JP3464234B2 - Enzyme immobilization carrier and immobilized enzyme - Google Patents

Enzyme immobilization carrier and immobilized enzyme

Info

Publication number
JP3464234B2
JP3464234B2 JP34844592A JP34844592A JP3464234B2 JP 3464234 B2 JP3464234 B2 JP 3464234B2 JP 34844592 A JP34844592 A JP 34844592A JP 34844592 A JP34844592 A JP 34844592A JP 3464234 B2 JP3464234 B2 JP 3464234B2
Authority
JP
Japan
Prior art keywords
enzyme
immobilized
carrier
peak
sodium perborate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34844592A
Other languages
Japanese (ja)
Other versions
JPH06197794A (en
Inventor
英子 大川
茂 田島
田辺  敏雄
由美子 塚越
佳彦 梅香家
佳久 古屋敷
隆司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Tosoh Corp
Original Assignee
Nippon Kayaku Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd, Tosoh Corp filed Critical Nippon Kayaku Co Ltd
Priority to JP34844592A priority Critical patent/JP3464234B2/en
Publication of JPH06197794A publication Critical patent/JPH06197794A/en
Application granted granted Critical
Publication of JP3464234B2 publication Critical patent/JP3464234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は疾病の診断に用いられる
臨床検査に応用可能な体液成分の微量分析法において使
用される酵素固定化用担体及び固定化酵素に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an enzyme immobilization carrier and an immobilized enzyme used in a microanalysis method for body fluid components applicable to clinical tests used for diagnosis of diseases.

【0002】[0002]

【従来の方法】血清、血漿、尿等の体液中の特定の物質
を定量するのに、酵素の特異性を利用して該物質を分離
することなく高感度に定量することが行われている。な
かでも酸化酵素により過酸化水素を生成させ、これをペ
ルオキシダーゼなどの作用下に、被酸化性の呈色色素や
蛍光色素等を用いて定量する方法の重要性が増しつつあ
る。しかしながら、酵素は高価なものであり利用に制限
がある。現在、酵素を固定化しバイオリアクターとして
繰り返して利用することが種々の分野で実用化されてい
る。
2. Description of the Related Art For quantifying a specific substance in a body fluid such as serum, plasma or urine, it has been carried out with high sensitivity without utilizing the specificity of an enzyme to separate the substance. . Above all, the importance of a method of producing hydrogen peroxide by an oxidase and quantifying the hydrogen peroxide under the action of peroxidase using an oxidizable color dye or a fluorescent dye is increasing. However, enzymes are expensive and have limited uses. At present, it has been put into practical use in various fields to immobilize an enzyme and repeatedly use it as a bioreactor.

【0003】酵素を固定化するには吸着法、包括法、架
橋化法、共有結合法がある。吸着法ないし包括法は操作
は簡便であるが反応の際に酵素の離脱を防ぐことが困難
であり、また、架橋法は多量の酵素を要し効率が低く、
固定化時に酵素の活性低下が起こり易いのに対し、共有
結合法により固定化された酵素は高活性を示し、さらに
酵素の離脱がきわめて少ないという利点を持ち、共有結
合法により固定化された酵素は、バイオリアクターとし
て用いるには最適である。共有結合法で酵素を固定化す
る担体としては、その材質、イオン性、粒径、ポアサイ
ズ等の異なる様々なものが知られている。一方、高速液
体クロマトグラフィー(HPLC)あるいはフローイン
ジェクション分析法(FIA)の検出器としてバイオリ
アクターを利用し、体液成分を定量する際、ペルオキシ
ダーゼと発色基質を用いて定量する方法が用いられてい
る。
There are adsorption method, entrapment method, cross-linking method and covalent method for immobilizing the enzyme. The adsorption method or the entrapment method is easy to operate, but it is difficult to prevent the separation of the enzyme during the reaction, and the cross-linking method requires a large amount of enzyme and is low in efficiency.
While the activity of the enzyme is likely to decrease during immobilization, the enzyme immobilized by the covalent bond method exhibits high activity and has the advantage that the release of the enzyme is extremely small. Is optimal for use as a bioreactor. As a carrier for immobilizing an enzyme by a covalent bond method, various carriers having different materials, ionic properties, particle sizes, pore sizes, etc. are known. On the other hand, when a bioreactor is used as a detector of high performance liquid chromatography (HPLC) or flow injection analysis method (FIA), and a body fluid component is quantified, a quantification method using peroxidase and a chromogenic substrate is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、該方法
によっては、体液中の微量成分の定量が困難な場合が多
い。
However, depending on the method, it is often difficult to quantify a trace amount of components in a body fluid.

【0005】[0005]

【課題を解決するための手段】本発明者らは、体液中の
微量成分を高感度に検出できる方法について鋭意検討し
た結果、発色定量する際に用いる色素と酵素固定化用担
体として特定のものを組合わせて用いることにより、体
液中の微量成分の定量を高感度で行なうことが出来るこ
とを見出し本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method capable of detecting a trace component in a body fluid with high sensitivity. As a result, a specific dye and an enzyme immobilization carrier used for colorimetric determination have been obtained. The present invention has been completed by finding that it is possible to quantify a trace component in a body fluid with high sensitivity by using a combination of.

【0006】即ち、本発明は(1) 固定化酵素及び酸
化反応により塩基性(カチオン性)の増加する色素を用
いて体液中の微量成分を検出する際に用いるための、塩
基性または中性の酵素固定化用担体,(2) 酵素がペ
ルオキシダーゼである上記(1)の担体,(3) 色素
がロイコ型の色素である上記(1)又は(2)の担体,
(4) 酵素を固定化した上記(1),(2)又は
(3)の固定化酵素,に関する。
That is, the present invention is (1) basic or neutral, which is used for detecting a trace component in a body fluid using an immobilized enzyme and a dye whose basicity (cationicity) is increased by an oxidation reaction. (2) The carrier according to (1) above, wherein the enzyme is peroxidase, (3) the carrier according to (1) or (2) above, wherein the dye is a leuco dye.
(4) The present invention relates to the immobilized enzyme according to the above (1), (2) or (3), wherein the enzyme is immobilized.

【0007】本発明の特徴は、固定化酵素と酵素反応に
より塩基性(カチオン性)の増加する色素を用いて体液
中の微量成分を定量する場合、塩基性または中性の担体
を用いて酵素を固定化することにある。
A feature of the present invention is that when a trace amount component in a body fluid is quantified using a dye whose basicity (cationicity) is increased by an enzyme reaction with an immobilized enzyme, the enzyme is used with a basic or neutral carrier. Is to be fixed.

【0008】本発明によれば例えばロイコ型の色素のよ
うな酸化反応により塩基性の増加する色素を用いてバイ
オリアクターを利用したHPLCあるいはFIAにて発
色定量すると、検出器から得られたピークがシャープに
なり微量定量が可能となる。
According to the present invention, a peak obtained from a detector is obtained by colorimetric determination by HPLC or FIA using a bioreactor using a dye whose basicity increases by an oxidation reaction such as leuco dye. It becomes sharp and microquantification becomes possible.

【0009】本発明の固定化酵素は公知の方法でカラム
に充填してバイオリアクターとし、公知の方法に従っ
て、HPLCやFIAの装置に接続して使用する。これ
らの装置は、少なくとも送液ポンプ、試料注入装置、検
出器、指示記録装置と流路を構成する配管類からなって
いる。
The immobilized enzyme of the present invention is packed in a column by a known method to form a bioreactor, which is connected to an HPLC or FIA device according to a known method before use. These devices include at least a liquid feed pump, a sample injection device, a detector, an instruction recording device, and pipes that form a flow path.

【0010】これら装置を用いて定量を行なう際に用い
られる緩衝液やバイオリアクターのカラムサイズ等は、
使用する酵素及び色素に応じて適宜選択される。例え
ば、緩衝液としては、リン酸塩、クエン酸塩、ほう酸
塩、トリス塩酸塩、グッドの緩衝液等が使用できる。ま
た、界面活性剤等も必要に応じて添加される。
The buffer solution and the column size of the bioreactor used when performing quantification using these devices are as follows.
It is appropriately selected depending on the enzyme and dye used. For example, as the buffer solution, phosphate, citrate, borate, tris hydrochloride, Good's buffer and the like can be used. Further, a surfactant and the like are added as necessary.

【0011】バイオリアクターのカラムサイズは通常1
0μl から10mlで使用されるが、好ましくは50か
ら500μl 程度のカラム容量が良い。バイオリアクタ
ーにおける反応温度は通常0〜80℃の範囲で好ましく
は4〜40℃の恒温の条件が良い。
The column size of a bioreactor is usually 1
It is used in an amount of 0 μl to 10 ml, preferably a column volume of about 50 to 500 μl. The reaction temperature in the bioreactor is usually in the range of 0 to 80 ° C, preferably 4 to 40 ° C.

【0012】本発明において、塩基性または中性の担体
としてはアミノ基、エポキシ基、水酸基等を官能基とし
て持つ担体、あるいは多糖類のようにαβ位に2つの水
酸基を持つ化合物が挙げられる。特に好ましくはアミノ
基、エポキシ基をもつ担体が挙げられる。また、酵素固
定化反応の時に副反応として酸性の官能基が生成するよ
うな活性基(例えばトレシル基)を有する担体はその酸
性の官能基を完全にブロックして中性又は塩基性にコン
トロールできれば使用可能である。又、担体の保存中に
酸性基を生じるような官能基(例えばホルミル基、トレ
シル基等)を有する担体は、製造後間もないものであれ
ば使用可能であり、あるいは、使用時にそのような官能
基(ホルミル基、トレシル基等)を導入して使用するこ
ともできる。
In the present invention, examples of the basic or neutral carrier include a carrier having an amino group, an epoxy group, a hydroxyl group or the like as a functional group, or a compound having two hydroxyl groups at the αβ position such as a polysaccharide. Particularly preferred is a carrier having an amino group or an epoxy group. In addition, a carrier having an active group (for example, a tresyl group) such that an acidic functional group is generated as a side reaction during the enzyme immobilization reaction, if the acidic functional group is completely blocked and can be controlled to be neutral or basic. It can be used. Further, a carrier having a functional group (eg, formyl group, tresyl group, etc.) capable of generating an acidic group during storage of the carrier can be used as long as it is just after production, or such a carrier can be used at the time of use. A functional group (formyl group, tresyl group, etc.) may be introduced and used.

【0013】塩基性または中性の担体のうち好ましいも
のを具体的に挙げると、アミノトヨパール(東ソー
(株)製)、アミノセルロファイン(生化学工業(株)
製)、アミノプロピル−CPG(フナコシ(株)販
売)、AHセファローズ4B(ファルマシア(株)
製)、エポキシトヨパール(東ソー(株)製)、エポキ
シ活性化セファローズ6B(ファルマシア(株)製)、
DEAE−セルロファイン(生化学工業(株)製)、D
EAE−トヨパール(東ソー(株)製)、ショーデック
スゲル DEA(昭和電工(株)製)、CNBr活性化
セファローズ4B(ファルマシア(株)製)トレシルト
ヨパール(東ソー(株)製)等が挙げられるが特にこれ
に限定するものではない。粒子径としては1〜300μ
m、官能基濃度としては1〜500μmol/ml-gelのもの
が一般的に用いられる。
Specific preferred examples of the basic or neutral carrier include aminotoyopearl (manufactured by Tosoh Corporation) and aminocellulofine (Seikagaku Corporation).
Made), Aminopropyl-CPG (sold by Funakoshi Co., Ltd.), AH Sepharose 4B (Pharmacia Co., Ltd.)
), Epoxy Toyopearl (manufactured by Tosoh Corporation), Epoxy-activated Sepharose 6B (manufactured by Pharmacia Co., Ltd.),
DEAE-Cellulofine (manufactured by Seikagaku Corporation), D
EAE-Toyopearl (manufactured by Tosoh Corporation), Shodex Gel DEA (manufactured by Showa Denko KK), CNBr-activated Sepharose 4B (manufactured by Pharmacia Co., Ltd.), Tresyl Toyopearl (manufactured by Tosoh Corporation), etc. However, the present invention is not limited to this. 1 to 300μ as particle size
The functional group concentration of 1 to 500 μmol / ml-gel is generally used.

【0014】担体への酵素の固定化方法は公知の種々の
方法が適応されるが共有結合法が好ましい。共有結合法
としては、例えば、酵素を過ヨウ素酸で酸化した後アミ
ノ基を有する担体に結合する方法、アミノ基を有する担
体にグルタルアルデヒドを反応させ酵素を結合する方
法、ジメチルアミノエチル基、ジエチルアミノエチル基
等の3級アミノ基を持つ担体にエピクロルヒドリンを反
応させ酵素を結合する方法、エポキシ基、トレシル基等
の官能基を有する担体に酵素を結合する方法、多糖類の
ようにαβ位に2つの水酸基を持つ化合物にブロムシア
ンを反応させ酵素と結合する方法等が適用できる。
Various known methods can be applied to the method of immobilizing the enzyme on the carrier, but the covalent method is preferred. Examples of the covalent bond method include a method of oxidizing the enzyme with periodate and then binding to a carrier having an amino group, a method of reacting glutaraldehyde with a carrier having an amino group to bind the enzyme, a dimethylaminoethyl group, and diethylamino. A method of reacting epichlorohydrin with a carrier having a tertiary amino group such as an ethyl group to bond an enzyme, a method of bonding an enzyme to a carrier having a functional group such as an epoxy group or a tresyl group, and a method such as a polysaccharide in which α2 position is 2 A method of reacting a compound having one hydroxyl group with bromocyan and binding it to an enzyme can be applied.

【0015】本発明で用いられる酵素としてペルオキシ
ダーゼがあるが、その起源、由来に限定はなく、植物、
動物、微生物由来のペルオキシダーゼが使用できる。
The enzyme used in the present invention is peroxidase, but its origin and origin are not limited, and it may be plant,
Peroxidase derived from animals or microorganisms can be used.

【0016】ペルオキシダーゼと共に、過酸化水素を生
成する酸化酵素を組み合わせて用いることもできる。例
えば、酸化酵素とペルオキシダーゼを別々にカラムに充
填し連結して使用する事ができる。本発明の担体を用い
た場合、固定化酸化酵素と固定化ペルオキシダーゼを同
一のカラムに充填し一本のバイオリアクターとして用い
ることもできるし、それぞれの酵素を一緒に固定化して
用いることもできる。
An oxidase which produces hydrogen peroxide can be used in combination with peroxidase. For example, oxidase and peroxidase can be separately packed in a column and used by connecting them. When the carrier of the present invention is used, the immobilized oxidase and the immobilized peroxidase can be packed in the same column and used as one bioreactor, or each enzyme can be immobilized together and used.

【0017】ペルオキシダーゼと組み合わせて使用でき
る過酸化水素を生成する酸化酵素としてはピラノースオ
キシダーゼ(PROD)(EC 1.1.3.10)、
L−ソルボースオキシダーゼ(EC1.1.3.1
1)、グルコースオキシダーゼ(GOD)(EC 1.
1.3.4)、ウリカーゼ(EC 1.7.3.3)、
コレステロールオキシダーゼ(EC 1.1.3.
6)、プトレシンオキシダーゼ(EC 1.4.3.1
0)等が挙げられるが、これに限定されるものではな
く、過酸化水素を発生する酸化酵素はすべて使用するこ
とができる。
Pyranose oxidase (PROD) (EC 1.1.3.10), as an oxidase for producing hydrogen peroxide, which can be used in combination with peroxidase,
L-sorbose oxidase (EC 1.1.3.1
1), glucose oxidase (GOD) (EC 1.
1.3.4), uricase (EC 1.7.3.3),
Cholesterol oxidase (EC 1.1.3.
6), putrescine oxidase (EC 1.4.3.1)
0) and the like, but not limited thereto, and any oxidase that generates hydrogen peroxide can be used.

【0018】本発明において、酸化反応により塩基性の
増加する色素としては、例えばロイコ型色素が挙げら
れ、具体的には、N-(Carboxymethylaminocarbonyl)-4,
4’-bis(dimethylamino)-diphenylamine sodium salt
(DA−64)、10-(Carboxymethylaminocarbonyl)-3,
7-bis(dimethylamino)-phenothiazine sodium salt(D
A−67)、 4,4’-bis(dimethylamino)diphenylamin
e、10-N-methylcarbamyl-3,7-bis(dimethylamino)-10H-
phenothiazine、Bis(3-bis(4-chlorophenyl)methyl-4-d
imethyl-aminophenyl)amine等が挙げられる。特に好ま
れるものとしてモル吸光係数が高く水溶性の高いN-(Car
boxymethylaminocarbonyl)-4,4’-bis(dimethylamino)-
diphenylamine sodium salt (DA−64)、10-(Carb
oxymethylaminocarbonyl)-3,7-bis(dimethylamino)-phe
nothiazine sodium salt(DA−67)が挙げられる
が、特に限定されるものではない。微量成分の定量を行
なう際これら色素は0.1〜1000μMの濃度で用い
るのが適当であるが、特に1〜250μMが好ましい。
In the present invention, examples of the dye whose basicity increases by the oxidation reaction include leuco dyes, and specifically, N- (Carboxymethylaminocarbonyl) -4,
4'-bis (dimethylamino) -diphenylamine sodium salt
(DA-64), 10- (Carboxymethylaminocarbonyl) -3,
7-bis (dimethylamino) -phenothiazine sodium salt (D
A-67), 4,4'-bis (dimethylamino) diphenylamin
e, 10-N-methylcarbamyl-3,7-bis (dimethylamino) -10H-
phenothiazine, Bis (3-bis (4-chlorophenyl) methyl-4-d
Examples include imethyl-aminophenyl) amine and the like. Especially preferred is N- (Car, which has a high molar extinction coefficient and high water solubility.
boxymethylaminocarbonyl) -4,4'-bis (dimethylamino)-
diphenylamine sodium salt (DA-64), 10- (Carb
oxymethylaminocarbonyl) -3,7-bis (dimethylamino) -phe
Examples thereof include nothiazine sodium salt (DA-67), but are not particularly limited. It is suitable to use these dyes at a concentration of 0.1 to 1000 μM when quantifying a trace amount of components, and particularly preferably 1 to 250 μM.

【0019】体液としては、血清、血漿、尿、髄液、唾
液等が挙げられ、微量成分の定量を行なう際、体液はそ
のままあるいは必要に応じて前処理をしてから測定する
ことができる。
Examples of the body fluid include serum, plasma, urine, spinal fluid, saliva and the like, and when quantifying a trace amount of the component, the body fluid can be measured as it is or after pretreatment as necessary.

【0020】測定(検出)する微量成分としては、例え
ば、1,5−アンヒドロ−D−グルシトール、グルコー
ス、尿酸、コレステロール、ポリアミン等が挙げられ
る。
Examples of trace components to be measured (detected) include 1,5-anhydro-D-glucitol, glucose, uric acid, cholesterol and polyamine.

【0021】本発明によれば、酵素反応を利用した定量
の時に、発色により塩基性が増加する色素を用いて発色
定量する際に特定の担体を用いて固定化した酵素を使用
することにより、高感度に体液中の微量成分を測定する
ことが可能となる。
According to the present invention, when an enzyme immobilized using a specific carrier is used for colorimetric determination using a dye whose basicity increases due to color development in the quantitative determination using an enzymatic reaction, It becomes possible to measure trace components in body fluids with high sensitivity.

【0022】[0022]

【実施例】以下、比較例および実施例により本発明を具
体的に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES The present invention will be specifically described below with reference to comparative examples and examples, but the present invention is not limited to these examples.

【0023】実施例1 ホースラディッシュペルオキシダーゼ(HRP)250
00ユニットを0.3M炭酸水素ナトリウム水溶液4m
lに溶解し、60mMメタ過ヨウ素酸ナトリウム4ml
を加えて室温で30分間反応させ、1.6M グリセリ
ン 400μlを加え室温にて30分撹拌した。次いで
0.01M炭酸緩衝液(pH 9.5)2L、4℃で透
析した。その液に上記炭酸緩衝液で平衡化したアミノト
ヨパール(東ソー(株)製)6mlを加え4℃、4時間
振盪しその温度で24時間静置した。その後、担体粒子
を蒸留水、1M NaClの順で良く洗浄した。さら
に、活性基をブロックするため、0.1Mトリス塩酸緩
衝液(pH 8)に担体粒子を移し、25℃で2時間反
応させ、蒸留水、1M NaClの順で良く洗浄し、固
定化HRPを調製した。
Example 1 Horseradish Peroxidase (HRP) 250
00 unit 4m of 0.3M sodium hydrogencarbonate aqueous solution
Dissolve in 1 l, 60 mM sodium metaperiodate 4 ml
Was added and reacted at room temperature for 30 minutes, 400 μl of 1.6 M glycerin was added, and the mixture was stirred at room temperature for 30 minutes. Then, 2 L of 0.01 M carbonate buffer (pH 9.5) was dialyzed at 4 ° C. 6 ml of aminotoyopearl (manufactured by Tosoh Corporation) equilibrated with the above carbonate buffer was added to the solution, and the mixture was shaken at 4 ° C. for 4 hours and allowed to stand at that temperature for 24 hours. Then, the carrier particles were thoroughly washed with distilled water and 1M NaCl in this order. Furthermore, in order to block the active groups, the carrier particles were transferred to 0.1 M Tris-HCl buffer (pH 8), reacted at 25 ° C. for 2 hours, washed well with distilled water and 1 M NaCl in this order, and immobilized HRP was removed. Prepared.

【0024】固定化HRPを内径4.6mm、長さ35
mmのカラムに0.1Mりん酸緩衝液(pH 7.5)
にて充填した。得られた固定化HRPリアクターは東ソ
ーCCPMポンプ,島津SPD−10AV検出器,東ソ
ーSC−8010データ処理装置、レオダイン7161
試料注入装置よりなるHPLCシステムの検出器の前に
設置した。溶離液として0.2mMのDA−64を含む
0.1M りん酸緩衝液(pH 7.5)を1ml/m
inの流速で送液し、0.01〜5mg/Lの過ほう酸ナト
リウム(安定な過酸化水素)10μlを注入した。カラ
ムで生成した色素による727nmの吸光度をクロマトグ
ラムとして測定した。測定は25℃で行った。このとき
ピークとして認められた最小過ほう酸ナトリウム濃度は
0.01mg/Lであった。また、ピーク形状の指標として
クロマトグラムの面積と高さの比(A/H)をもとめた
ところ過ほう酸ナトリウム5mg/LのA/Hは11.6で
あり、シャープな波形であった。結果は表1に示した。
The immobilized HRP has an inner diameter of 4.6 mm and a length of 35.
mm column with 0.1M phosphate buffer (pH 7.5)
It was filled with. The obtained immobilized HRP reactor was a Tosoh CCPM pump, a Shimadzu SPD-10AV detector, a Tosoh SC-8010 data processor, and Rheodyne 7161.
It was installed in front of the detector of the HPLC system consisting of the sample injection device. 0.1 ml of a phosphate buffer (pH 7.5) containing 0.2 mM DA-64 as an eluent at 1 ml / m
The solution was sent at a flow rate of in and 10 μl of 0.01 to 5 mg / L sodium perborate (stable hydrogen peroxide) was injected. The absorbance at 727 nm due to the dye produced in the column was measured as a chromatogram. The measurement was performed at 25 ° C. At this time, the minimum sodium perborate concentration recognized as a peak was 0.01 mg / L. Further, when the area-to-height ratio (A / H) of the chromatogram was obtained as an index of the peak shape, the A / H of sodium perborate 5 mg / L was 11.6, which was a sharp waveform. The results are shown in Table 1.

【0025】実施例2 HRPの担体への固定化は実施例1と同様にして行った
が、担体としてアミノセルロファイン(生化学工業
(株)製)を用いた。この固定化HRPを実施例1と同
様にカラムに充填し、実施例1と同様な方法で過ほう酸
ナトリウムを測定した。
Example 2 HRP was immobilized on a carrier in the same manner as in Example 1, but aminocellulofine (manufactured by Seikagaku Corporation) was used as the carrier. This immobilized HRP was packed in a column as in Example 1, and sodium perborate was measured by the same method as in Example 1.

【0026】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
は表1に示した。実施例1と同様にピークはシャープで
あり過ほう酸ナトリウムの最小検出限界も0.01mg/L
と良好であった。
As in Example 1, the minimum sodium perborate concentration recognized as a peak and A / H were determined. The results are shown in Table 1. As in Example 1, the peak was sharp and the minimum detection limit of sodium perborate was 0.01 mg / L.
And was good.

【0027】実施例3 HRPの担体への固定化は実施例1と同様にして行った
が、担体としてアミノプロピル−CPG ポアサイズ1
400(フナコシ(株)販売)を用いた。この固定化H
RPを実施例1と同様にカラムに充填し、実施例1と同
様な方法で過ほう酸ナトリウムを測定した。
Example 3 Immobilization of HRP on a carrier was carried out in the same manner as in Example 1, except that aminopropyl-CPG pore size 1 was used as a carrier.
400 (sold by Funakoshi Co., Ltd.) was used. This fixed H
The column was packed with RP in the same manner as in Example 1, and sodium perborate was measured in the same manner as in Example 1.

【0028】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
は表1に示した。実施例1と同様にピークはシャープで
あり過ほう酸ナトリウムの最小検出限界も0.01mg/L
と良好であった。
As in Example 1, the minimum sodium perborate concentration and A / H recognized as peaks were determined. The results are shown in Table 1. As in Example 1, the peak was sharp and the minimum detection limit of sodium perborate was 0.01 mg / L.
And was good.

【0029】実施例4 HRP25000ユニットを0.3M炭酸水素ナトリウ
ム溶液4mlに溶解し、60mMメタ過ヨウ素酸ナトリ
ウム4mlにて室温で30分間反応させ、1.6M グ
リセリン 400μlを加え室温にて30分撹拌した。
次いで0.01M炭酸緩衝液(pH 9.5)2L、4
℃で透析した。その液に100mgのヘキサメチレンジ
アミンを加え4℃、24時間撹拌しながら反応させた。
さらに0.5Mりん酸緩衝液(pH7.2)2L、4℃
で透析した。これに0.3gのエポキシトヨパール(東
ソー(株)製)を加え、37℃で4時間振盪した。その
後、担体粒子を蒸留水、1M NaCl、1/15M
りん酸緩衝液(pH7.2)の順で良く洗浄し固定化H
RPを調製した。
Example 4 HRP25000 unit was dissolved in 4 ml of 0.3 M sodium hydrogen carbonate solution and reacted with 4 ml of 60 mM sodium metaperiodate at room temperature for 30 minutes, 400 μl of 1.6 M glycerin was added, and the mixture was stirred at room temperature for 30 minutes. did.
Then 0.01 M carbonate buffer (pH 9.5) 2 L, 4
It was dialyzed at ° C. 100 mg of hexamethylenediamine was added to the liquid and the reaction was carried out while stirring at 4 ° C. for 24 hours.
Furthermore, 0.5 M phosphate buffer (pH 7.2) 2 L, 4 ° C
It dialyzed with. To this, 0.3 g of Epoxy Toyopearl (manufactured by Tosoh Corporation) was added and shaken at 37 ° C. for 4 hours. Then, the carrier particles were distilled water, 1M NaCl, 1 / 15M
Immobilize H by washing well in the order of phosphate buffer (pH 7.2)
RP was prepared.

【0030】実施例1と同様にカラムに充填し、実施例
1と同様な方法で過ほう酸ナトリウムを測定した。
The column was packed in the same manner as in Example 1, and sodium perborate was measured in the same manner as in Example 1.

【0031】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
は表1に示した。実施例1と同様にピークはシャープで
あり過ほう酸ナトリウムの最小検出限界も0.01mg/L
と良好であった。
As in Example 1, the minimum sodium perborate concentration recognized as a peak and the A / H were determined. The results are shown in Table 1. As in Example 1, the peak was sharp and the minimum detection limit of sodium perborate was 0.01 mg / L.
And was good.

【0032】実施例5 Arthromyces ramosus 由来のペルオキシダーゼ(AR
P、フナコシ(株)販売)25000ユニットを用いて
実施例1と同様に固定化ARPを調製した。
Example 5 Peroxidase (AR from Arthromyces ramosus
Immobilized ARP was prepared in the same manner as in Example 1 using 25,000 units (P, sold by Funakoshi Co., Ltd.).

【0033】これを実施例1と同様にカラムに充填し、
実施例1と同様な方法で過ほう酸ナトリウムを測定し
た。
This was packed in a column in the same manner as in Example 1,
Sodium perborate was measured in the same manner as in Example 1.

【0034】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
を表1に示した。実施例1と同様にピークはシャープで
あり過ほう酸ナトリウムの最小検出限界も0.01mg/L
と低値の検出も良好であった。
As in Example 1, the minimum sodium perborate concentration and A / H recognized as peaks were determined. The results are shown in Table 1. As in Example 1, the peak was sharp and the minimum detection limit of sodium perborate was 0.01 mg / L.
And the detection of low value was also good.

【0035】実施例6 実施例1で調製した固定化酵素を用い、DA−64の代
わりに0.2mMのDA−67を用いて実施例1と同様
の試験をした。測定波長は666nmである。実施例1
と同様にピークとして認められた最小過ほう酸ナトリウ
ム濃度とA/Hをもとめた。結果を表1に示した。
Example 6 Using the immobilized enzyme prepared in Example 1, the same test as in Example 1 was carried out using 0.2 mM DA-67 instead of DA-64. The measurement wavelength is 666 nm. Example 1
Similarly to the above, the minimum sodium perborate concentration and A / H recognized as peaks were determined. The results are shown in Table 1.

【0036】実施例1と同様にピークはシャープであり
過ほう酸ナトリウムの最小検出限界も0.02mg/Lと低
値の検出も良好であった。
As in Example 1, the peak was sharp and the minimum detection limit of sodium perborate was as low as 0.02 mg / L.

【0037】実施例7 HRP25000ユニットを0.1M りん酸緩衝液
(0.5M NaCl含有)(pH 7.0)40ml
中に溶解し、トレシルトヨパール(東ソー(株)製)1
gを加え、4℃にて一昼夜振盪した。その後、担体粒子
を蒸留水、1MNaClで良く洗浄しHRPを固定化し
た。さらに、活性基をブロックするため、0.1Mトリ
ス塩酸緩衝液(0.5M NaCl含有)(pH 8.
0)にて25℃、1時間反応させ、同様に洗浄して固定
化HRPを調製した。
Example 7 40 ml of HRP25000 unit was added to 0.1 M phosphate buffer (containing 0.5 M NaCl) (pH 7.0).
Dissolved in Tresyl Toyopearl (manufactured by Tosoh Corporation) 1
g was added and shaken at 4 ° C. overnight. Then, the carrier particles were thoroughly washed with distilled water and 1M NaCl to immobilize HRP. Furthermore, in order to block active groups, 0.1 M Tris-HCl buffer (containing 0.5 M NaCl) (pH 8.
At 0), the mixture was reacted at 25 ° C. for 1 hour and washed in the same manner to prepare immobilized HRP.

【0038】これを実施例1と同様にカラムに充填し、
実施例1と同様な方法で過ほう酸ナトリウムを測定し
た。
The column was packed in the same manner as in Example 1,
Sodium perborate was measured in the same manner as in Example 1.

【0039】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
を表1に示した。
As in Example 1, the minimum sodium perborate concentration recognized as a peak and the A / H were determined. The results are shown in Table 1.

【0040】実施例1と比較するとピークは少しブロー
ドになっているが、過ほう酸ナトリウムの最小検出限界
は0.05mg/Lと低値の検出は良好であった。
Although the peak was slightly broader than that of Example 1, the minimum detection limit of sodium perborate was 0.05 mg / L, which was a good detection value.

【0041】比較例1 酸性の担体であるカルボキシ−セルロファイン(生化学
工業(株)製)1.0gを20mlの蒸留水にて膨潤さ
せ、塩酸1−エチル−3−(3−ジメチルアミノプロピ
ル)カルボジイミド(EDC)5mg/mlの水溶液1
0mlを加え希塩酸にてpH4.0から5.0に調整し
た。pHの変化がなくなったら吸引ろ過し、蒸留水にて
充分に洗浄する。その後直ちに、別に用意したHRP2
5000ユニットを溶解した0.1M酢酸緩衝液(pH
4.5)10mlに加え4℃で一晩撹拌反応させた。
活性基をブロックするため、10%エタノールアミン
1.5mlを加え、室温で2時間反応させた。その後、
担体粒子を蒸留水、1M NaCl、1/15M りん
酸緩衝液(pH7.2)の順で良く洗浄し固定化HRP
を調製した。
Comparative Example 1 1.0 g of an acidic carrier, carboxy-cellulofine (manufactured by Seikagaku Corporation), was swollen with 20 ml of distilled water, and 1-ethyl-3- (3-dimethylaminopropyl hydrochloride was added. ) Carbodiimide (EDC) 5 mg / ml aqueous solution 1
0 ml was added and the pH was adjusted to 4.0 to 5.0 with dilute hydrochloric acid. When there is no change in pH, suction filtration is performed, and the product is thoroughly washed with distilled water. Immediately thereafter, separately prepared HRP2
0.1 M acetate buffer solution (pH: 5000 units)
4.5) 10 ml was added and the mixture was reacted with stirring at 4 ° C. overnight.
To block the active groups, 1.5 ml of 10% ethanolamine was added, and the mixture was reacted at room temperature for 2 hours. afterwards,
Immobilize HRP by washing carrier particles thoroughly with distilled water, 1M NaCl, 1 / 15M phosphate buffer (pH 7.2) in this order.
Was prepared.

【0042】固定化HRPを実施例1と同様にカラムに
充填し、実施例1と同様な方法で過ほう酸ナトリウムを
測定した。
The immobilized HRP was packed in a column as in Example 1, and sodium perborate was measured by the same method as in Example 1.

【0043】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
を表1に示した。実施例と比較してピークがかなりブロ
ードとなり過ほう酸ナトリウムの最小検出限界も1.0
mg/Lと低値の検出が困難であった。
As in Example 1, the minimum sodium perborate concentration recognized as a peak and the A / H were determined. The results are shown in Table 1. The peak was considerably broader than that of the example, and the minimum detection limit of sodium perborate was 1.0.
It was difficult to detect as low as mg / L.

【0044】比較例2 比較例1で調製した固定化HRPを用い、DA−64の
代わりに0.2mMのDA−67を用いて実施例1と同
様の試験をした。測定波長は666nmである。
Comparative Example 2 Using the immobilized HRP prepared in Comparative Example 1 and using 0.2 mM DA-67 instead of DA-64, the same test as in Example 1 was conducted. The measurement wavelength is 666 nm.

【0045】実施例1と同様にピークとして認められた
最小過ほう酸ナトリウム濃度とA/Hをもとめた。結果
を表1に示した。
As in Example 1, the minimum sodium perborate concentration recognized as a peak and A / H were determined. The results are shown in Table 1.

【0046】実施例と比較してピークがかなりブロード
となり過ほう酸ナトリウムの最小検出限界も1.5mg/L
と低値の検出が困難であった。
The peak was considerably broader than that of the example, and the minimum detection limit of sodium perborate was 1.5 mg / L.
And low value was difficult to detect.

【0047】次に過酸化水素を生成する酸化酵素と組み
合わせた場合について示す。
Next, the case where it is combined with an oxidase which produces hydrogen peroxide is shown.

【0048】実施例8 過酸化水素を生成する酵素としてPROD、基質として
1,5−アンヒドロ−D−グルシトール(1,5−A
G)を用いた。
Example 8 PROD as an enzyme for producing hydrogen peroxide and 1,5-anhydro-D-glucitol (1,5-A as a substrate)
G) was used.

【0049】PROD3400ユニット(蛋白濃度 3
7mg/ml)を実施例7のHRP固定化方法と同様に
0.1Mりん酸緩衝液(0.5M NaCl含有)(p
H7.0)20ml中に溶解し、トレシルトヨパール
(東ソー(株)製)0.5gを加え、4℃にて一昼夜振
盪した。以下実施例7と同様に操作し、固定化PROD
を調製した。
PROD 3400 units (protein concentration 3
7 mg / ml) in the same manner as in the HRP immobilization method of Example 7, 0.1 M phosphate buffer (containing 0.5 M NaCl) (p
H7.0) was dissolved in 20 ml, Tresyl Toyopearl (manufactured by Tosoh Corporation) 0.5 g was added, and the mixture was shaken at 4 ° C. overnight. Thereafter, the same operation as in Example 7 was carried out to carry out the immobilized PROD.
Was prepared.

【0050】固定化PRODを内径4.6mm、長さ3
5mmのカラムに0.1Mりん酸緩衝液(pH 7.
5)にて充填した。PROD充填リアクターを実施例1
の装置のHRP充填リアクター(固定化HRPリアクタ
ー)の前に設置した。
The immobilized PROD has an inner diameter of 4.6 mm and a length of 3
0.1 M phosphate buffer (pH 7.
Filled in 5). Example 1 for PROD packed reactor
It was installed in front of the HRP-filled reactor (immobilized HRP reactor) of the above apparatus.

【0051】0.2mMのDA−64を含む0.1Mり
ん酸緩衝液(pH 7.5)を1ml/minの流速で
送液し、0.01〜5mg/Lの1,5−AG10μlを注
入し、生成した色素による727nmの吸光度をクロマト
グラムとして測定した。このときピークとして認められ
た最小1,5−AG濃度は0.01mg/Lであった。ま
た、ピーク形状の指標としてクロマトグラムの面積と高
さの比(A/H)をもとめたところ1,5−AG5mg/L
の濃度のピークのA/Hは12.3であり、シャープな
波形が得られ、最小検出限界も0.01mg/Lと低値の検
出も良好であった。結果は表2に示した。
A 0.1 M phosphate buffer solution (pH 7.5) containing 0.2 mM DA-64 was fed at a flow rate of 1 ml / min to obtain 10 μl of 0.01-5 mg / L 1,5-AG. The absorbance at 727 nm of the injected dye was measured as a chromatogram. The minimum 1,5-AG concentration recognized as a peak at this time was 0.01 mg / L. In addition, the area-to-height ratio (A / H) of the chromatogram was calculated as an index of the peak shape, and 1,5-AG 5 mg / L
The peak A / H of the concentration was 12.3, a sharp waveform was obtained, and the minimum detection limit was 0.01 mg / L, and the detection of the low value was good. The results are shown in Table 2.

【0052】実施例9 PROD7000ユニット(蛋白濃度 37mg/m
l)を用い、比較例1のHRP固定化方法と同様にカル
ボキシ−セルロファイン1.0gを用いて操作し、固定
化PRODを調製した。
Example 9 PROD 7000 units (protein concentration 37 mg / m
Immobilized PROD was prepared by using 1) and operating with 1.0 g of carboxy-cellulofine as in the HRP immobilization method of Comparative Example 1.

【0053】固定化PRODを実施例8と同様にカラム
に充填し、実施例8と同様な方法で1,5−AGを測定
した。
The immobilized PROD was packed in a column in the same manner as in Example 8, and 1,5-AG was measured by the same method as in Example 8.

【0054】実施例8と同様にピークとして認められた
最小1,5−AG濃度とA/Hをもとめた。結果を表2
に示した。実施例8と同様にシャ−プなピーク得られ、
最小検出限界も0.01mg/Lと低値の検出も良好であっ
た。
As in Example 8, the minimum 1,5-AG concentration recognized as a peak and A / H were determined. The results are shown in Table 2.
It was shown to. Sharp peaks were obtained as in Example 8,
The minimum detection limit was as low as 0.01 mg / L, and detection was low.

【0055】実施例10 PROD7000ユニット(蛋白濃度 37mg/m
l)を0.5Mりん酸緩衝液(pH 7.2)10ml
に溶解し、0.5gのエポキシトヨパール(東ソー
(株)製)を加え、37℃で4時間振盪撹拌する。反応
後、担体粒子を蒸留水、1M NaClで良く洗浄し
た。さらに、活性基をブロックするため、0.5Mトリ
ス塩酸緩衝液(pH 8.0)にて25℃、1時間反応
させ、同様に洗浄して固定化PRODを調製した。
Example 10 PROD7000 units (protein concentration 37 mg / m
10 ml of 0.5M phosphate buffer (pH 7.2)
, 0.5 g of Epoxy Toyopearl (manufactured by Tosoh Corporation) is added, and the mixture is shaken and stirred at 37 ° C. for 4 hours. After the reaction, the carrier particles were thoroughly washed with distilled water and 1M NaCl. Further, in order to block the active groups, 0.5 M Tris-HCl buffer (pH 8.0) was reacted at 25 ° C. for 1 hour and washed in the same manner to prepare immobilized PROD.

【0056】固定化PRODと実施例4で得られた固定
化HRPとを1:1の割合で混合し、これを内径4.6
mm、長さ70mmのカラムに充填し、実施例1の装置
の固定化HRPリアクターに換えて設置し、実施例8と
同様な方法で1,5−AGを測定した。
The immobilized PROD and the immobilized HRP obtained in Example 4 were mixed at a ratio of 1: 1 and the mixture was mixed with an inner diameter of 4.6.
The column was packed in a column having a length of 70 mm and a length of 70 mm, and was installed in place of the immobilized HRP reactor of the apparatus of Example 1, and 1,5-AG was measured by the same method as in Example 8.

【0057】実施例8と同様にピークとして認められた
最小1,5−AG濃度とA/Hをもとめた。結果を表2
に示した。実施例8と同様にシャ−プなピーク得られ、
最小検出限界も0.02mg/Lと低値の検出も良好であっ
た。
As in Example 8, the minimum 1,5-AG concentration recognized as a peak and A / H were determined. The results are shown in Table 2.
It was shown to. Sharp peaks were obtained as in Example 8,
The minimum detection limit was 0.02 mg / L, and detection of low values was good.

【0058】実施例11 血清中の1,5−AGを測定するため、ラナAG(アン
ヒドログルシトール)キット(日本化薬(株)製)の前
処理カラムを用いて、その操作法に従って前処理した。
即ち、該キット前処理カラムの充填液を排液し、蒸留水
1mlで洗浄しコンディショニングした。このカラムに
標準1,5−AG(0μg/ml、5μg/ml及び5
0μg/ml)及びヒト血清No.1〜10の50μl
を入れ、蒸留水0.5mlで2回溶出した。実施例8の
装置を用い、0.01〜5mg/Lの1,5−AG10μl
の代りに、上記カラムからの溶出液20μl を注入し、
その他は実施例8と同様にして測定を行った。標準1,
5−AGのピーク面積値から検量線を作成し、各血清の
面積値から1,5−AG濃度を算出した。その結果とラ
ナAG(アンヒドログルシトール)の測定値を表3に示
した。
Example 11 To measure 1,5-AG in serum, a pretreatment column of Rana AG (anhydroglucitol) kit (manufactured by Nippon Kayaku Co., Ltd.) was used according to the operating method. Pretreated.
That is, the filling solution of the kit pretreatment column was drained, washed with 1 ml of distilled water and conditioned. Standard 1,5-AG (0 μg / ml, 5 μg / ml and 5
0 μg / ml) and human serum No. 50 μl of 1-10
Was added and eluted with 0.5 ml of distilled water twice. Using the apparatus of Example 8, 0.01-5 mg / L of 1,5-AG 10 μl
Inject 20 μl of the eluate from the above column instead of
Others were measured in the same manner as in Example 8. Standard 1,
A calibration curve was prepared from the peak area value of 5-AG, and the 1,5-AG concentration was calculated from the area value of each serum. The results and the measured values of Lana AG (anhydroglucitol) are shown in Table 3.

【0059】実施例12 実施例11において、実施例8の装置の代りに実施例9
の装置を用い、その他は実施例11と同様にして測定を
行った。結果を表3に示した。
Example 12 In Example 11, instead of the apparatus of Example 8, Example 9 was used.
The measurement was performed in the same manner as in Example 11 except for using the above apparatus. The results are shown in Table 3.

【0060】実施例13 実施例11において、実施例8の装置の代りに実施例1
0の装置を用い、その他は実施例11と同様にして測定
を行った。結果を表3に示した。
Example 13 In Example 11, Example 1 was used instead of the apparatus of Example 8.
The measurement was performed in the same manner as in Example 11 except that the apparatus of No. 0 was used. The results are shown in Table 3.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【発明の効果】本発明による固定化酵素を用いることに
より、高感度に体液中の微量成分を測定することが可能
となる。
EFFECTS OF THE INVENTION By using the immobilized enzyme according to the present invention, it becomes possible to measure trace components in body fluid with high sensitivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚越 由美子 群馬県高崎市上並榎町901 (72)発明者 梅香家 佳彦 神奈川県藤沢市湘南台4丁目26−5− 205 (72)発明者 古屋敷 佳久 神奈川県藤沢市湘南台4丁目26−5− 304 (72)発明者 北村 隆司 山口県熊毛郡熊毛町西勝間原1100−179 (56)参考文献 特開 昭57−2700(JP,A) Anal. Chem. Act a.,1992年 9月,Vol. 266, No. 2,p.309−315 Mikrochim Acta,1985 年,Vol. 2,No. 3,p. 211−221 (58)調査した分野(Int.Cl.7,DB名) C12Q 1/00 - 1/66 C12N 9/08 C12N 11/02 BIOSIS(DIALOG) WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yumiko Tsukagoshi 901 Kaminami-enokicho, Takasaki-shi, Gunma Prefecture (72) Inventor Yoshihiko Umeka Yoshihiko, Shonandai, Fujisawa, Kanagawa Prefecture 26-205 (72) Inventor Yoshihisa Furuyashi Kanagawa 4-26-5-304 Shonandai, Fujisawa City, Japan (72) Inventor Takashi Kitamura 1100-179 (56) Nishikatsumahara, Kumage-machi, Kumage-gun, Yamaguchi Reference JP-A-57-2700 (JP, A) Anal. Chem. Act a. , September 1992, Vol. 266, No. 2, p. 309-315 Mikrochim Acta, 1985, Vol. 2, No. 3, p. 211-221 (58) Fields investigated (Int. Cl. 7 , DB name) C12Q 1/00-1/66 C12N 9/08 C12N 11/02 BIOSIS (DIALOG) WPI (DIALOG)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固定化ペルオキシダーゼを充填したバイ
オリアクター及び酸化反応により塩基性(カチオン性)
の増加するロイコ型色素を用いて体液中の微量成分を検
出する際に用いるための、官能基としてアミノ基または
エポキシ基を有する塩基性または中性のペルオキシダー
ゼ固定化用担体。
1. A bioreactor filled with immobilized peroxidase and a basic (cationic) substance by an oxidation reaction.
A carrier for immobilizing a basic or neutral peroxidase having an amino group or an epoxy group as a functional group, which is used when detecting a trace component in a body fluid using a leuco dye of increasing number.
【請求項2】 請求項1に記載の担体に固定化したバイ
オリアクター用固定化ペルオキシダーゼ。
2. An immobilized peroxidase for a bioreactor, which is immobilized on the carrier according to claim 1.
JP34844592A 1992-12-28 1992-12-28 Enzyme immobilization carrier and immobilized enzyme Expired - Fee Related JP3464234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34844592A JP3464234B2 (en) 1992-12-28 1992-12-28 Enzyme immobilization carrier and immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34844592A JP3464234B2 (en) 1992-12-28 1992-12-28 Enzyme immobilization carrier and immobilized enzyme

Publications (2)

Publication Number Publication Date
JPH06197794A JPH06197794A (en) 1994-07-19
JP3464234B2 true JP3464234B2 (en) 2003-11-05

Family

ID=18397056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34844592A Expired - Fee Related JP3464234B2 (en) 1992-12-28 1992-12-28 Enzyme immobilization carrier and immobilized enzyme

Country Status (1)

Country Link
JP (1) JP3464234B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003231415A1 (en) 2002-05-21 2003-12-02 Arkray, Inc. Method of preventing wrong color formation of n-(carboxymethylaminocarbonyl)-4,4'-bis(dimethylamino)diphenylamine sodium, reagent solution for the method, and measurement method employing the method
KR101943673B1 (en) 2011-07-29 2019-01-29 교와 메덱스 가부시키가이샤 Sphingomyelin measurement method and measurement kit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Anal. Chem. Acta.,1992年 9月,Vol. 266, No. 2,p.309−315
Mikrochim Acta,1985年,Vol. 2,No. 3,p.211−221

Also Published As

Publication number Publication date
JPH06197794A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
Bı́lková et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly (HEMA-co-EDMA) and magnetic poly (HEMA-co-EDMA) microspheres
Nilsson et al. p‐Toluenesulfonyl chloride as an activating agent of agarose for the preparation of immobilized affinity ligands and proteins
Rueda et al. Immobilization of lipases on heterofunctional octyl–glyoxyl agarose supports: improved stability and prevention of the enzyme desorption
JPS63294799A (en) Method for simultaneously measuring glucose and 1,5-anhydroglycitol
Fernández-Lafuente et al. Additional stabilization of penicillin G acylase-agarose derivatives by controlled chemical modification with formaldehyde
Azevedo et al. Operational stability of immobilised horseradish peroxidase in mini-packed bed bioreactors
EP0153763B1 (en) Affinity chromatography matrix with built-in reaction indicator
Sachdeva et al. A new immobilization and sensing platform for nitrate quantification
Knežević-Jugović et al. The immobilization of enzyme on Eupergit® supports by covalent attachment
Fehske et al. Direct demonstration of the highly reactive tyrosine residue of human serum albumin located in fragment 299–585
JP3464234B2 (en) Enzyme immobilization carrier and immobilized enzyme
JP2548240B2 (en) Immobilized lignin complex and its use
EP0479897B1 (en) Enzymatically binding bioactive materials to proteins
JP4622836B2 (en) Analysis equipment
Hubert et al. Polymer ligands for mild hydrophobic interaction chromatography—principles, achievements and future trends
Knežević-Jugović et al. Covalent immobilization of enzymes on Eupergit® supports: Effect of the immobilization protocol
JP2524406B2 (en) Pyrogen quantification method
US10508297B2 (en) Method for immobilization of glucuronidase enzymes for the detection of products derived from glucuronide compounds
TVORYNSKA et al. A comparative study of covalent glucose oxidase and laccase immobilization techniques at powdered supports for biosensors fabrication
JP2648361B2 (en) Permselective membrane and electrode using the same
JP3186911B2 (en) Determination of trace components
Lobmaier et al. Photostructurized electrochemical biosensors for biorector control and measurement in body fluids
US7575908B1 (en) Immobilization method for producing active α1-acid glycoprotein
JPH06197792A (en) Bioreactor and detection of minor component using the reactor
JPH0229318B2 (en) SEITAITAIEKISEIBUNNOSOKUTEIHO

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees