JP3464039B2 - Optical device - Google Patents
Optical deviceInfo
- Publication number
- JP3464039B2 JP3464039B2 JP12617094A JP12617094A JP3464039B2 JP 3464039 B2 JP3464039 B2 JP 3464039B2 JP 12617094 A JP12617094 A JP 12617094A JP 12617094 A JP12617094 A JP 12617094A JP 3464039 B2 JP3464039 B2 JP 3464039B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- diffraction grating
- waveguide
- optical signal
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は光装置、特に光信号の
分配に特徴を有する光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device, and more particularly to an optical device characterized by distribution of optical signals.
【0002】[0002]
【従来の技術】従来より、1チップ・マイクロコンピュ
ータ(以下、1チップマイコン)を複数用いて、論理演
算を並列処理する場合、これら1チップマイコンの動作
を同期させるために、各1チップマイコンにクロック用
の電気信号が入力される。しかし並列処理に用いる1チ
ップマイコンの個数が増加すると、クロック用の電気信
号を供給するための配線構造が複雑となり、或は、配線
相互でのクロストークが増大するという問題点がある。
そこで、電気信号に代えて光信号をクロック信号として
用いるようにした装置が提案されている。2. Description of the Related Art Conventionally, when a plurality of 1-chip microcomputers (hereinafter referred to as 1-chip microcomputers) are used to process a logical operation in parallel, each 1-chip microcomputer has to be synchronized in order to synchronize the operation of these 1-chip microcomputers. An electric signal for a clock is input. However, when the number of 1-chip microcomputers used for parallel processing increases, the wiring structure for supplying the clock electrical signal becomes complicated, or crosstalk between the wirings increases.
Therefore, an apparatus has been proposed in which an optical signal is used as a clock signal instead of an electric signal.
【0003】この種の装置として、例えば、文献:PROC
EEDINGS OF THE IEEE,VOL.72,NO.7,JULY 1984 pp.850〜
866 の第860頁図9に開示されているものがある。こ
の従来装置では、複数の1チップマイコンをアレイ状に
配列し、これら1チップマイコンと光信号源との間に、
ホログラム板を挿入する。各1チップマイコンは受光素
子を有する。光信号源とホログラム板との間には自由空
間を介在させ、光信号源から出射させたクロック用の光
信号を、円錐状に広げた後にホログラム板に入射させ
る。ホログラム板は、円錐状に広がった光信号を、並列
処理を行なう各1チップマイコン毎に空間的に分割し、
さらに分割した光信号を1チップマイコンの受光素子上
に集光させる。As an apparatus of this kind, for example, a document: PROC
EEDINGS OF THE IEEE, VOL.72, NO.7, JULY 1984 pp.850〜
866, page 860, which is disclosed in FIG. In this conventional device, a plurality of 1-chip microcomputers are arranged in an array, and between the 1-chip microcomputers and the optical signal source,
Insert the hologram plate. Each one-chip microcomputer has a light receiving element. A free space is interposed between the optical signal source and the hologram plate, and the optical signal for the clock emitted from the optical signal source is spread in a conical shape and then incident on the hologram plate. The hologram plate spatially divides an optical signal spread in a conical shape for each one-chip microcomputer that performs parallel processing,
The divided optical signal is condensed on the light receiving element of the one-chip microcomputer.
【0004】[0004]
【発明が解決しようとする課題】しかしながら上述した
従来装置では、光信号を円錐状に広げるために、光信号
源と光分配手段としてのホログラム板との離間距離を長
くする必要があり、これが省スペース化の妨げとなって
いた。However, in the above-mentioned conventional apparatus, in order to spread the optical signal in a conical shape, it is necessary to increase the distance between the optical signal source and the hologram plate as the light distributing means, which is saved. It was a hindrance to space.
【0005】この発明の目的は、上述した従来の問題点
を解決し、従来よりも省スペース化を図れる光装置を提
供することにある。An object of the present invention is to solve the above-mentioned conventional problems and to provide an optical device which can save space more than ever before.
【0006】[0006]
【課題を解決するための手段】この目的を達成するた
め、この発明の光装置は、平面状の光分配導波路と、光
分配導波路に設けられ、光分配導波路の光導波方向と交
差する第一の方向から入射してきた光信号を、光分配導
波路の光導波方向へ回折させて光分配導波路に結合させ
る第一回折格子と、光分配導波路に設けられ、光分配導
波路を導波してきた光信号を、光分配導波路の光導波方
向と交差する第二の方向へ回折させて光分配導波路から
出射させる第二回折格子とを備え、第一回折格子は、第
一の方向から見て放射状に光信号を回折させる回折格子
であって、この放射状に回折させた光信号の導波領域
に、複数の第二回折格子を離散配置して成ることを特徴
とする。In order to achieve this object, an optical device of the present invention is provided with a planar light distribution waveguide and a light distribution waveguide, which intersects with the light guiding direction of the light distribution waveguide. A first diffraction grating that diffracts an optical signal that is incident from a first direction in the optical distribution direction of the optical distribution waveguide and couples the optical signal to the optical distribution waveguide; and the optical distribution waveguide that is provided in the optical distribution waveguide. And a second diffraction grating for diffracting the optical signal guided by the light in the second direction intersecting the optical waveguide direction of the optical distribution waveguide and for emitting the light from the optical distribution waveguide. A diffraction grating for diffracting an optical signal radially when viewed from one direction, wherein a plurality of second diffraction gratings are discretely arranged in a waveguide region of the radially diffracted optical signal. .
【0007】[0007]
【作用】このような構成によれば、第一回折格子は、当
該回折格子に対応する光部品からの光信号を、光分配導
波路の光導波方向と交差する第一の方向から入射し、こ
の光信号を、光分配導波路の光導波方向へと回折させて
光分配導波路に結合させる。しかも第一回折格子は、第
一の方向から見て放射状に、光信号を回折させる。According to this structure, the first diffraction grating allows the optical signal from the optical component corresponding to the diffraction grating to enter from the first direction intersecting the optical waveguide direction of the optical distribution waveguide, This optical signal is diffracted in the optical waveguide direction of the optical distribution waveguide and is coupled to the optical distribution waveguide. Moreover, the first diffraction grating diffracts the optical signal radially when viewed from the first direction.
【0008】従って光信号は、第一の回折格子から放射
状に広がりながら、光分配導波路内を導波する。この結
果、光分配導波路内における光信号の導波領域は、放射
状に広がる平面状の領域となる。このような光信号の導
波領域は、第一回折格子と光部品との離間距離を短くし
ても形成できる。Therefore, the optical signal propagates in the optical distribution waveguide while radiating from the first diffraction grating. As a result, the waveguide region of the optical signal in the optical distribution waveguide becomes a planar region that spreads radially. Such an optical signal guiding region can be formed even if the distance between the first diffraction grating and the optical component is shortened.
【0009】さらにこの放射状の光信号導波領域に、複
数の第二回折格子を離散配置するので、光信号を、これ
ら第二回折格子にそれぞれ入射させることができる。従
って光信号を各第二回折格子に対応させた光部品に分配
することができる。Further, since the plurality of second diffraction gratings are discretely arranged in the radial optical signal waveguide region, the optical signal can be made incident on each of these second diffraction gratings. Therefore, the optical signal can be distributed to the optical components corresponding to the respective second diffraction gratings.
【0010】また光路可逆の原理により、第二回折格子
に対応する光部品からの光信号を、第一回折格子に対応
する光部品に入射させることもできる。Further, the optical signal from the optical component corresponding to the second diffraction grating can be made incident on the optical component corresponding to the first diffraction grating by the principle of reversing the optical path.
【0011】[0011]
【実施例】以下、図面を参照し、発明の実施例につき説
明する。尚、図面は発明が理解できる程度に概略的に示
してあるにすぎず、従って発明を図示例に限定するもの
ではない。Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the drawings are merely schematic representations so that the invention can be understood, and therefore the invention is not limited to the illustrated examples.
【0012】図1はこの発明の第一実施例の全体構成を
概略的に示す斜視図である。図2は第一実施例の要部構
成を概略的に示す断面図であって、図1のII−II線に沿
って取った要部断面を拡大して示す。FIG. 1 is a perspective view schematically showing the overall construction of the first embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the structure of the main part of the first embodiment, showing an enlarged cross-section of the main part taken along the line II-II in FIG.
【0013】これら図にも示すようにこの実施例の光装
置10は、平面状の光分配導波路12と、光分配導波路
12に設けられ、光分配導波路12の光導波方向と交差
する第一の方向から入射してきた光信号を、光分配導波
路12の光導波方向へ回折させて光分配導波路12に結
合させる第一回折格子14と、光分配導波路12に設け
られ、光分配導波路12を導波してきた光信号を、光分
配導波路12の光導波方向と交差する第二の方向へ回折
させて光分配導波路12から出射させる第二回折格子1
6とを備える。そして第一回折格子14は、第一の方向
から見て放射状に光信号を回折させる回折格子であっ
て、この放射状に回折させた光信号の導波領域に、複数
の第二回折格子16を離散配置する。As shown in these figures, the optical device 10 of this embodiment is provided with a planar light distribution waveguide 12 and the light distribution waveguide 12 and intersects the light guiding direction of the light distribution waveguide 12. A first diffraction grating 14 that diffracts an optical signal that has entered from a first direction in the optical waveguide direction of the optical distribution waveguide 12 and couples the optical signal to the optical distribution waveguide 12; A second diffraction grating 1 which diffracts an optical signal guided through the distribution waveguide 12 in a second direction intersecting with the optical waveguide direction of the optical distribution waveguide 12 and emits it from the optical distribution waveguide 12.
6 and 6. The first diffraction grating 14 is a diffraction grating that diffracts the optical signal radially when viewed from the first direction, and a plurality of second diffraction gratings 16 are provided in the waveguide region of the radially diffracted optical signal. It is placed discretely.
【0014】この実施例では、光分配導波路12は光信
号波長λに対して導波モードを有する平面状のスラブ導
波路又はプレーナ型導波路であって、この光分配導波路
12を、半絶縁性GaAs基板18の一方の基板面18
aに設ける。光分配導波路12を基板面18aに沿って
平面状に延在させ、従って光分配導波路12の光導波方
向を、基板面18aにほぼ沿う2次元方向とすることが
できる。In this embodiment, the light distribution waveguide 12 is a planar slab waveguide or a planar type waveguide having a waveguide mode with respect to the optical signal wavelength λ. One surface 18 of the insulating GaAs substrate 18
It is provided in a. The light distribution waveguide 12 extends in a plane along the substrate surface 18a, so that the light guiding direction of the light distribution waveguide 12 can be a two-dimensional direction substantially along the substrate surface 18a.
【0015】導波路構造は多層構造及び一層構造のいず
れでも良いが、ここでは、基板面18a上に順次に設け
たAl0.3 Ga0.7 As第一クラッド層12a、GaA
s光ガイド層12b及びAl0.3 Ga0.7 As第二クラ
ッド層12cにより、3層構造の光分配導波路12を構
成する。光ガイド層12bの厚さを0.2μm程度と
し、クラッド層12a及び12cの厚さを0.5〜1.
0μm程度とする。The waveguide structure may be either a multi-layer structure or a single-layer structure, but here, the Al 0.3 Ga 0.7 As first cladding layer 12a and GaA sequentially provided on the substrate surface 18a are used.
The s light guide layer 12b and the Al 0.3 Ga 0.7 As second cladding layer 12c constitute a light distribution waveguide 12 having a three-layer structure. The thickness of the light guide layer 12b is about 0.2 μm, and the thickness of the cladding layers 12a and 12c is 0.5 to 1.
It is about 0 μm.
【0016】また基板面18aの法線方向から見た光分
配導波路12の形状を、2次元的な広がり(2次元方向
の広がり)を有する任意好適な形状とする。この光分配
導波路12の2次元的な広がりは、第一回折格子14及
び第二回折格子16を2次元配列するのに充分な特に複
数行複数列に配列するのに充分な、広さを有する。ここ
では、光分配導波路12を基板面18a全体にわたって
設け、基板面18aの法線方向から見た光分配導波路1
2の形状を矩形状としている。Further, the shape of the light distribution waveguide 12 as viewed from the direction normal to the substrate surface 18a is any suitable shape having a two-dimensional spread (spread in the two-dimensional direction). The two-dimensional expansion of the light distribution waveguide 12 has a width sufficient for arranging the first diffraction grating 14 and the second diffraction grating 16 in a two-dimensional manner, particularly for arranging in a plurality of rows and a plurality of columns. Have. Here, the light distribution waveguide 12 is provided over the entire substrate surface 18a, and the light distribution waveguide 1 viewed from the normal direction of the substrate surface 18a
The shape of 2 is rectangular.
【0017】そして第一回折格子14及び第二回折格子
16を、2次元方向にアレイ状に配列して、光分配導波
路12に設ける。ここでは1個の第一回折格子14と8
個の第二回折格子16とを、3行3列に配列する。The first diffraction grating 14 and the second diffraction grating 16 are arranged in an array in the two-dimensional direction and provided on the light distribution waveguide 12. Here, one first diffraction grating 14 and 8
The second diffraction gratings 16 are arranged in 3 rows and 3 columns.
【0018】第一回折格子14は、光分配導波路12の
光導波方向に沿って交互に繰り返し設けた凹部14a及
び凸部14bから成る。この第一回折格子14を光信号
波長λに対する2次の回折格子とし、第一の方向すなわ
ち第一回折格子14への光信号入射方向を、光分配導波
路12を設けた基板18の基板面18aの法線方向とす
る。従って基板面18aの法線方向から第一回折格子1
4へ入射した光信号を、光分配導波路12の光導波方向
ここでは基板面18aにほぼ沿う方向へ回折させること
ができるので、光信号を光分配導波路12に結合させる
ことができる。例えば、光信号波長λを0.98μmと
しかつ光分配導波路12の実効屈折率nを3.3636
とした場合、第一回折格子14の周期Λを、Λ=λ/n
=約291.35nmとすれば、光信号波長λに対し2
次の第一回折格子14を構成できる。The first diffraction grating 14 comprises concave portions 14a and convex portions 14b which are alternately and repeatedly provided along the optical waveguide direction of the light distribution waveguide 12. The first diffraction grating 14 is a second-order diffraction grating for the optical signal wavelength λ, and the first direction, that is, the optical signal incident direction to the first diffraction grating 14 is the substrate surface of the substrate 18 provided with the optical distribution waveguide 12. The normal direction is 18a. Therefore, from the direction normal to the substrate surface 18a, the first diffraction grating 1
4 can be diffracted in the optical waveguide direction of the optical distribution waveguide 12, here in the direction substantially along the substrate surface 18a, so that the optical signal can be coupled to the optical distribution waveguide 12. For example, the optical signal wavelength λ is 0.98 μm, and the effective refractive index n of the optical distribution waveguide 12 is 3.3636.
, The period Λ of the first diffraction grating 14 is Λ = λ / n
= About 291.35 nm, 2 for the optical signal wavelength λ
The following first diffraction grating 14 can be constructed.
【0019】第一回折格子14の配設箇所は、光信号を
回折させて光分配導波路12に結合させることのできる
任意好適な箇所として良いが、ここでは第二クラッド層
12cの表面に第一回折格子14を設ける。The location of the first diffraction grating 14 may be any suitable location where the optical signal can be diffracted and coupled to the light distribution waveguide 12, but here, it is provided on the surface of the second cladding layer 12c. One diffraction grating 14 is provided.
【0020】また基板面18aの法線方向から見た凹部
14a及び凸部14bの形状を円形とし、これら凹部1
4a及び凸部14bを、基板面18aの法線方向から見
て軸Oを中心とする同心円状に配列する。軸Oは、光分
配導波路12と交差し基板面18aの法線に平行な軸で
ある。これら同心円状に交互に配列した凹部14a及び
凸部14bの半径は、配列順次に異なる。このように円
形状の凹部14a及び凸部14bを同心円状に配列する
ことにより、第一回折格子14に入射した光信号を軸O
のまわりに放射状に回折させることができる。同心円状
の第一回折格子14の形成方法としては、例えば文献:
Applied Physics Letters 60(16),20 April 1992 pp.19
21〜1993の第1991頁左欄下から1〜7行に開示され
ているように、電子ビーム描画法及びリアクティブイオ
ンエッチング法を利用できる。Further, the concave portions 14a and the convex portions 14b as viewed from the direction normal to the substrate surface 18a have a circular shape, and the concave portions 1
4a and the convex portion 14b are arranged in a concentric pattern centered on the axis O when viewed from the normal direction of the substrate surface 18a. The axis O is an axis that intersects the light distribution waveguide 12 and is parallel to the normal line of the substrate surface 18a. The radii of the concave portions 14a and the convex portions 14b, which are arranged concentrically alternately, are different in the arrangement order. By arranging the circular concave portions 14a and convex portions 14b concentrically in this manner, the optical signal incident on the first diffraction grating 14 is reflected by the axis O.
Can be radially diffracted around. As a method of forming the concentric circular first diffraction grating 14, for example, the literature:
Applied Physics Letters 60 (16), 20 April 1992 pp.19
The electron beam writing method and the reactive ion etching method can be used as disclosed in pages 1991, 21 to 1993, bottom left column, lines 1 to 7.
【0021】第二回折格子16は、光分配導波路12の
光導波方向に沿って交互に繰り返し設けた凹部16a及
び凸部16bから成る。この第二回折格子16を光信号
波長λに対する2次の回折格子とし、第二の方向すなわ
ち第二回折格子16からの光信号出射方向を、光分配導
波路12を設けた基板18の基板面18aの法線方向と
する。従って光分配導波路12を導波して第二回折格子
16へ入射した光信号を、基板面18aの法線方向へ回
折させることができるので、光信号を光分配導波路12
から出射させることができる。例えば、光信号波長λを
0.98μmとしかつ光分配導波路12の実効屈折率n
を3.3636とした場合、第二回折格子16の周期Λ
を、Λ=λ/n=約291.35nmとすれば、光信号
波長λに対し2次の第二回折格子16を構成できる。こ
こでは第一回折格子14及び第二回折格子16の周期Λ
を等しくしている。The second diffraction grating 16 is composed of concave portions 16a and convex portions 16b which are alternately and repeatedly provided along the optical waveguide direction of the light distribution waveguide 12. The second diffraction grating 16 is a second-order diffraction grating with respect to the optical signal wavelength λ, and the second direction, that is, the optical signal emission direction from the second diffraction grating 16 is the substrate surface of the substrate 18 provided with the optical distribution waveguide 12. The normal direction is 18a. Therefore, the optical signal guided through the optical distribution waveguide 12 and incident on the second diffraction grating 16 can be diffracted in the normal direction of the substrate surface 18a, so that the optical signal can be transmitted.
Can be emitted from. For example, the optical signal wavelength λ is 0.98 μm, and the effective refractive index n of the optical distribution waveguide 12 is
Is 3.3636, the period Λ of the second diffraction grating 16 is
If Λ = λ / n = about 291.35 nm, the second-order second diffraction grating 16 can be configured for the optical signal wavelength λ. Here, the period Λ of the first diffraction grating 14 and the second diffraction grating 16
Are equal.
【0022】第二回折格子16の配設箇所は、光信号を
回折させて光分配導波路12から出射させることのでき
る任意好適な箇所として良いが、ここでは第二クラッド
層12cの表面に第二回折格子16を設ける。The location of the second diffraction grating 16 may be any suitable location where the optical signal can be diffracted and emitted from the light distribution waveguide 12, but here, it is provided on the surface of the second cladding layer 12c. Two diffraction gratings 16 are provided.
【0023】また基板面18aの法線方向から見た凹部
16a及び凸部16bの形状を円弧とし、これら凹部1
6a及び凸部16bを基板面18aの法線方向から見て
軸Oを中心とする同心円状に配列する。従ってこれら凹
部16a及び凸部16bの形状は、基板面18aの法線
方向から見て、軸Oを中心とする同心円の一部を切り取
って得た円弧すなわち軸Oを曲率中心として同心円状に
配列した円弧である。このような第二回折格子16の形
成方法としては、第一回折格子14と同様、例えば電子
ビーム描画法及びリアクティブイオンエッチング法を利
用できる。Further, the shapes of the concave portions 16a and the convex portions 16b as viewed from the direction normal to the substrate surface 18a are circular arcs, and these concave portions 1
6a and the convex portion 16b are arranged in a concentric pattern with the axis O as the center when viewed from the direction normal to the substrate surface 18a. Therefore, the shapes of the concave portions 16a and the convex portions 16b are arranged in a concentric pattern with an arc O as a center of curvature obtained by cutting a part of a concentric circle centered on the axis O when viewed from the normal direction of the substrate surface 18a. It is a circular arc. As a method of forming such a second diffraction grating 16, as in the case of the first diffraction grating 14, for example, an electron beam drawing method and a reactive ion etching method can be used.
【0024】さらに、この実施例の光装置10は、光信
号を第一回折格子14へ出射する第一光部品20と、複
数の第二回折格子16から光信号をそれぞれ入射し、か
つそれぞれの第二回折格子16に対応する位置に配置さ
れた第二光部品22とを備える。Furthermore, the optical device 10 of this embodiment includes a first optical component 20 for emitting a light signal to the first diffraction grating 14, double
A number of second diffraction gratings 16 respectively enter optical signals,
Are arranged at positions corresponding to the respective second diffraction gratings 16.
The second optical component 22 is provided.
【0025】この実施例では、第一光部品20及び複数
の第二光部品22を、光分配導波路12を設けた基板1
8の他方の基板面18b上に設ける。他方の基板面18
bと一方の基板面18aとはほぼ平行である。そしてこ
れら第一光部品20及び第二光部品22を、2次元方向
にアレイ状に配列し、第一光部品20を第一光回折格子
14に対応する位置に及び第二光部品22を第二光回折
格子16に対応する位置に配置する。ここでは第一光部
品20及び第一光回折格子14の配設個数を同数とし、
第二光部品22及び第二光回折格子16の配設個数を同
数とする。In this embodiment, the first optical component 20 and the plurality of second optical components 22 are provided on the substrate 1 provided with the optical distribution waveguide 12.
8 is provided on the other substrate surface 18b. The other board surface 18
b and one substrate surface 18a are substantially parallel to each other. Then, the first optical component 20 and the second optical component 22 are arranged in an array in a two-dimensional direction, and the first optical component 20 is arranged at a position corresponding to the first optical diffraction grating 14 and the second optical component 22 is arranged in a second position. It is arranged at a position corresponding to the two-light diffraction grating 16. Here, the number of the first optical components 20 and the number of the first optical diffraction gratings 14 provided are the same,
The second optical component 22 and the second optical diffraction grating 16 are provided in the same number.
【0026】また他方の基板面18b上に設ける第一光
部品20及び複数の第二光部品22を、それぞれ個別に
分割されたチップ部品とする。The first optical component 20 and the plurality of second optical components 22 provided on the other substrate surface 18b are individually divided chip components.
【0027】第一光部品20は、電気信号を発生する電
気回路20aと電気回路20aからの電気信号に基づい
て光信号を出射する発光素子20bとをモノリシックに
集積化したOEIC(光電子集積回路)である。図中、
第一光部品20の点を付していない部分を電気回路20
aとし、点を付した部分を発光素子20bとしている。
例えば、電気回路20aをGaAsIC及び発光素子2
0bをInGaAs系面発光型レーザとする。InGa
As系面発光型レーザとしては、例えば文献:IEEE JOU
RNAL OF QUANTUM ELECTRONICS,VOL.27,NO.6,JUNE 1991
pp.1359 〜1367の第1360頁図1に開示されているも
のがある。The first optical component 20 is an OEIC (optical electronic integrated circuit) in which an electric circuit 20a for generating an electric signal and a light emitting element 20b for emitting an optical signal based on the electric signal from the electric circuit 20a are monolithically integrated. Is. In the figure,
The portion of the first optical component 20 not marked with dots is the electric circuit 20.
The light emitting element 20b is indicated by a and the dotted portion is indicated by a.
For example, the electric circuit 20a may be a GaAs IC and a light emitting element 2
0b is an InGaAs surface emitting laser. InGa
As an As-based surface-emitting laser, for example, a document: IEEE JOU
RNAL OF QUANTUM ELECTRONICS, VOL.27, NO.6, JUNE 1991
pp.1359-1367, page 1360, FIG.
【0028】そして発光素子20bの光出射面20b1
から出射された光信号を第一回折格子14へ入射させる
ように、光出射面20b1を第一回折格子14に対し位
置決めする。この際、光出射面20b1から出射した光
信号がほぼ軸Oを中心軸とする方向から第一回折格子1
4に入射するように、位置決めするのが好ましい。The light emitting surface 20b1 of the light emitting element 20b
The light emitting surface 20b1 is positioned with respect to the first diffraction grating 14 so that the optical signal emitted from At this time, the optical signal emitted from the light emitting surface 20b1 is moved from the direction in which the axis O is substantially the center axis from the first diffraction grating 1
Positioning is preferably such that it is incident at 4.
【0029】基板面18aの法線方向から見て、第一回
折格子14の面積を、光出射面20b1の面積の数倍程
度としておけば、光出射面20b1から出射した光信号
の光分配導波路12への結合ロスを少なくできる。If the area of the first diffraction grating 14 is set to be several times as large as the area of the light emitting surface 20b1 when viewed from the direction normal to the substrate surface 18a, the light distribution and guiding of the optical signal emitted from the light emitting surface 20b1 is performed. The coupling loss to the waveguide 12 can be reduced.
【0030】第二光部品22は、光信号を電気信号に変
換する受光素子22aと受光素子22aからの電気信号
に基づいて動作する電気回路22bとをモノリシックに
集積化したOEICである。図中、第二光部品22の点
を付した部分を受光素子22aとし、点を付していない
部分を電気回路22bとしている。例えば、受光素子2
2aをInGaAs系PINフォトダイオード及び電気
回路22bをGaAsICとする。InGaAs系PI
Nフォトダイオードとしては、例えば文献:米津宏雄著
「光通信素子光学」 工学図書(株) 1984年発
行の第372頁図6.7に開示されている構造において
GaAs基板を用いるようにしたものを、用いることが
できる。The second optical component 22 is an OEIC in which a light receiving element 22a for converting an optical signal into an electric signal and an electric circuit 22b which operates based on the electric signal from the light receiving element 22a are monolithically integrated. In the figure, the dotted portion of the second optical component 22 is the light receiving element 22a, and the undotted portion is the electric circuit 22b. For example, the light receiving element 2
2a is an InGaAs PIN photodiode and the electric circuit 22b is a GaAs IC. InGaAs PI
As the N photodiode, for example, the one in which a GaAs substrate is used in the structure disclosed in FIG. 6.7, page 372, published in 1984 by Hiroo Yonezu, "Optical Communication Device Optics", Engineering Book Co., Ltd. , Can be used.
【0031】そして第二回折格子16からの光信号を受
光素子22aの光入射面22a1へ入射させるように、
光入射面22a1を第二回折格子16に対して位置決め
する。Then, the optical signal from the second diffraction grating 16 is made incident on the light incident surface 22a1 of the light receiving element 22a,
The light incident surface 22a1 is positioned with respect to the second diffraction grating 16.
【0032】基板面18aの法線方向から見て、第二回
折格子16の面積を、光入射面22a1の面積と同程度
としておけば、受光素子22aを動作させるのに充分な
光量の光信号を光入射面22a1に入射させることがで
きる。When the area of the second diffraction grating 16 is set to be approximately the same as the area of the light incident surface 22a1 when viewed from the direction normal to the substrate surface 18a, an optical signal of a sufficient light amount for operating the light receiving element 22a. Can be incident on the light incident surface 22a1.
【0033】発光素子20bと第一回折格子14との間
には基板18が介在し、従って発光素子20bから出射
された信号光は、基板18を通過して、第一回折格子1
4に入射する。同様に、受光素子22と第二回折格子1
6との間には基板18が介在し、従って第二回折格子1
6で回折された光信号は、基板18を通過して、受光素
子22aに入射する。The substrate 18 is interposed between the light emitting element 20b and the first diffraction grating 14, and therefore the signal light emitted from the light emitting element 20b passes through the substrate 18 and the first diffraction grating 1
It is incident on 4. Similarly, the light receiving element 22 and the second diffraction grating 1
The substrate 18 is interposed between the second diffraction grating 1 and the second diffraction grating 1.
The optical signal diffracted by 6 passes through the substrate 18 and enters the light receiving element 22a.
【0034】従って光信号の伝搬ロスを低減するため、
光信号波長λを基板18に対して透明な波長とするのが
好ましい。このため発光素子20bを形成する化合物半
導体のエネルギーギャップを、基板18を形成する化合
物半導体のエネルギーギャップよりも小さくする。例え
ば、発光素子20bの発光波長λを0.98μmとする
ように活性層のエネルギーギャップを定めれば、発光波
長λすなわち光信号波長λに対する半絶縁性GaAs基
板18の吸収係数を著しく減少させることができ、従っ
て光信号波長λを基板18に対して透明な波長とするこ
とができる。Therefore, in order to reduce the propagation loss of the optical signal,
The optical signal wavelength λ is preferably transparent to the substrate 18. Therefore, the energy gap of the compound semiconductor forming the light emitting element 20b is made smaller than the energy gap of the compound semiconductor forming the substrate 18. For example, if the energy gap of the active layer is determined so that the emission wavelength λ of the light emitting element 20b is 0.98 μm, the absorption coefficient of the semi-insulating GaAs substrate 18 for the emission wavelength λ, that is, the optical signal wavelength λ, can be significantly reduced. Therefore, the optical signal wavelength λ can be a wavelength transparent to the substrate 18.
【0035】上述のように構成したこの実施例の光装置
10においては、発光素子20bから基板面18aの法
線方向に出射された光信号は、基板18を通過して、第
一回折格子14に入射する。そして光信号は、第一回折
格子14によって基板面18aに沿う方向へ回折(偏
向)されて光分配導波路12に結合し、光分配導波路1
2を導波して第二回折格子16に入射する。そして光信
号は、第二回折格子16によって基板面18aの法線方
向へ回折(偏向)され、基板18を通過して、受光素子
22aに入射する。In the optical device 10 of this embodiment configured as described above, the optical signal emitted from the light emitting element 20b in the direction normal to the substrate surface 18a passes through the substrate 18 and passes through the first diffraction grating 14a. Incident on. Then, the optical signal is diffracted (deflected) in the direction along the substrate surface 18 a by the first diffraction grating 14 and is coupled to the light distribution waveguide 12, and the light distribution waveguide 1
2 is guided and is incident on the second diffraction grating 16. Then, the optical signal is diffracted (deflected) in the direction normal to the substrate surface 18a by the second diffraction grating 16, passes through the substrate 18, and is incident on the light receiving element 22a.
【0036】図3は第一実施例における光信号分配の説
明に供する図である。同図においては、基板面18aの
法線方向に沿って他方の基板面18bから一方の基板面
18aへ向かう方向に見た場合の、第一回折格子14及
び第二回折格子16を主として示す。FIG. 3 is a diagram for explaining the optical signal distribution in the first embodiment. In the figure, the first diffraction grating 14 and the second diffraction grating 16 are mainly shown when viewed in the direction from the other substrate surface 18b to the one substrate surface 18a along the direction normal to the substrate surface 18a.
【0037】同図にも示すように、この実施例では第一
回折格子14の凹部14a及び凸部14bを円形として
いるので、第一回折格子14に入射させた光信号Lを、
基板面18aの法線方向から見て軸Oまわり360°全
体にわたって、放射状に回折させることができる。従っ
て光信号Lが光分配導波路12を導波する領域24(以
下、光信号Lの導波領域24)を、基板面18aの法線
方向から見て、軸Oのまわり360°全体にわたる放射
状領域、すなわち光分配導波路12全面にわたる領域と
することができる。図中、光信号Lを白抜き矢印で示し
てある。As shown in the figure, since the concave portion 14a and the convex portion 14b of the first diffraction grating 14 are circular in this embodiment, the optical signal L incident on the first diffraction grating 14 is
It is possible to perform radial diffraction over the entire 360 ° around the axis O when viewed from the direction normal to the substrate surface 18a. Therefore, when the region 24 in which the optical signal L is guided through the optical distribution waveguide 12 (hereinafter referred to as the waveguide region 24 of the optical signal L) is viewed from the normal direction of the substrate surface 18a, a radial pattern is provided over the entire 360 ° around the axis O. It can be a region, that is, a region over the entire surface of the light distribution waveguide 12. In the figure, the optical signal L is shown by an outline arrow.
【0038】この光信号Lの導波領域24に、複数の第
二回折格子16を離散させて配置することにより、第一
回折格子14に入射させた光信号Lを、各第二回折格子
16に分配できる。By disposing a plurality of second diffraction gratings 16 in a discrete manner in the waveguide region 24 of the optical signal L, the optical signal L incident on the first diffraction grating 14 is transmitted to each of the second diffraction gratings 16. Can be distributed to.
【0039】この実施例の光装置10の利用形態とし
て、例えば、第一光部品20で生成したクロック信号を
複数の第二光部品22に供給し、各第二光部品22がク
ロック信号に基づいて同期しながら論理演算を行なう場
合を考える。この場合、第一光部品20の電気回路20
aは電気信号を発光素子20bへ供給し、この電気信号
に基づいて、発光素子20bはクロック用の光信号Lを
第一回折格子14へ出射する。光信号Lは第一回折格子
14、光分配導波路12及び第二回折格子16を経て、
各第二光部品22に入射する。第二光部品22の受光素
子22aはクロック用の光信号Lをクロック用の電気信
号に変換し、このクロック用の電気信号に基づいて、論
理演算処理を行なう。As a form of use of the optical device 10 of this embodiment, for example, a clock signal generated by the first optical component 20 is supplied to a plurality of second optical components 22, and each second optical component 22 is based on the clock signal. Consider a case where logical operations are performed in synchronization with each other. In this case, the electric circuit 20 of the first optical component 20
a supplies an electric signal to the light emitting element 20b, and based on the electric signal, the light emitting element 20b emits an optical signal L for clock to the first diffraction grating 14. The optical signal L passes through the first diffraction grating 14, the light distribution waveguide 12 and the second diffraction grating 16,
It is incident on each second optical component 22. The light receiving element 22a of the second optical component 22 converts the optical signal L for clock into an electrical signal for clock, and performs logical operation processing based on this electrical signal for clock.
【0040】図4及び図5は第一回折格子の変形例の説
明に供する図であって、これら図にあっては、基板面1
8aの法線方向に沿って他方の基板面18bから一方の
基板面18aへ向かう方向に見た場合の、第一回折格子
14及び第二回折格子16を主として示す。これら変形
例の説明では、主として第一実施例と相違する点につき
説明し、第一実施例と同様の点についてはその詳細な説
明を省略する。FIGS. 4 and 5 are diagrams for explaining modified examples of the first diffraction grating. In these diagrams, the substrate surface 1 is used.
The first diffraction grating 14 and the second diffraction grating 16 are mainly shown when seen from the other substrate surface 18b toward the one substrate surface 18a along the normal direction of 8a. In the description of these modified examples, points different from the first embodiment will be mainly described, and detailed description of the same points as the first embodiment will be omitted.
【0041】図4に示す第一回折格子14の変形例で
は、基板面18aの法線方向から見た凹部14a及び凸
部14bの形状を円弧とし、これら凹部14a及び凸部
14bを基板面18aの法線方向から見て軸Oを中心と
する同心円状に配列する。従ってこれら凹部14a及び
凸部14bの形状は、基板面18aの法線方向から見
て、軸Oを中心とする同心円の一部を切り取って得た円
弧すなわち軸Oを曲率中心として同心円状に配列した円
弧である。In the modification of the first diffraction grating 14 shown in FIG. 4, the shapes of the concave portions 14a and the convex portions 14b viewed from the normal direction of the substrate surface 18a are arcs, and the concave portions 14a and the convex portions 14b are formed on the substrate surface 18a. Are arranged in concentric circles centered on the axis O as viewed in the normal direction. Therefore, the shapes of the concave portions 14a and the convex portions 14b are arranged in concentric circles with the axis O as a center of curvature, which is an arc obtained by cutting a part of a concentric circle having the axis O as the center when viewed from the normal direction of the substrate surface 18a. It is a circular arc.
【0042】この場合、光信号Lの導波領域24は、基
板面18aの法線方向から見て軸Oを中心とする扇状の
領域となり、この扇状の導波領域24に各第二回折格子
16を配置している。In this case, the waveguide region 24 of the optical signal L is a fan-shaped region centered on the axis O when viewed from the direction normal to the substrate surface 18a, and each fan-shaped waveguide region 24 has a second diffraction grating. 16 are arranged.
【0043】図4の変形例では、第一回折格子14の凹
部14a及び凸部14bの形状をそれぞれ分断していな
いひとつの円弧としたが、図5に示す第一回折格子14
の変形例では、基板面18aの法線方向から見た凹部1
4a及び凸部14bの形状をそれぞれ複数個例えば3個
に分断された円弧とし、これら凹部14a及び凸部14
bを基板面18aの法線方向から見て軸Oを中心とする
同心円状に配列する。従ってこれら凹部14a及び凸部
14bの形状は、基板面18aの法線方向から見て、軸
Oを曲率中心として同心円状に配列した円弧である。In the modification of FIG. 4, the shape of the concave portion 14a and the convex portion 14b of the first diffraction grating 14 is an arc which is not divided, but the first diffraction grating 14 shown in FIG.
In the modified example, the concave portion 1 viewed from the direction normal to the substrate surface 18a
The shapes of 4a and the convex portion 14b are divided into plural arcs, for example, three arcs, and the concave portion 14a and the convex portion 14 are
b are arranged in concentric circles with the axis O as the center when viewed from the direction normal to the substrate surface 18a. Therefore, the shapes of the concave portions 14a and the convex portions 14b are arcs arranged concentrically with the axis O as the center of curvature when viewed from the normal direction of the substrate surface 18a.
【0044】この場合、第一回折格子14は円弧の分断
数と同数の円弧状の回折格子ここでは3個の円弧状の回
折格子141、142及び143から成る。光信号Lの
導波領域24は、第一回折格子14を構成する各円弧状
の回折格子に対応して生じ、従って円弧の分断数と同数
の領域ここでは3個の導波領域241、242及び24
3が生じる。これら各導波領域241〜243の形状
も、基板面18aの法線方向から見て軸Oを中心とする
扇状の領域となり、この扇状の導波領域241〜243
にそれぞれ、第二回折格子16を配置する。In this case, the first diffraction grating 14 is composed of the same number of arc-shaped diffraction gratings as the number of divisions of the arc, here three arc-shaped diffraction gratings 141, 142 and 143. The waveguide regions 24 of the optical signal L are generated corresponding to the respective arc-shaped diffraction gratings that form the first diffraction grating 14, and therefore, the same number of regions as the number of divisions of the circular arcs, here, three waveguide regions 241, 242. And 24
3 occurs. The shape of each of the waveguide regions 241 to 243 is also a fan-shaped region centered on the axis O when viewed from the normal direction of the substrate surface 18a, and the fan-shaped waveguide regions 241 to 243.
The second diffraction grating 16 is arranged in each of the.
【0045】図6は第二回折格子の変形例の説明に供す
る図であって、この図にあっては、基板面18aの法線
方向に沿って他方の基板面18bから一方の基板面18
aへ向かう方向に見た場合の、第一回折格子14及び第
二回折格子16を主として示す。この変形例の説明で
は、主として第一実施例と相違する点につき説明し、第
一実施例と同様の点についてはその詳細な説明を省略す
る。FIG. 6 is a diagram for explaining a modified example of the second diffraction grating. In this figure, from the other substrate surface 18b to one substrate surface 18 along the direction normal to the substrate surface 18a.
The first diffraction grating 14 and the second diffraction grating 16 are mainly shown when viewed in the direction toward a. In the description of this modification, the points that are different from the first embodiment will be mainly described, and the detailed description of the same points as the first embodiment will be omitted.
【0046】図6に示す第二回折格子16の変形例で
は、基板面18aの法線方向から見た凹部16a及び凸
部16bの形状を線分とする。好ましくは、これら凹部
16a及び凸部16bを、基板面18aの法線方向から
見て軸Oを中心とする円の接線に平行な線分とする。In the modified example of the second diffraction grating 16 shown in FIG. 6, the shapes of the concave portions 16a and the convex portions 16b as viewed from the direction normal to the substrate surface 18a are line segments. Preferably, the concave portions 16a and the convex portions 16b are line segments parallel to a tangent line of a circle centered on the axis O when viewed from the normal direction of the substrate surface 18a.
【0047】図7はこの発明の第二実施例の全体構成を
概略的に示す斜視図である。第二実施例の説明では、主
として第一実施例と相違する点につき、第一実施例と同
様の点についてはその詳細な説明を省略する。FIG. 7 is a perspective view schematically showing the overall construction of the second embodiment of the present invention. In the description of the second embodiment, mainly the points different from the first embodiment will be omitted, and the detailed description of the same points as the first embodiment will be omitted.
【0048】この実施例では、第一光部品20の電気回
路20aを光分配導波路12を設けた基板18の他方の
基板面18bに形成し、発光素子20bをこの電気回路
20aとは別のチップ部品とする。さらに第二光部品2
2の電気回路22bを光分配導波路12を設けた基板1
8の他方の基板面18bに形成し、受光素子22aをこ
の電気回路22bとは別のチップ部品とする。In this embodiment, the electric circuit 20a of the first optical component 20 is formed on the other substrate surface 18b of the substrate 18 on which the light distribution waveguide 12 is provided, and the light emitting element 20b is separated from this electric circuit 20a. Use as chip parts. Furthermore, the second optical component 2
Substrate 1 in which the optical circuit 22b of 2 is provided with the optical distribution waveguide 12
The light receiving element 22a is formed on the other substrate surface 18b of No. 8 and is a chip component different from the electric circuit 22b.
【0049】そして発光素子20bを第一回折格子14
と対向する位置に、また受光素子22aを第二回折格子
16に対向する位置に配置する。また電気回路20a及
び22bを他方の基板面18bにモノリシックに集積化
する。これら回路20a及び22bの配設位置は基板面
18bの任意好適箇所とすることができる。図中、第一
光部品20の電気回路20aを左上り斜めのハッチング
を付して示し、第二光部品22の電気回路22bを右上
り斜めのハッチングを付して示した。The light emitting element 20b is connected to the first diffraction grating 14
And the light receiving element 22a is arranged at a position facing the second diffraction grating 16. Further, the electric circuits 20a and 22b are monolithically integrated on the other substrate surface 18b. The positions where these circuits 20a and 22b are arranged can be set to any suitable positions on the substrate surface 18b. In the figure, the electric circuit 20a of the first optical component 20 is shown with diagonally upper left diagonal hatching, and the electric circuit 22b of the second optical component 22 is shown with diagonally upper right diagonal hatching.
【0050】尚、第二実施例において電気回路20a及
び22bを基板18とは別の回路基板に形成し、第一光
部品20を発光素子20bのみから成る光部品、及び第
二光部品22を受光素子22aのみから成る光部品とす
るようにしても良い。In the second embodiment, the electric circuits 20a and 22b are formed on a circuit board different from the board 18, and the first optical component 20 is an optical component consisting only of the light emitting element 20b and the second optical component 22. Alternatively, the optical component may include only the light receiving element 22a.
【0051】図8はこの発明の第三実施例の全体構成を
概略的に示す斜視図である。第三実施例の説明では、主
として第一実施例と相違する点につき、第一実施例と同
様の点についてはその詳細な説明を省略する。FIG. 8 is a perspective view schematically showing the overall construction of the third embodiment of the present invention. In the description of the third embodiment, the differences from the first embodiment are mainly described, and the detailed description of the same points as the first embodiment is omitted.
【0052】この実施例では、第二光部品22は光入力
部22c及び信号処理部22dを有する光回路であっ
て、光素子のみから成る。第一実施例の光入射面22a
1と同様にして、光入力部22cの光入射面を、対応す
る第二回折格子16に対し位置決めする。この第二光部
品22の形成材料は、電気光学材料そのほかの任意好適
な材料である。尚、図において、第二光部品22の点を
付している部分が光入力部22cを示し、点を付してい
ない部分が信号処理部22dを示す。In this embodiment, the second optical component 22 is an optical circuit having an optical input section 22c and a signal processing section 22d and is composed of only optical elements. Light incident surface 22a of the first embodiment
Similarly to 1, the light incident surface of the light input portion 22c is positioned with respect to the corresponding second diffraction grating 16. The material forming the second optical component 22 is an electro-optical material or any other suitable material. In the figure, the dotted portion of the second optical component 22 indicates the light input unit 22c, and the undotted portion indicates the signal processing unit 22d.
【0053】光入力部22cは対応する第二回折格子1
6からの光信号Lを入射し、この光信号Lを信号処理部
22dに入射する。信号処理部22dは、光入力部22
cから入射した光信号Lに基づいて動作する。例えば、
信号処理部22dは光論理演算を行なってその演算結果
を次段の回路(図示せず)へ出力したり、或は、光信号
Lを変調しこの変調信号を次段の回路へ出力したりす
る。The light input portion 22c is the corresponding second diffraction grating 1
The optical signal L from 6 is input, and this optical signal L is input to the signal processing unit 22d. The signal processing unit 22d includes the optical input unit 22
It operates based on the optical signal L incident from c. For example,
The signal processing unit 22d performs an optical logic operation and outputs the operation result to a circuit (not shown) in the next stage, or modulates the optical signal L and outputs the modulated signal to the circuit in the next stage. To do.
【0054】図9はこの発明の第四実施例の全体構成を
概略的に示す斜視図である。第四実施例の説明では、主
として第一実施例と相違する点につき、第一実施例と同
様の点についてはその詳細な説明を省略する。FIG. 9 is a perspective view schematically showing the overall construction of the fourth embodiment of the present invention. In the description of the fourth embodiment, mainly the points different from the first embodiment will be omitted, and the detailed description of the same points as the first embodiment will be omitted.
【0055】この実施例では、第一光部品20は光入出
力部20c及び信号処理部20dを有する光回路であっ
て、光素子のみから成る。第一実施例の光出射面20b
1と同様にして、光入出力部20cの光入出力面を、第
一回折格子14に対して位置決めする。また第二光部品
22は光入出力部22e及び信号処理部22dを有する
光回路であって、光素子のみから成る。第一実施例の光
出射面22a1と同様にして、光入出力部22eの光入
出力面を、対応する第二回折格子16に対して位置決め
する。これら光部品20及び22の形成材料は、電気光
学材料そのほかの任意好適な材料である。尚図におい
て、第一光部品20および第二光部品22の点を付して
いる部分が光入出力部20cおよび22eを示し、点を
付していない部分が信号処理部20dおよび22dを示
す。In this embodiment, the first optical component 20 is an optical circuit having an optical input / output section 20c and a signal processing section 20d, and is composed of only optical elements. Light exit surface 20b of the first embodiment
Similarly to 1, the light input / output surface of the light input / output unit 20c is positioned with respect to the first diffraction grating 14. The second optical component 22 is an optical circuit having a light input / output unit 22e and a signal processing unit 22d, and is composed of only optical elements. Similar to the light emitting surface 22a1 of the first embodiment, the light input / output surface of the light input / output unit 22e is positioned with respect to the corresponding second diffraction grating 16. The material for forming the optical components 20 and 22 is an electro-optical material or any other suitable material. In the figure, the dotted portions of the first optical component 20 and the second optical component 22 indicate the light input / output units 20c and 22e, and the undotted portions indicate the signal processing units 20d and 22d. .
【0056】第一光部品20と第二光部品22とは、第
一回折格子14、光分配導波路12及び第二回折格子1
6を介し、光信号を授受する。そして第一光部品20は
第二光部品22から入射した光信号に基づいて動作し例
えば光論理演算を行なう。第二光部品22は第一光部品
20から入射した光信号に基づいて動作し例えば光論理
演算を行なう。The first optical component 20 and the second optical component 22 are composed of the first diffraction grating 14, the light distribution waveguide 12 and the second diffraction grating 1.
Optical signals are transmitted and received via 6. Then, the first optical component 20 operates based on the optical signal incident from the second optical component 22, and performs, for example, optical logic operation. The second optical component 22 operates based on the optical signal incident from the first optical component 20, and performs optical logic operation, for example.
【0057】すなわち、第一光部品20の信号処理部2
0dは光信号を生成し光入出力部20cへ出射する。そ
して光入出力部20cは信号処理部20dから入射した
光信号を第一回折格子14へ出射する。また光入出力部
20cは第一回折格子14から入射した光信号を、信号
処理部20dへ出射する。そして信号処理部20dは光
入出力部20cから入射した光信号に基づいて動作す
る。That is, the signal processing section 2 of the first optical component 20.
0d generates an optical signal and outputs it to the optical input / output unit 20c. Then, the optical input / output unit 20c outputs the optical signal incident from the signal processing unit 20d to the first diffraction grating 14. Further, the light input / output unit 20c outputs the optical signal incident from the first diffraction grating 14 to the signal processing unit 20d. Then, the signal processing unit 20d operates based on the optical signal incident from the optical input / output unit 20c.
【0058】同様に、第二光部品22の信号処理部22
dは光信号を生成し光入出力部22eへ出射する。そし
て光入出力部22eは信号処理部22dから入射した光
信号を第二回折格子16へ出射する。また光入出力部2
2eは第二回折格子16から入射した光信号を、信号処
理部22dへ出射する。そして信号処理部22dは光入
出力部22eから入射した光信号に基づいて動作する。Similarly, the signal processing section 22 of the second optical component 22.
d generates an optical signal and outputs it to the optical input / output unit 22e. Then, the optical input / output unit 22e outputs the optical signal incident from the signal processing unit 22d to the second diffraction grating 16. The optical input / output unit 2
2e outputs the optical signal incident from the second diffraction grating 16 to the signal processing unit 22d. Then, the signal processing unit 22d operates based on the optical signal incident from the optical input / output unit 22e.
【0059】図10及び図11はこの発明の第五実施例
の要部構成を概略的に示す斜視図である。この実施例で
は、第一回折格子14及び第二回折格子16と、第一光
部品20及び第二光部品22とを個別の基板に設けるも
のであって、図10に第一回折格子14及び第二回折格
子16を設けた基板側の構成(回折格子側の構成)を、
また図11に第一光部品20及び第二光部品22を設け
た基板側の構成(光部品側の構成)を示す。第五実施例
の説明では、主として第一実施例と相違する点につき説
明し、第一実施例と同様の点についてはその詳細な説明
を省略する。FIGS. 10 and 11 are perspective views schematically showing the construction of the essential parts of the fifth embodiment of the present invention. In this embodiment, the first diffraction grating 14 and the second diffraction grating 16 and the first optical component 20 and the second optical component 22 are provided on separate substrates. The configuration on the substrate side provided with the second diffraction grating 16 (configuration on the diffraction grating side) is
Further, FIG. 11 shows a configuration on the side of the substrate (optical component side) on which the first optical component 20 and the second optical component 22 are provided. In the description of the fifth embodiment, differences from the first embodiment will be mainly described, and detailed description of the same points as the first embodiment will be omitted.
【0060】この実施例の光装置10は、回折格子側の
装置部分10a及び光部品側の装置部分10bから成
る。回折格子側の装置部分10aは、図10にも示すよ
うに、基板18に設けた光分配導波路12と、この光分
配導波路12に設けた第一回折格子14及び第二回折格
子16とから成る。光部品側の装置部分10bは、図1
1にも示すように、光分配導波路12を設けた基板18
とは別の基板26に設けた第一光部品20及び第二光部
品22から成る。ここでは別の基板26をGaAs基板
とし、この基板26に、第一光部品20及び第二光部品
22をモノリシックに集積化して設ける。The optical device 10 of this embodiment comprises a device portion 10a on the diffraction grating side and a device portion 10b on the optical component side. As shown in FIG. 10, the device portion 10a on the diffraction grating side includes a light distribution waveguide 12 provided on a substrate 18, a first diffraction grating 14 and a second diffraction grating 16 provided on the light distribution waveguide 12. Consists of. The device portion 10b on the optical component side is shown in FIG.
1, the substrate 18 provided with the optical distribution waveguide 12
It is composed of a first optical component 20 and a second optical component 22 provided on a substrate 26 different from the above. Here, another substrate 26 is a GaAs substrate, and the first optical component 20 and the second optical component 22 are monolithically integrated and provided on this substrate 26.
【0061】第一光部品20の光出射面及び第二光部品
22の光入射面をそれぞれ対応する第一回折格子14及
び第二回折格子16と対向させるように、基板18と基
板26とを位置決めする。これら基板18及び26を、
位置決めした状態で互いに固着しても良いし、或は、互
いに固着しないで分離自在に位置決めしておいても良
い。The substrate 18 and the substrate 26 are arranged so that the light emitting surface of the first optical component 20 and the light incident surface of the second optical component 22 face the corresponding first diffraction grating 14 and second diffraction grating 16, respectively. Position. These substrates 18 and 26 are
They may be fixed to each other in the positioned state, or may be separately positioned without being fixed to each other.
【0062】図12はこの発明の第六実施例の全体構成
を概略的に示す斜視図である。第六実施例の説明では、
主として第一実施例と相違する点につき説明し、第一実
施例と同様の点については、その詳細な説明を省略す
る。FIG. 12 is a perspective view schematically showing the overall construction of the sixth embodiment of the present invention. In the description of the sixth embodiment,
The differences from the first embodiment will be mainly described, and the detailed description of the same points as the first embodiment will be omitted.
【0063】この実施例の光装置10は、基板18に設
けた光分配導波路12と、光分配導波路12に設けた第
一回折格子14及び第二回折格子16とから成り、第一
光部品20及び第二光部品22は備えていない。The optical device 10 of this embodiment comprises a light distribution waveguide 12 provided on a substrate 18, and a first diffraction grating 14 and a second diffraction grating 16 provided on the light distribution waveguide 12, and The component 20 and the second optical component 22 are not provided.
【0064】第六の実施例の光装置10の構成は、第二
回折格子16の配設個数を例えば6個として第一実施例
と異ならせているほかは、第五実施例の光装置10の回
折格子側の装置部分10aと同様と成っている。The optical device 10 of the sixth embodiment is different from the optical device 10 of the fifth embodiment in that the number of the second diffraction gratings 16 provided is, for example, six. This is similar to the device portion 10a on the side of the diffraction grating.
【0065】第六実施例の光装置10を、第五実施例の
光部品側の装置部分10bと組み合わせて用いることに
より、光信号を入射する第二光部品22の個数を変化さ
せることができる。By using the optical device 10 of the sixth embodiment in combination with the device portion 10b on the optical component side of the fifth embodiment, it is possible to change the number of second optical components 22 to which an optical signal is incident. .
【0066】この発明は上述した実施例にのみ限定され
るものではなく、従って各構成成分の形状、配設位置、
配設個数、形成材料、構成及びそのほかをこの発明の趣
旨の範囲内で任意好適に変更できる。The present invention is not limited to the above-mentioned embodiment, and therefore, the shape of each component, the arrangement position,
The number of arranged elements, the forming material, the constitution and others can be arbitrarily changed within the scope of the gist of the present invention.
【0067】例えば、基板18及び26としてGaAs
基板に代えSi基板を用いるようにしても良い。この場
合、光信号波長λとしてはSi基板に対して透明な波長
例えば1.3μm以上の波長を用いるのが好ましい。例
えば、InGaAsPを活性層に持つ面発光型レーザ素
子を発光素子20bとして用いれば、発光素子20bの
発振波長すなわち光信号波長λをSi基板に対し透明と
することができる。For example, GaAs is used as the substrates 18 and 26.
A Si substrate may be used instead of the substrate. In this case, it is preferable to use, as the optical signal wavelength λ, a wavelength transparent to the Si substrate, for example, a wavelength of 1.3 μm or more. For example, if a surface emitting laser element having InGaAsP as an active layer is used as the light emitting element 20b, the oscillation wavelength of the light emitting element 20b, that is, the optical signal wavelength λ can be made transparent to the Si substrate.
【0068】また上述した実施例では光分配導波路12
として化合物半導体から成る多層構造の導波路を用いた
が、このほか例えば石英ガラス膜等の非晶質材料から成
る一層構造の導波路を用いても良い。In the above-mentioned embodiment, the light distribution waveguide 12
Although a multi-layered waveguide made of a compound semiconductor is used as the waveguide, a single-layered waveguide made of an amorphous material such as a quartz glass film may be used.
【0069】また第一光部品20を、基板18とは反対
側で光分配導波路12上に設けるようにしても良い。ま
た第二光部品22を、基板18とは反対側で光分配導波
路12上に設けるようにしても良い。The first optical component 20 may be provided on the light distribution waveguide 12 on the side opposite to the substrate 18. The second optical component 22 may be provided on the light distribution waveguide 12 on the side opposite to the substrate 18.
【0070】[0070]
【発明の効果】上述した説明からも明らかなように、こ
の発明の光装置によれば、第一回折格子と当該回折格子
に対応する光部品との離間距離を短くしても、第二回折
格子に対応する各光部品へ光信号を分配することができ
る。従って省スペース化を図れる。As is apparent from the above description, according to the optical device of the present invention, even if the distance between the first diffraction grating and the optical component corresponding to the diffraction grating is shortened, the second diffraction grating is used. An optical signal can be distributed to each optical component corresponding to the grating. Therefore, space can be saved.
【0071】この発明の光装置は、例えば、第一回折格
子に対応する光部品からの光信号を共通の光信号とし、
この共通の光信号を、各第二回折格子に対応する光部品
に、同時に入射する場合に用いて好適である。またこの
発明の光装置は、例えば、第一回折格子に対応する光部
品と、各第二回折格子に対応する光部品との間で光信号
を授受する場合に用いて好適である。In the optical device of the present invention, for example, the optical signal from the optical component corresponding to the first diffraction grating is used as a common optical signal,
This common optical signal is suitable for use in the case of simultaneously entering the optical components corresponding to the respective second diffraction gratings. Further, the optical device of the present invention is suitable for use, for example, in the case of exchanging an optical signal between the optical component corresponding to the first diffraction grating and the optical component corresponding to each second diffraction grating.
【図1】この発明の第一実施例の全体構成を概略的に示
す斜視図である。FIG. 1 is a perspective view schematically showing the overall configuration of a first embodiment of the present invention.
【図2】この発明の第一実施例の要部構成を拡大して概
略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an enlarged main part configuration of a first embodiment of the present invention.
【図3】光信号分配の説明に供する図である。FIG. 3 is a diagram for explaining optical signal distribution.
【図4】第一回折格子の変形例の説明に供する図であ
る。FIG. 4 is a diagram for explaining a modified example of the first diffraction grating.
【図5】第一回折格子の変形例の説明に供する図であ
る。FIG. 5 is a diagram for explaining a modified example of the first diffraction grating.
【図6】第二回折格子の変形例の説明に供する図であ
る。FIG. 6 is a diagram for explaining a modified example of the second diffraction grating.
【図7】この発明の第二実施例の全体構成を概略的に示
す斜視図である。FIG. 7 is a perspective view schematically showing the overall configuration of a second embodiment of the present invention.
【図8】この発明の第三実施例の全体構成を概略的に示
す斜視図である。FIG. 8 is a perspective view schematically showing an overall configuration of a third embodiment of the present invention.
【図9】この発明の第四実施例の全体構成を概略的に示
す斜視図である。FIG. 9 is a perspective view schematically showing an overall configuration of a fourth embodiment of the present invention.
【図10】この発明の第五実施例の要部構成を概略的に
示す斜視図である。FIG. 10 is a perspective view schematically showing a main part configuration of a fifth embodiment of the present invention.
【図11】この発明の第五実施例の要部構成を概略的に
示す斜視図である。FIG. 11 is a perspective view schematically showing a main part configuration of a fifth embodiment of the present invention.
【図12】この発明の第六実施例の全体構成を概略的に
示す斜視図である。FIG. 12 is a perspective view schematically showing an overall configuration of a sixth embodiment of the present invention.
10:光装置 12:光分配導波路 14:第一回折格子 16:第二回折格子 18:半絶縁性GaAs基板 20:第一光部品 22:第二光部品 10: Optical device 12: Optical distribution waveguide 14: First diffraction grating 16: Second diffraction grating 18: Semi-insulating GaAs substrate 20: First optical component 22: Second optical component
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−24210(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 27/15 G02B 6/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 64-24210 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 27/15 G02B 6/12
Claims (5)
向と交差する第一の方向から入射してきた光信号を、前
記光分配導波路の光導波方向へ回折させて前記光分配導
波路に結合させる第一回折格子と、 前記光分配導波路に設けられ、前記光分配導波路を導波
してきた光信号を、前記光分配導波路の光導波方向と交
差する第二の方向へ回折させて前記光分配導波路から出
射させる第二回折格子とを備え、 前記第一回折格子は、前記第一の方向から見て放射状に
光信号を回折させる回折格子であって、 該放射状に回折させた光信号の導波領域に、複数の第二
回折格子を離散配置して成ることを特徴とする光装置。1. A planar light distribution waveguide, and an optical signal which is provided in the light distribution waveguide and is incident from a first direction intersecting the light guiding direction of the light distribution waveguide, A first diffraction grating for diffracting in the optical waveguide direction of the waveguide and coupling with the optical distribution waveguide; and an optical signal provided in the optical distribution waveguide and guided through the optical distribution waveguide, the optical distribution A second diffraction grating for diffracting in a second direction intersecting the optical waveguide direction of the waveguide and emitting the light from the light distribution waveguide, wherein the first diffraction grating is radial when viewed from the first direction. An optical device comprising: a diffraction grating for diffracting an optical signal, wherein a plurality of second diffraction gratings are discretely arranged in a waveguide region of the radially diffracted optical signal.
光信号を前記第一回折格子へ出射する第一光部品と、前
記複数の第二回折格子から光信号をそれぞれ入射し、か
つそれぞれの前記第二回折格子に対応する位置に配置さ
れた第二光部品とを備えて成ることを特徴とする光装
置。2. A light device according to claim 1, a first optical component for emitting the optical signal to the first diffraction grating, before
Note that the optical signals are respectively input from the multiple second diffraction gratings.
Are arranged at positions corresponding to the respective second diffraction gratings.
An optical device comprising: a second optical component .
て平面状に延在させて設け、 第一光部品及び複数の第二光部品を、前記基板の他方の
基板面上に設けて成ることを特徴とする光装置。3. The optical device according to claim 2, wherein the light distribution waveguide is provided on one substrate surface of the substrate so as to extend in a plane shape along the substrate surface, and the first optical component and the plurality of first optical components are provided. An optical device comprising two optical components provided on the other substrate surface of the substrate.
て平面状に延在させて設け、 第一光部品及び複数の第二光部品を、前記光分配導波路
を設けた基板とは別の基板に設けて成ることを特徴とす
る光装置。4. The optical device according to claim 2, wherein the light distribution waveguide is provided on one substrate surface of the substrate so as to extend in a plane shape along the substrate surface, and the first optical component and the plurality of first optical components are provided. An optical device comprising: two optical components provided on a substrate different from the substrate provided with the light distribution waveguide.
に対する2次の回折格子とし、 第一の方向及び第二の方向を、光分配導波路を設けた基
板の基板面の法線方向として成ることを特徴とする光装
置。5. The optical device according to claim 3 or 4, wherein the first diffraction grating and the second diffraction grating are second-order diffraction gratings for the optical signal wavelength, and the first direction and the second direction are: An optical device characterized by being formed in a direction normal to a substrate surface of a substrate provided with a light distribution waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12617094A JP3464039B2 (en) | 1994-06-08 | 1994-06-08 | Optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12617094A JP3464039B2 (en) | 1994-06-08 | 1994-06-08 | Optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07335855A JPH07335855A (en) | 1995-12-22 |
JP3464039B2 true JP3464039B2 (en) | 2003-11-05 |
Family
ID=14928421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12617094A Expired - Fee Related JP3464039B2 (en) | 1994-06-08 | 1994-06-08 | Optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3464039B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2340996B (en) * | 1998-08-26 | 2003-07-09 | Lsi Logic Corp | Low skew signal distribution circuits |
JP2007501448A (en) * | 2003-05-29 | 2007-01-25 | アプライド マテリアルズ インコーポレイテッド | Optical signal serial path |
JP5263071B2 (en) * | 2009-08-18 | 2013-08-14 | 沖電気工業株式会社 | Optical interconnection circuit |
US9162404B2 (en) * | 2011-03-05 | 2015-10-20 | Alcatel Lucent | Radial optical coupler |
US8682120B2 (en) | 2011-03-05 | 2014-03-25 | Alcatel Lucent | Polarization-independent grating optical coupler |
US9140854B2 (en) | 2011-09-22 | 2015-09-22 | Alcatel Lucent | Spatial division multiplexing optical mode converter |
WO2013080522A1 (en) * | 2011-11-29 | 2013-06-06 | パナソニック株式会社 | Light capturing sheet and rod, and light receiving device and light emitting device using same |
-
1994
- 1994-06-08 JP JP12617094A patent/JP3464039B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07335855A (en) | 1995-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7209611B2 (en) | Transmitter photonic integrated circuit (TxPIC) chips utilizing compact wavelength selective combiners/decombiners | |
EP0322218B1 (en) | Holographic planar optical interconnect | |
US6144480A (en) | Optical arrangement for processing an optical wave | |
US5355237A (en) | Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating | |
EP0467303B1 (en) | An optical disk head and a method for producing the same | |
JP3222163B2 (en) | Diffraction grating with multiple output end faces arranged in parallel with optical waveguides | |
US7444048B2 (en) | Tilted combiners/decombiners and photonic integrated circuit (PIC) employing the same | |
US7801402B2 (en) | Receiver photonic integrated circuit (RxPIC) chip utilizing compact wavelength selective decombiners | |
US5133027A (en) | Optical waveguide apparatus for controlling a signal light traveling through an optical waveguide by means of other light | |
CA2067019C (en) | Externally modulated laser source for array illumination | |
JP3464039B2 (en) | Optical device | |
JPS637626A (en) | Surface position detector | |
US7747114B2 (en) | Tilted combiners/decombiners and photonic integrated circuits (PICs) employing the same | |
JP3004971B1 (en) | Array waveguide diffraction grating and optical signal processing circuit using array waveguide diffraction grating | |
JPWO2021149437A5 (en) | ||
JPS63244003A (en) | Multiplexer/demultiplexer | |
JPH02297505A (en) | Waveguide type wavelength filter | |
JPH06347785A (en) | Optical waveguide member and liquid crystal display device using optical waveguide member | |
JPS63298307A (en) | Optical waveguide device | |
Kostuk et al. | Multiprocessor optical bus | |
JP3095806B2 (en) | Optical waveguide device | |
KR0155529B1 (en) | Parallel optical logic operator | |
Kawai et al. | Optical interconnections using microlenses for parallel processing | |
JPH0389327A (en) | Optical connecting device | |
Pusarla et al. | Diffraction loss and optical crosstalk in hybrid receiver for free-space optical interconnections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030812 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |