精度に機械加工でき、高生産性を
確保できる。さらに、翼車本体2と第1円筒軸3,第2
円筒軸4を一体にして仕上げ精度に機械加工することに
より、組立て一体型翼車1を高精度にすることができ
る。
The assembly-integrated impeller 1 includes an impeller body 2,
Since the first cylinder shaft 3 and the second cylinder shaft 4 are made up of three parts, the machining process is divided for each part, and the impeller body 2, the first cylinder shaft 3, and the second cylinder shaft are subprocessed. 4 in parallel,
Machining can be performed in advance to an accuracy close to finishing accuracy, and high productivity can be secured. Further, the impeller body 2, the first cylindrical shaft 3, the second
By assembling the cylindrical shaft 4 integrally and machining it to finishing accuracy, the assembly-integrated impeller 1 can be made highly accurate.

【0049】次に、本実施の形態に係わる組立て一体型
翼車の製造方法について説明する。上述の構造の翼車本
体2は、精密鋳造により造られる。精密鋳造で造られた
素材は機械加工され、翼車本体2の羽根6の径方向先端
部6Aの外周面6B,第1円筒軸3の軸受面13,第2
円筒軸4の軸受面17の加工部位が仕上げ精度に近い精
度となる。
Next, a method of manufacturing the assembly-integrated impeller according to this embodiment will be described. The impeller body 2 having the above structure is manufactured by precision casting. The material made by precision casting is machined, and the outer peripheral surface 6B of the radial tip portion 6A of the blade 6 of the impeller body 2, the bearing surface 13 of the first cylindrical shaft 3, the second
The processed portion of the bearing surface 17 of the cylindrical shaft 4 has an accuracy close to the finishing accuracy.

【0050】一方、第1円筒軸3,第2円筒軸4は、焼
入れ,焼戻し等の熱処理が施された後、仕上げ精度に近
い精度に加工される。また、第1円筒軸3の駆動伝達用
係合部12が二面加工される。第2円筒軸4のスプライ
ン係合部16がスプライン加工され、空気通路18,1
8が孔明け加工される。
On the other hand, the first cylindrical shaft 3 and the second cylindrical shaft 4 are subjected to heat treatment such as quenching and tempering, and then processed to an accuracy close to finishing accuracy. In addition, the drive transmission engaging portion 12 of the first cylindrical shaft 3 is double-faced. The spline engagement portion 16 of the second cylindrical shaft 4 is splined, and the air passages 18, 1
8 is punched.

【0051】第1円筒軸3の環状フランジ11の内周面
11A,第1円筒軸3の大径部3Cの外周面3Dは、同
軸加工により切削され、同芯度が確保される。第2円筒
軸4の環状フランジ15の内周面15A,第2円筒軸4
の大径部4Aの外周面4Dは、同軸加工により切削さ
れ、同芯度が確保される。翼車本体2の第1円形軸部8
の外周面8Bと第1円筒軸3の環状フランジ11の内周
面11Aを焼嵌め処理で結合させることにより、翼車本
体2に第1円筒軸3が組み付けられる。
The inner peripheral surface 11A of the annular flange 11 of the first cylindrical shaft 3 and the outer peripheral surface 3D of the large diameter portion 3C of the first cylindrical shaft 3 are cut by coaxial machining to ensure concentricity. Inner peripheral surface 15A of the annular flange 15 of the second cylindrical shaft 4, the second cylindrical shaft 4
The outer peripheral surface 4D of the large-diameter portion 4A is cut by coaxial processing to ensure concentricity. First circular shaft portion 8 of the impeller body 2
The outer peripheral surface 8B of the first cylindrical shaft 3 and the inner peripheral surface 11A of the annular flange 11 of the first cylindrical shaft 3 are joined by shrink fitting so that the first cylindrical shaft 3 is assembled to the impeller body 2.

【0052】翼車本体2の第2円形軸部9の外周面9B
と第2円筒軸4の環状フランジ15の内周面15Aを焼
嵌め処理で結合させることにより、翼車本体2に第2円
筒軸4が組み付けられる。焼嵌め処理における翼車本体
2と第1円筒軸3,第2円筒軸4の締まり代は、翼車本
体2と第1円筒軸3,第2円筒軸4間の伝達トルクによ
り相違する。伝達トルクが大きいほど、締まり代を大き
くし、温度差を大きくする必要がある。
Outer peripheral surface 9B of the second circular shaft portion 9 of the impeller body 2
By coupling the inner peripheral surface 15A of the annular flange 15 of the second cylindrical shaft 4 with the shrink fitting process, the second cylindrical shaft 4 is assembled to the impeller body 2. The interference margin between the impeller body 2 and the first cylindrical shaft 3 and the second cylindrical shaft 4 in the shrink fitting process differs depending on the transmission torque between the impeller body 2 and the first cylindrical shaft 3 and the second cylindrical shaft 4. It is necessary to increase the tightening margin and increase the temperature difference as the transmission torque increases.

【0053】翼車本体2は、−150℃に冷却され、第
1円筒軸3,第2円筒軸4は、120℃に加熱されて焼
嵌め処理される。翼車本体2と第1円筒軸3,第2円筒
軸4の温度差は、270℃になって焼嵌め処理で結合さ
れるが、第1円筒軸3,第2円筒軸4の温度を120℃
に加熱する理由は、第1円筒軸3,第2円筒軸4の温度
を120℃以上より高くすると、焼入れ,焼戻し等の熱
処理が施された第1円筒軸3,第2円筒軸4に対して熱
処理が元に戻るのを防ぐためである。
The impeller body 2 is cooled to -150 ° C, and the first cylindrical shaft 3 and the second cylindrical shaft 4 are heated to 120 ° C to be shrink-fitted. The temperature difference between the impeller body 2 and the first cylindrical shaft 3 and the second cylindrical shaft 4 becomes 270 ° C. and they are joined by shrink fitting, but the temperature of the first cylindrical shaft 3 and the second cylindrical shaft 4 is 120 ℃
The reason for heating to 1 is that when the temperature of the first cylindrical shaft 3 and the second cylindrical shaft 4 is higher than 120 ° C. or higher, the first cylindrical shaft 3 and the second cylindrical shaft 4 that have undergone heat treatment such as quenching and tempering This is to prevent the heat treatment from returning to the original state.

【0054】次に、一体化された翼車本体2,第1円筒
軸3,第2円筒軸4は、X部(大径部3Cの外周面3
D),Y部(大径部4Aの外周面4D)を基準として位
置決めされる。すなわち、翼車本体2の羽根6の径方向
先端部6Aの外周面6Bを工作機械(図示せず)にチャ
ッキングし、X部,Y部の径の振れをダイヤルゲージで
計測し、X部,Y部の径の中心をそれぞれ結んだ仮想線
が工作機械の回転中心と一致した状態で、チャッキング
をX部,Y部に固定する。これにより、X部,Y部の径
の中心を結ぶ線が加工中心となり、最終的に仕上げ加工
された組立て一体型翼車1の回転の際の軸線となる。
Next, the integrated impeller body 2, the first cylindrical shaft 3 and the second cylindrical shaft 4 are connected to each other at the X portion (the outer peripheral surface 3 of the large diameter portion 3C).
D) and the Y portion (the outer peripheral surface 4D of the large diameter portion 4A) are used as a reference for positioning. That is, the outer peripheral surface 6B of the radial tip portion 6A of the blade 6 of the impeller body 2 is chucked on a machine tool (not shown), and the diameter deviation of the X portion and the Y portion is measured with a dial gauge, and the X portion is measured. , The chucking is fixed to the X part and the Y part in a state where virtual lines connecting the centers of the diameters of the Y part and the center of rotation of the machine tool coincide with each other. As a result, the line connecting the centers of the diameters of the X part and the Y part becomes the processing center, and becomes the axis line at the time of the rotation of the finally integrated assembly-type impeller 1.

【0055】この位置決め状態で、翼車本体2の羽根6
の径方向先端部6Aの外周面6B,第1円筒軸3の軸受
面13,第2円筒軸4の軸受面17の加工部位が仕上げ
加工される。以上の如き構成の組立て一体型翼車1によ
れば、組立て一体型翼車1による効果に加えて次の効果
を奏する。
In this positioning state, the blades 6 of the impeller body 2 are
The outer peripheral surface 6B of the radial tip portion 6A, the bearing surface 13 of the first cylindrical shaft 3, and the bearing surface 17 of the second cylindrical shaft 4 are finished. According to the assembly-integrated impeller 1 configured as described above, the following effects are obtained in addition to the effects of the assembly-integrated impeller 1.

【0056】鋼製の第1円筒軸3,第2円筒軸4を仕上
げ精度に近い精度に加工した後、翼車本体2に第1円筒
軸3,第2円筒軸4を焼嵌め処理にて一組み付け、次
に、翼車本体2または第1円筒軸3の軸受面,第2円筒
軸4の軸受面17を最終の仕上げ加工するので、削り代
が少なくなり、加工時間を短くし、高生産性を確保でき
る。
After machining the first cylindrical shaft 3 and the second cylindrical shaft 4 made of steel to an accuracy close to finishing accuracy, the impeller body 2 is shrink-fitted with the first cylindrical shaft 3 and the second cylindrical shaft 4. One assembly, and then the bearing surface of the impeller main body 2 or the first cylindrical shaft 3 and the bearing surface 17 of the second cylindrical shaft 4 are finally finished, so that the machining allowance is reduced, the machining time is shortened, and Productivity can be secured.

【0057】そして、組立て一体型翼車1は翼車本体
2,第1円筒軸3,第2円筒軸4と3分割型の構造とな
っているので、翼車本体2,第1円筒軸3を精密鋳造に
より造って一体にした2分割型の構造を考えた場合に比
して、第1円筒軸3における軸孔5Bの内周面の加工部
位(駆動伝達用係合部12)を容易に2面加工すること
ができる。
Since the assembly-integrated impeller 1 has a three-part structure including the impeller body 2, the first cylindrical shaft 3, and the second cylindrical shaft 4, the impeller body 2 and the first cylindrical shaft 3 Compared with the case of considering a two-division type structure in which the above is manufactured by precision casting and integrated, the processed portion (drive transmission engaging portion 12) of the inner peripheral surface of the shaft hole 5B in the first cylindrical shaft 3 is easier. It can be processed on two sides.

【0058】また、機械構造用合金鋼を材料とした第1
円筒軸3,第2円筒軸4に比べて許容応力が低い鋳造品
である翼車本体2では、その最も応力の高くなる内径側
を複雑な形状にすることを避け、製品としての信頼性を
確保することができる。
Further, the first is made of alloy steel for machine structure.
In the impeller body 2 which is a cast product having a lower allowable stress than the cylindrical shaft 3 and the second cylindrical shaft 4, it is possible to avoid the complicated shape on the inner diameter side where the stress is highest, and to improve the reliability of the product. Can be secured.

【0059】翼車本体2,第2円筒軸4を精密鋳造によ
り造って一体にした2分割型の構造を考えた場合に比し
て、機械構造用合金鋼を材料とした第2円筒軸4上にス
プライン係合部16が施されているので、精密鋳造品の
上に加工するよりも、製品としての信頼性を確保するこ
とができる。なお、本実施の形態においては、翼車本体
2と第1円筒軸3,第2円筒軸4は焼嵌め処理で結合さ
れているが、伝達トルクが小さければ、締嵌めにするこ
ともできる。
The second cylindrical shaft 4 made of alloy steel for machine structure is compared with the case of considering a two-division type structure in which the impeller main body 2 and the second cylindrical shaft 4 are integrally formed by precision casting. Since the spline engaging portion 16 is provided on the upper side, it is possible to secure reliability as a product, as compared with processing on a precision cast product. In the present embodiment, the impeller body 2 and the first cylindrical shaft 3 and the second cylindrical shaft 4 are joined by shrink fitting, but if the transmission torque is small, it is also possible to use an interference fit.

【0060】また、本実施の形態においては、組立て一
体型翼車1は翼車本体2,第1円筒軸3,第2円筒軸4
と3分割されているが、例えば、翼車本体2,第2円筒
軸4を一体にして精密鋳造により造って2分割にするこ
ともできるし、翼車本体2,第1円筒軸3を一体にして
精密鋳造により2分割することもできる。さらに、本実
施の形態においては、第1円筒軸3の駆動伝達用係合部
12が二面加工され、第1円筒軸3の駆動伝達用係合部
12がシャフト29に係合されているが、駆動伝達用係
合部12をスプライン加工,キー加工することもでき
る。
Further, in this embodiment, the assembly-integrated impeller 1 includes the impeller body 2, the first cylindrical shaft 3, and the second cylindrical shaft 4.
However, for example, the impeller main body 2 and the second cylindrical shaft 4 can be made into two parts by precision casting and the impeller main body 2 and the first cylindrical shaft 3 can be integrated. It can also be divided into two by precision casting. Further, in the present embodiment, the drive transmission engagement portion 12 of the first cylindrical shaft 3 is double-faced, and the drive transmission engagement portion 12 of the first cylindrical shaft 3 is engaged with the shaft 29. However, the drive transmission engaging portion 12 may be spline processed or key processed.

【0061】[0061]

【発明の効果】請求項1記載の発明によれば、円筒軸を
仕上げ精度に近い精度に加工した後、翼車本体に焼嵌め
処理にて円筒軸が組み付けられているので、削り代が少
なくなり、加工時間を短くし、高生産性を確保できる。
また、組立て一体型翼車は翼車本体,円筒軸と複数の部
品で構成されているので、各部品毎に加工工程を分割し
てサブ工程として翼車本体,円筒軸を並行に、予め仕上
げ精度に近い精度に機械加工でき、高生産性を確保でき
る。
According to the invention described in claim 1, since the cylindrical shaft is assembled to the impeller main body by shrink fitting after machining the cylindrical shaft to an accuracy close to finishing accuracy, the cutting margin is small. Therefore, the processing time can be shortened and high productivity can be secured.
Also, since the assembly-integrated impeller is composed of an impeller body, a cylindrical shaft, and multiple parts, the machining process is divided for each part and the impeller body and cylindrical shaft are pre-finished in parallel as sub-processes. Highly productive can be secured because it can be machined to a precision close to that of precision.

【0062】さらに、翼車本体と円筒軸を一体にして仕
上げ精度に機械加工することにより、組立て一体型翼車
を高精度にすることができる。請求項2記載の発明によ
れば、組立て一体型翼車の回転時には、翼車本体と円筒
軸を別体にして一体に組み立てても、翼車本体の円形軸
部の外周面に円筒軸の環状フランジの内周面が結合して
いるので、翼車本体の円形軸部の外周面と円筒軸の環状
フランジの内周面の締まり代は、増大し、翼車本体の円
形軸部の外周面と円筒軸の環状フランジの内周面におけ
る結合を強固にし、組立て一体型翼車の強度を確保でき
る。
Further, by integrally machining the impeller body and the cylindrical shaft to finish accuracy, the integrated integral impeller can be made highly accurate. According to the second aspect of the present invention, at the time of rotation of the assembly-integrated impeller, even if the impeller body and the cylindrical shaft are separately assembled and assembled together, the cylindrical shaft is attached to the outer peripheral surface of the circular shaft portion of the impeller body. Since the inner peripheral surface of the annular flange is connected, the interference between the outer peripheral surface of the circular shaft portion of the impeller body and the inner peripheral surface of the annular flange of the cylindrical shaft increases, and the outer periphery of the circular shaft portion of the impeller body increases. The strength of the assembled integrated impeller can be secured by strengthening the connection between the surface and the inner peripheral surface of the annular flange of the cylindrical shaft.

【0063】請求項3記載の発明によれば、請求項1記
載の発明による効果に加えて次の効果を奏する。円筒軸
を仕上げ精度に近い精度に加工して、翼車本体に円筒軸
を組み付けた後、翼車本体の羽根の径方向先端部,円筒
軸の軸受面を最終的に仕上げ加工するので、削り代が少
なくなり、加工時間を短くし、高生産性を確保できる。
According to the invention of claim 3, in addition to the effect of the invention of claim 1, the following effect is exhibited. After machining the cylindrical shaft to a precision close to the finishing accuracy and assembling the cylindrical shaft to the main body of the impeller, the radial tip of the blade of the main body of the impeller and the bearing surface of the cylindrical shaft are finally finished. Cost can be reduced, processing time can be shortened, and high productivity can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係わる組立て一体型翼車
の一部断面側面図である。
FIG. 1 is a partial sectional side view of an assembly-integrated impeller according to an embodiment of the present invention.

【図2】本発明の実施の形態に係わる組立て一体型翼車
を適用したガスタービンの断面側面図である。
FIG. 2 is a cross-sectional side view of a gas turbine to which an assembly-integrated impeller according to an embodiment of the present invention is applied.

【図3】図1の組立て一体型翼車の翼車本体を示す斜視
図である。
FIG. 3 is a perspective view showing an impeller body of the assembly-integrated impeller of FIG. 1.

【図4】図2におけるシャフトの面取り部と第1円筒軸
の組付け状態を示す断面図である。
FIG. 4 is a cross-sectional view showing an assembled state of the chamfered portion of the shaft and the first cylindrical shaft in FIG.

【図5】図2におけるシャフトの支持部における隙間を
示す断面図である。
5 is a cross-sectional view showing a gap in a support portion of the shaft in FIG.

【図6】従来の翼車を示す断面側面図である。FIG. 6 is a sectional side view showing a conventional impeller.

【図7】従来の翼車の羽根を示す斜視図である。FIG. 7 is a perspective view showing a blade of a conventional impeller.

【符号の説明】[Explanation of symbols]

1 組立て一体型翼車 2 翼車本体 2A 端面 2B 端面 3 第1円筒軸 4 第2円筒軸 4 第1円筒軸 5 胴体部 5A 中心軸線 5B 軸孔 6 羽根 6A 径方向先端部 6B 外周面 8 第1円形軸部 9 第2円形軸部 10 軸孔 10A 軸線 11 環状フランジ 13 軸受面 14 軸孔 14A 軸線 15 環状フランジ 17 軸受面 29 シャフト 29A 挟持部 29B 挟持部 S 締付手段 1 Assembly-integrated impeller 2 wing wheel body 2A end face 2B end face 3 First cylinder axis 4 Second cylindrical shaft 4 First cylinder axis 5 body 5A central axis 5B shaft hole 6 feathers 6A Radial tip 6B outer peripheral surface 8 First circular shaft 9 Second circular shaft 10 shaft holes 10A axis 11 annular flange 13 Bearing surface 14 shaft hole 14A axis 15 annular flange 17 Bearing surface 29 shaft 29A clamping part 29B clamping part S tightening means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02C 7/00 F02C 7/00 D (56)参考文献 特開 平6−56546(JP,A) 特開 平7−332002(JP,A) 特開 平8−254102(JP,A) 特開 平8−226302(JP,A) 特開 平4−171298(JP,A) 特開 平4−103805(JP,A) 特開 平4−103806(JP,A) 実開 平3−30534(JP,U) 実開 平3−89938(JP,U) 実開 昭62−46634(JP,U) 実開 昭63−2801(JP,U) 実開 昭61−47402(JP,U) 実開 平1−134736(JP,U) (58)調査した分野(Int.Cl.7,DB名) F01D 25/00 F01D 1/06 F01D 5/04 F02B 39/00 F02C 7/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 identification code FI F02C 7/00 F02C 7/00 D (56) References JP-A-6-56546 (JP, A) JP-A-7-332002 ( JP, A) JP 8-254102 (JP, A) JP 8-226302 (JP, A) JP 4-171298 (JP, A) JP 4-103805 (JP, A) JP Flat 4-103806 (JP, A) Actual Open 3-30534 (JP, U) Actual Open 3-89938 (JP, U) Actual Open Sho 62-46634 (JP, U) Actual Open Sho 63-2801 (JP , U) Actually open 61-47402 (JP, U) Actually open 1-134736 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F01D 25/00 F01D 1/06 F01D 5/04 F02B 39/00 F02C 7/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸孔を有する胴体部と、胴体部を囲んで
該胴体部に連続して配置された複数の羽根と、胴体部の
端面に突設した円形軸部とで構成された翼車本体と、 翼車本体の両端に軸孔を有する環状フランジを一端に設
けてなる円筒軸とを備え、 翼車本体の軸孔の中心軸線と円筒軸の軸線が一致した状
態で翼車本体,円筒軸は焼嵌め処理にて一体に組み付け
られていることを特徴とする組立て一体型翼車。
1. A wing composed of a body portion having an axial hole, a plurality of blades surrounding the body portion and continuously arranged on the body portion, and a circular shaft portion protruding from an end surface of the body portion. The vane main body includes a car body and a cylindrical shaft having annular flanges having shaft holes at both ends of the vane car body, and the central axis of the shaft hole of the vane car body and the axis of the cylindrical shaft are aligned. , The integrated integrated type impeller, wherein the cylindrical shaft is integrally assembled by shrink fitting.
【請求項2】 翼車本体の円形軸部の外周面に円筒軸の
環状フランジの内周面が焼嵌め処理にて一体に組み付け
られていることを特徴とする請求項1記載の組立て一体
型翼車。
2. The assembly-integrated type according to claim 1, wherein the inner peripheral surface of the annular flange of the cylindrical shaft is integrally assembled to the outer peripheral surface of the circular shaft portion of the impeller body by shrink fitting. Wing wheel.
【請求項3】 軸孔を有する胴体部と、胴体部を囲んで
該胴体部に連続して配置された複数の羽根と、胴体部の
端面に設けられた円形軸部とで構成された翼車本体を、
精密鋳造により造り、 翼車本体の胴体部の外径とほぼ同等の外径を有し軸孔の
回りに環状フランジを一端に設けてなる円筒軸の外周面
に形成された軸受面を、仕上げ精度に近い精度に加工
し、 翼車本体の円形軸部の外周面に、円筒軸の環状フランジ
の内周面を嵌合させて、翼車本体に円筒軸を、その軸線
を翼車本体の軸孔の中心軸線に一致させて焼嵌め処理に
て組み付け、 次に、翼車本体の羽根の径方向先端部の外周面及び円筒
軸の軸受面を仕上げ加工することを特徴とする組立て一
体型翼車の製造方法。
3. A wing comprising a body portion having an axial hole, a plurality of blades surrounding the body portion and continuously arranged on the body portion, and a circular shaft portion provided on an end surface of the body portion. The car body
Finished the bearing surface formed on the outer peripheral surface of the cylindrical shaft that is made by precision casting and has an outer diameter that is almost the same as the outer diameter of the body of the impeller body and has an annular flange at one end around the shaft hole. Processed to a precision close to the precision, fit the inner peripheral surface of the annular flange of the cylindrical shaft to the outer peripheral surface of the circular shaft part of the impeller body, and set the cylindrical shaft to the impeller body and its axis to the impeller body. It is assembled by shrink fitting so as to match the central axis of the shaft hole, and then the outer peripheral surface of the radial tip end of the blade of the impeller body and the bearing surface of the cylindrical shaft are finished and processed. Manufacturing method of impeller.
JP24100097A 1997-09-05 1997-09-05 Assembled integrated impeller and method of manufacturing the same Expired - Fee Related JP3464753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24100097A JP3464753B2 (en) 1997-09-05 1997-09-05 Assembled integrated impeller and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24100097A JP3464753B2 (en) 1997-09-05 1997-09-05 Assembled integrated impeller and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1181914A JPH1181914A (en) 1999-03-26
JP3464753B2 true JP3464753B2 (en) 2003-11-10

Family

ID=17067846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24100097A Expired - Fee Related JP3464753B2 (en) 1997-09-05 1997-09-05 Assembled integrated impeller and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3464753B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911959B1 (en) * 2007-01-29 2009-04-24 Snecma Sa METHOD FOR MODULAR TURBOMACHINE ROTOR BALANCING
JP2009243289A (en) * 2008-03-28 2009-10-22 Ihi Corp Supercharger

Also Published As

Publication number Publication date
JPH1181914A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
US6672966B2 (en) Curvic coupling fatigue life enhancement through unique compound root fillet design
US7891952B2 (en) Rotary machine components and methods of fabricating such components
EP1805398B1 (en) Turbocharger with thrust collar
KR100633501B1 (en) Twin-Web Rotor Disk
US9903385B2 (en) Impeller, rotary machine including the same, and method for manufacturing impeller
EP1413766B1 (en) Compressor wheel assembly
KR102034159B1 (en) Method for turbine wheel balance stock removal
US20060245916A1 (en) Stator blades, turbomachines comprising such blades and method of repairing such blades
US20070071545A1 (en) Lubricated Hirth serration coupling
US20230058821A1 (en) Closed impeller and method for producing closed impeller
EP2348191A2 (en) A Rotor Disc
JP3464753B2 (en) Assembled integrated impeller and method of manufacturing the same
JP3364168B2 (en) Blade groove machining cutter and blade groove machining method using the cutter
US10337329B2 (en) Method and system to repair outer periphery of a body
US4738561A (en) Device for protecting wheel discs shrink-fitted on shafts against rotation relative to the shafts and method for manufacturing the same
EP3781789B1 (en) Rotor shaft cap and method of manufacturing a rotor shaft assembly
KR100279508B1 (en) Method of forming corner part of torque converter by press working
JPH05272301A (en) Turbine rotor and turbine rotor machining method
GB2428396A (en) A method of manufacturing an article with a reference datum feature
JP2001003702A (en) Gas turbine rotor
US3877849A (en) Construction of rotor for rotary mechanisms
US8282349B2 (en) Steam turbine rotor and method of assembling the same
JPH07279606A (en) Turbine moving blade device
US11143198B2 (en) Impeller manufacturing method, impeller, and rotation machine
KR100988581B1 (en) Method manufacturing of impeller for high pressure steam turbine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030812

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees