JP3463957B2 - Magnetite particles and method for producing the same - Google Patents

Magnetite particles and method for producing the same

Info

Publication number
JP3463957B2
JP3463957B2 JP20294894A JP20294894A JP3463957B2 JP 3463957 B2 JP3463957 B2 JP 3463957B2 JP 20294894 A JP20294894 A JP 20294894A JP 20294894 A JP20294894 A JP 20294894A JP 3463957 B2 JP3463957 B2 JP 3463957B2
Authority
JP
Japan
Prior art keywords
magnetite particles
particles
oxidation reaction
zinc
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20294894A
Other languages
Japanese (ja)
Other versions
JPH0848525A (en
Inventor
正親 橋内
正 山西
武志 宮園
広幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP20294894A priority Critical patent/JP3463957B2/en
Priority to KR1019950023916A priority patent/KR0163819B1/en
Priority to DE19528718A priority patent/DE19528718B4/en
Priority to US08/511,262 priority patent/US5556571A/en
Publication of JPH0848525A publication Critical patent/JPH0848525A/en
Application granted granted Critical
Publication of JP3463957B2 publication Critical patent/JP3463957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマグネタイト粒子および
その製造方法に関し、詳しくは粒子の表面に、鉄−亜鉛
酸化物を含有するマグネタイトを被着せしめ、黒色を呈
し、かつ磁気特性もバランスよく向上し、特に静電複写
磁性トナー用材料粉、塗料用黒色顔料粉の用途に用いら
れるマグネタイト粒子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to magnetite particles and a method for producing the same. More specifically, the surface of the particles is coated with magnetite containing iron-zinc oxide to give a black color and to improve the magnetic properties in a well-balanced manner. In particular, the present invention relates to magnetite particles used in the application of material powder for electrostatic copying magnetic toner, black pigment powder for paints, and a method for producing the same.

【0002】[0002]

【従来の技術】昨今、磁気マグネタイトにおいては各種
分野、特に静電複写機の磁性トナー用として用いられて
いる。この磁性マグネタイトの製造方法は、一般的に乾
式法と湿式法に分類されているが、そのうち湿式法にお
いては第一鉄イオンを含む水溶液にアルカリ水溶液を添
加し、特定の条件下で酸化反応を行なう方法が主流であ
る。
2. Description of the Related Art Recently, magnetic magnetite has been used in various fields, especially for magnetic toner of electrostatic copying machines. The method for producing this magnetic magnetite is generally classified into a dry method and a wet method. Among them, in the wet method, an alkaline aqueous solution is added to an aqueous solution containing ferrous ions to carry out an oxidation reaction under specific conditions. The way to do it is the mainstream.

【0003】この湿式法のうち、粉体の諸特性を改良す
る目的で、亜鉛を含有するマグネタイト粒子の製造方法
についての提案が幾つかなされている。例えば、特公昭
59−43408号公報に開示されている製造方法がそ
の代表的なものの一つである。この製造方法は、第一鉄
塩にアルカリ水溶液を添加後、水溶液中のトータルのF
eに対する2価のFeの比率が特定の範囲内になるまで
酸化し、その後特定のZn/Fe比となるように水溶性
亜鉛化合物を添加して、特定の遊離水酸基イオン濃度と
溶液温度で反応を行ない、スピネル型酸化鉄を得る方法
である。この方法により得られる粒子については、『完
全な(茶味を帯びていない)黒色を呈し、100〜20
0Oe程度の保磁力を有する』との特徴が記載されてい
るが、この粒子では相応の特性は得られるものの、飽和
磁化等の点では充分とは言い難く、粒子径もすこぶる大
きいため、生成した磁性トナーの品質、特にトナー中へ
の分散時、その表面上に過度に突出したり、偏在を起こ
すというような悪影響を与えるという点で問題がある。
Among these wet methods, some proposals have been made for a method for producing magnetite particles containing zinc for the purpose of improving various properties of powder. For example, the manufacturing method disclosed in Japanese Examined Patent Publication No. 59-43408 is one of the representative ones. In this manufacturing method, after adding an alkaline aqueous solution to the ferrous salt, total F in the aqueous solution is added.
Oxidize until the ratio of divalent Fe to e falls within a specific range, and then add a water-soluble zinc compound so as to achieve a specific Zn / Fe ratio, and react at a specific free hydroxyl ion concentration and solution temperature. Is to obtain spinel type iron oxide. Regarding the particles obtained by this method, "a perfect (non-brownish) black color is obtained,
It has a coercive force of about 0 Oe ”, but although this particle can obtain the corresponding characteristics, it cannot be said that it is sufficient in terms of saturation magnetization, etc., and the particle diameter is extremely large, so that it was generated. There is a problem in that the quality of the magnetic toner, especially when dispersed in the toner, has an adverse effect such as excessive protrusion or uneven distribution on the surface thereof.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の課題を解決し、BET比表面積が7.0m2
/g以上で、かつ比較的小さい粒子でありながら、吸油
特性に優れ、黒色度の度合を損なわず、かつ磁気特性も
バランスよく向上したマグネタイト粒子およびその製造
方法を提供するものである。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art and to have a BET specific surface area of 7.0 m 2.
The present invention provides a magnetite particle having a particle size of at least 1 g / g and being relatively small, excellent in oil absorption property, not impairing the degree of blackness, and improved in magnetic property in a well-balanced manner, and a method for producing the same.

【0005】[0005]

【課題を解決しようとする手段】本発明者等は、上記目
的を達成すべく鋭意検討の結果、マグネタイト粒子中の
Zn/Feのモル比(%)が0.2〜1.8%となるよ
うに亜鉛を含む第一鉄塩を酸化反応終了時に加え、さら
に再度酸化反応を進めることにより、前述の特公昭59
−43408号公報記載の粉体の黒色度への影響を最小
限に抑え、かつ磁気特性上もバランス良く向上するとの
結論に達した。
DISCLOSURE OF THE INVENTION As a result of intensive investigations by the present inventors to achieve the above object, the Zn / Fe molar ratio (%) in the magnetite particles is 0.2 to 1.8%. As described above, by adding the ferrous salt containing zinc at the end of the oxidation reaction and further proceeding the oxidation reaction,
It was concluded that the effect of the powder described in JP-A-43408 on the blackness is minimized and the magnetic properties are improved in a well-balanced manner.

【0006】すなわち、本発明は、粒子表面にマグネタ
イト粒子全体におけるZn/Feのモル比(%)が0.
2%以上0.5%未満である鉄−亜鉛酸化物被覆層を有
、飽和磁化79 emu/g(79 A・m 2 /kg)
以上、色差計による黒色度(L)19.5以下、JIS
K 5101に準拠した吸油量30ml/100g以
上であることを特徴とするマグネタイト粒子および第一
鉄塩を主成分とする溶液に、鉄に対して当量以上のアル
カリ水溶液と混合した後、遊離水酸基濃度を1〜3g/
1に維持して酸化反応を行ない酸化反応終了後、マグネ
タイト粒子全体におけるZn/Feのモル比(%)が
0.2〜1.8%となるように亜鉛を含む第一鉄塩を添
加し、pH6.0〜9.0に調整し、再度酸化反応を行
なうことを特徴とするマグネタイト粒子の製造方法にあ
る。
[0006] That is, the present invention is a magnet
The molar ratio (%) of Zn / Fe in the whole iron particles is 0.
With an iron-zinc oxide coating layer of 2% or more and less than 0.5%
And saturation magnetization 79 emu / g (79 A · m 2 / kg)
Above, blackness (L) 19.5 or less by color difference meter, JIS
According to K 5101, the oil absorption amount is 30 ml / 100 g or more, and a solution containing magnetite particles and a ferrous salt as a main component is mixed with an alkaline aqueous solution in an amount equal to or more than iron, and then a free hydroxyl group concentration is obtained. 1-3 g /
After completion of the oxidation reaction while maintaining the ratio to 1, the ferrous salt containing zinc was added so that the Zn / Fe molar ratio (%) in the entire magnetite particles would be 0.2 to 1.8%. , PH 6.0-9.0, and the oxidation reaction is carried out again.

【0007】以下、本発明の製造方法をさらに詳細に説
明する。先ず、本発明では、第一鉄塩を主成分とする溶
液に、鉄に対して当量以上のアルカリ水溶液と混合して
水酸化第一鉄を生成させる。第一鉄塩を主成分とする溶
液としては、硫酸第一鉄水溶液等が挙げられる。また、
アルカリ水溶液としては水酸化ナトリウム水溶液等が挙
げられる。
The manufacturing method of the present invention will be described in more detail below. First, in the present invention, a solution containing a ferrous salt as a main component is mixed with an aqueous alkaline solution in an amount equal to or more than iron to produce ferrous hydroxide. Examples of the solution containing a ferrous salt as a main component include a ferrous sulfate aqueous solution and the like. Also,
Examples of the alkaline aqueous solution include sodium hydroxide aqueous solution.

【0008】第一鉄塩を主成分とする溶液とアルカリ水
溶液を混合して水酸化第一鉄を生成後、この水酸化第一
鉄に、酸素含有ガス、望ましくは空気を吹き込み、60
〜100℃、好ましくは80〜90℃で酸化反応を行な
う。この際の酸化反応量の調整は、反応中に未反応の水
酸化第一鉄の分析値を見ながら吹き込み酸素含有ガスの
量を調整することにて行なう。この酸化反応において
は、遊離水酸基濃度が1〜3g/1となるように留意す
る。
After a solution containing a ferrous salt as a main component and an alkaline aqueous solution are mixed to produce ferrous hydroxide, an oxygen-containing gas, preferably air, is blown into the ferrous hydroxide to produce 60.
The oxidation reaction is carried out at -100 ° C, preferably 80-90 ° C. The amount of the oxidation reaction at this time is adjusted by adjusting the amount of the oxygen-containing gas blown in while observing the analysis value of the unreacted ferrous hydroxide during the reaction. In this oxidation reaction, take care so that the concentration of free hydroxyl groups is 1 to 3 g / 1.

【0009】酸化開始から、未反応の水酸化第一鉄がほ
ぼゼロとなる迄反応を進めた後、マグネタイト粒子中の
Zn/Feモル比(%)が0.2〜1.8%、好ましく
は0.3〜1.2%となるように、亜鉛イオンを含む第
一鉄塩を添加した後、再び酸化反応を行なう。
After the reaction is advanced from the start of oxidation until the unreacted ferrous hydroxide becomes almost zero, the Zn / Fe molar ratio (%) in the magnetite particles is 0.2 to 1.8%, preferably Is added to a ferrous salt containing zinc ions so as to be 0.3 to 1.2%, and then the oxidation reaction is performed again.

【0010】マグネタイト粒子中のZn/Feのモル比
が0.2%未満の場合、BET比表面積が7.0m2
g以上では粒子が比較的小粒径のため、磁気特性、特に
飽和磁化が低下する。一方、マグネタイト粒子中のZn
/Feのモル比(%)が1.8%を超える場合も、粒子
中のZnの分布が崩れることによる飽和磁化の低下や、
前述した特公昭59−43408号公報に記載のZnO
Fe23層が粒子表面上に厚く形成されるため、粉体の
黒色度を著しく損なう。
When the Zn / Fe molar ratio in the magnetite particles is less than 0.2%, the BET specific surface area is 7.0 m 2 /
When the value is g or more, the particles have a relatively small particle size, so that the magnetic properties, particularly the saturation magnetization, deteriorate. On the other hand, Zn in magnetite particles
When the / Fe molar ratio (%) exceeds 1.8%, the saturation magnetization decreases due to the collapse of the Zn distribution in the particles, and
ZnO described in Japanese Patent Publication No. 59-43408 mentioned above.
Since the Fe 2 O 3 layer is formed thick on the surface of the particles, the blackness of the powder is significantly impaired.

【0011】また、後に生成する粒子表面の鉄−亜鉛酸
化物中のZn/Feのモル比(%)が好ましくは7〜5
0%、さらに好ましくは10〜40%となるように調整
することが望ましい。鉄−亜鉛酸化物中のZn/Feの
モル比(%)が7%未満の場合、鉄−亜鉛酸化物中の亜
鉛の粒子表面における偏在が生じ好ましくなく、50%
を超える場合には、ZnOFe23の粒子表面への亜鉛
の露出が過剰となり、黒色度の低下を招く。
The molar ratio (%) of Zn / Fe in the iron-zinc oxide on the surface of the particles produced later is preferably 7-5.
It is desirable to adjust to 0%, more preferably 10 to 40%. When the molar ratio (%) of Zn / Fe in the iron-zinc oxide is less than 7%, uneven distribution of zinc in the iron-zinc oxide on the particle surface is not preferable, and 50%.
If it exceeds, the zinc is excessively exposed on the surface of the ZnOFe 2 O 3 particles, resulting in a decrease in blackness.

【0012】また、本発明では、亜鉛を含む第一鉄塩を
加え、さらに酸化反応を進める際のpHは6.0〜9.
0、好ましくは8.0〜9.0に調整するのがよい。p
Hが6.0未満の場合、反応スラリー中にゲーサイト粒
子が生じる恐れがあり、pHが9.0を超える場合、粒
子の特性には差はないが、追加のアルカリを余分に添加
しなければならず不経済である。
In the present invention, a ferrous salt containing zinc is added, and the pH when the oxidation reaction is further advanced is 6.0 to 9.
It is preferable to adjust it to 0, preferably 8.0 to 9.0. p
When H is less than 6.0, goethite particles may be generated in the reaction slurry, and when pH exceeds 9.0, there is no difference in the characteristics of the particles, but an additional alkali should be added. It is uneconomical.

【0013】酸化反応終了後、さらに通常行なう洗浄、
濾過、乾燥、粉砕の各工程を経て、マグネタイト粒子を
得る。
After the completion of the oxidation reaction, the washing which is normally carried out,
Magnetite particles are obtained through the steps of filtration, drying and pulverization.

【0014】このようにして得られたマグネタイト粒子
は、飽和磁化79emu/g以上、色差計による黒色度
(L)19.5以下、JIS K 5101に準拠した
吸油量30ml/100g以上と良好な特性を有する。
The magnetite particles thus obtained have good characteristics such as a saturation magnetization of 79 emu / g or more, a blackness (L) by a color difference meter of 19.5 or less, and an oil absorption amount of 30 ml / 100 g or more according to JIS K 5101. Have.

【0015】なお、本発明で『表面』と表現する部位
は、当初の第一鉄塩とアルカリ水溶液にて得られたマグ
ネタイト粒子の表面上から、さらに外側に被覆した、い
わゆる亜鉛を含む第一鉄塩を添加した後、反応終了に至
る迄に生成したマグネタイト薄膜を指している。
In the present invention, the portion referred to as "surface" is the first zinc-containing first coating containing zinc on the surface of the magnetite particles obtained with the original ferrous salt and the alkaline aqueous solution. It refers to the magnetite thin film formed after the addition of iron salt until the end of the reaction.

【0016】従って、本発明は、未反応の水酸化第一鉄
が相当量残存している反応途中で水溶性亜鉛化合物を添
加することが記載されている前述した特公昭59−43
408号公報の製造方法とはその方法が全く異なり、ベ
ースとなるマグネタイト粒子生成のための反応を一旦終
了させ、粒子の大きさをほぼ決定づけてから表層部を形
成することを特徴とするものであり、この操作を施す理
由としては、マグネタイト粒子の黒色度低下を最低限に
抑制し、なおかつ磁気特性をバランス良く向上させるこ
とにある。
Therefore, according to the present invention, it is described that the water-soluble zinc compound is added during the reaction in which an unreacted ferrous hydroxide remains in a considerable amount.
The manufacturing method is completely different from the manufacturing method disclosed in Japanese Patent No. 408, and it is characterized in that the reaction for generating the magnetite particles as the base is once terminated, the size of the particles is almost determined, and then the surface layer portion is formed. The reason for performing this operation is to suppress the decrease in blackness of the magnetite particles to a minimum and to improve the magnetic characteristics in a well-balanced manner.

【0017】[0017]

【実施例】以下、実施例等により本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0018】実施例1 Fe2+ 1.54mol/lを含む硫酸第一鉄水溶液65
リットルと、2.38mol/lの水酸化ナトリウム水
溶液88リットルを混合し、撹拌した。
[0018]Example 1 Fe2+ Ferrous sulfate aqueous solution 65 containing 1.54 mol / l
Liter and 2.38 mol / l aqueous sodium hydroxide
88 liters of the solution were mixed and stirred.

【0019】混合水溶液中の残留水酸化ナトリウムが
2.1g/lとなるように調整後、温度80℃を維持し
ながら、65リットル/minの空気を吹きこみ、反応
を一旦終了させた。
After adjusting the residual sodium hydroxide in the mixed aqueous solution to 2.1 g / l, while maintaining the temperature at 80 ° C., 65 liter / min of air was blown in to terminate the reaction once.

【0020】次いで、Fe2+ 1.27mol/lを含む
硫酸第一鉄水溶液中に、Zn2+ 0.5mol/lとなる
ように硫酸亜鉛を添加した混合水溶液2.25リットル
を別に用意し、前述の反応スラリーに加え、再び40リ
ットル/minの空気を吹き込み、反応を終了させた。
得られた生成粒子を通常の洗浄、濾過、乾燥、粉砕工程
により処理した。
Next, Fe2+ Contains 1.27 mol / l
Zn in the ferrous sulfate aqueous solution2+ 0.5 mol / l
2.25 liters of mixed aqueous solution to which zinc sulfate was added
Prepared separately, added to the above reaction slurry, and again
The reaction was terminated by blowing in air at a bottle / min.
The resulting particles are washed, filtered, dried, and crushed in the usual manner.
Processed by.

【0021】こうして得られたマグネタイト粒子につい
て、下記に示す方法で比表面積、磁気特性、吸油量、測
色について評価した。結果を表2に示す。 (測定方法) (1)比表面積 島津−マイクロメリテイックス製2200型BET計使
用。 (2)磁気特性 東英工業製振動資料型磁力計VSM−P7型を使用し、
10KOeでの飽和磁化を測定。 (3)測色 マグネタイト粒子0.5gとアマニ油0.7gをフーバ
ー式マーラーで練った後、これにクリヤラッカー4.5
gを加え更によく練り合わせた。これをミラーコート紙
上に4mi1のアプリケーターを用いて塗布し、乾燥
後、色差計で測色した。 (4)吸油量 JIS法に準拠(JIS K 5101 顔料試験方
法) (5)Zn溶出率 得られた粒子の亜鉛の溶出率と鉄の溶出率の関係を次の
ように測定した。すなわち、1Nの塩酸5リットルに試
料25gを投入し、50℃で撹拌溶解し、0.1μmメ
ンブランにより濾液を濾別し、高周波誘導結合プラズマ
(ICP)によって各時間毎の溶出率を求めた。結果を
表3および図1に示す。
The magnetite particles thus obtained were evaluated for specific surface area, magnetic properties, oil absorption and colorimetry by the methods described below. The results are shown in Table 2. (Measurement Method) (1) Specific Surface Area Using Shimadzu Micromeritics Model 2200 BET Meter. (2) Magnetic characteristics Using Toei Kogyo's vibration data type magnetometer VSM-P7 type,
Measure saturation magnetization at 10 KOe. (3) 0.5 g of colorimetric magnetite particles and 0.7 g of linseed oil were kneaded with a Hoover-type Mahler, and then clear lacquer 4.5
g and kneaded further well. This was applied onto mirror-coated paper using a 4 mi1 applicator, dried, and then measured with a color difference meter. (4) Oil absorption amount According to JIS method (JIS K 5101 pigment test method) (5) Zn elution rate The relationship between the elution rate of zinc and the elution rate of iron of the obtained particles was measured as follows. That is, 25 g of a sample was put into 5 liters of 1N hydrochloric acid, dissolved by stirring at 50 ° C., the filtrate was filtered by a 0.1 μm membrane, and the elution rate at each time was obtained by high frequency inductively coupled plasma (ICP). The results are shown in Table 3 and FIG.

【0022】この結果から、亜鉛は早期に溶出してしま
い、亜鉛がマグネタイト粒子の表面のみに存在すること
が確認された。
From this result, it was confirmed that zinc was eluted at an early stage and zinc was present only on the surface of magnetite particles.

【0023】さらに、このマグネタイト粒子の粒子構造
を示す透過電子顕微鏡写真(×2,000,000)を
図2に示す。この図2によりマグネタイト粒子表面に鉄
−亜鉛酸化物が形成されていることが判る。
Further, a transmission electron micrograph (× 2,000,000) showing the particle structure of the magnetite particles is shown in FIG. It can be seen from FIG. 2 that iron-zinc oxide is formed on the surface of the magnetite particles.

【0024】実施例2〜3および比較例1〜3 表1に示されるように、酸化反応終了後に添加する硫酸
第一鉄および硫酸亜鉛混合水溶液の硫酸第一鉄濃度およ
び硫酸亜鉛濃度を種々変化させ、それ以外は実施例1と
同様の条件で処理した。また、比較例1については、酸
化反応終了時に硫酸第一鉄および硫酸亜鉛水溶液は添加
しなかった。実施例1と同様に比表面積、磁気特性、吸
油量、測色について評価した。結果を表2に示す。
Examples 2 to 3 and Comparative Examples 1 to 3 As shown in Table 1, the ferrous sulfate concentration and the zinc sulfate concentration of the mixed ferrous sulfate and zinc sulfate mixed solution added after the completion of the oxidation reaction were changed variously. The other conditions were the same as in Example 1. In Comparative Example 1, the ferrous sulfate and zinc sulfate aqueous solutions were not added at the end of the oxidation reaction. Similar to Example 1, the specific surface area, magnetic properties, oil absorption, and colorimetry were evaluated. The results are shown in Table 2.

【0025】表2の結果から明らかなように、実施例1
〜3は比較例1〜3と比較して飽和磁化(σs)は高い
水準にある。
As is clear from the results shown in Table 2, Example 1
3 to 3 have higher saturation magnetization (σs) than Comparative Examples 1 to 3.

【0026】実施例4および比較例4 表1に示されるように粒子サイズを調整するために、反
応前のアルカリ水溶液(水酸化ナトリウム水溶液)濃度
を変えた以外は、実施例1と同様の方法によってマグネ
タイト粒子を得た(実施例4)。
Example 4 and Comparative Example 4 The same method as in Example 1 except that the concentration of the alkaline aqueous solution (sodium hydroxide aqueous solution) before the reaction was changed in order to adjust the particle size as shown in Table 1. Thus, magnetite particles were obtained (Example 4).

【0027】表1に示されるように粒子サイズを調整す
るために、反応前のアルカリ水溶液(水酸化ナトリウム
水溶液)濃度を変えた以外は、比較例1と同様の方法に
よってマグネタイト粒子を得た(比較例4)。
Magnetite particles were obtained in the same manner as in Comparative Example 1 except that the concentration of the alkali aqueous solution (sodium hydroxide aqueous solution) before the reaction was changed to adjust the particle size as shown in Table 1. Comparative example 4).

【0028】この実施例4および比較例4について、実
施例1と同様に比表面積、磁気特性、吸油量、測色につ
いて評価した。結果を表2に示す。
For Example 4 and Comparative Example 4, the specific surface area, magnetic properties, oil absorption, and colorimetry were evaluated as in Example 1. The results are shown in Table 2.

【0029】表2に示されるように、実施例4と比較例
4を比較しても、実施例4は比較例4に比べて飽和磁化
が高い。
As shown in Table 2, even when Example 4 and Comparative Example 4 are compared, Example 4 has a higher saturation magnetization than Comparative Example 4.

【0030】比較例5 特公昭59−43408号公報記載の実施例1の方法に
準じてマグネタイト粒子を作製した。
Comparative Example 5 Magnetite particles were produced according to the method of Example 1 described in JP-B-59-43408.

【0031】この比較例5について、実施例1と同様に
比表面積、磁気特性、吸油量、測色について評価した。
結果を表2に示す。
Similar to Example 1, this Comparative Example 5 was evaluated for specific surface area, magnetic properties, oil absorption, and color measurement.
The results are shown in Table 2.

【0032】この比較例5のマグネタイト粒子について
は、測色結果のL値が低く黒度の点で優れているが、粒
子の大きさに比して飽和磁化が著しく低い。
The magnetite particles of Comparative Example 5 have a low L value as a result of colorimetry and are excellent in terms of blackness, but their saturation magnetization is significantly lower than the size of the particles.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】以上説明したように、本発明のマグネタ
イト粒子は、黒色度の度合を損なわず、かつ磁気特性も
バランスよく向上する。また、粒子表面への鉄−亜鉛酸
化物の被覆を薄く調整することにより、粒子表面積の減
少を抑制し、これによって充分な吸油量を確保できる。
このため特に静電複写磁性トナー用材料粉、塗料用黒色
顔料粉の用途に適している。
As described above, the magnetite particles of the present invention do not impair the degree of blackness and improve the magnetic characteristics in a well-balanced manner. Further, by adjusting the coating of iron-zinc oxide on the surface of the particles to be thin, it is possible to suppress the decrease in the surface area of the particles, thereby ensuring a sufficient oil absorption amount.
For this reason, it is particularly suitable for use as material powder for electrostatic copying magnetic toner and black pigment powder for paints.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1のマグネタイト粒子の亜鉛の溶出率
と鉄の溶出率の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the elution rate of zinc and the elution rate of iron in magnetite particles of Example 1.

【図2】 実施例1のマグネタイト粒子の粒子構造を示
す透過電子顕微鏡写真(×2,000,000)
FIG. 2 is a transmission electron micrograph (× 2,000,000) showing the particle structure of the magnetite particles of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 広幸 岡山県玉野市日比6丁目1−1三井金属 鉱業株式会社日比製煉所内 (56)参考文献 特開 平6−310318(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 49/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Watanabe Inventor Hiroyuki Watanabe 6-1-1, Hibi, Tamano-shi, Okayama Mitsui Mining & Smelting Co., Ltd. (56) Reference JP-A-6-310318 (JP, A) ) (58) Fields surveyed (Int.Cl. 7 , DB name) C01G 49/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子表面にマグネタイト粒子全体におけ
るZn/Feのモル比(%)が0.2%以上0.5%未
満である鉄−亜鉛酸化物被覆層を有し、飽和磁化79
emu/g(79 A・m 2 /kg)以上、色差計による
黒色度(L)19.5以下、JIS K 5101に準
拠した吸油量30ml/100g以上であることを特徴
とするマグネタイト粒子。
1. The entire surface of the magnetite particles on the surface of the particles.
Zn / Fe molar ratio (%) of 0.2% to 0.5%
Having a full iron-zinc oxide coating and a saturation magnetization of 79
Magnetite particles having an emu / g (79 A · m 2 / kg) or more, a blackness (L) by a color difference meter of 19.5 or less, and an oil absorption amount of 30 ml / 100 g or more according to JIS K 5101.
【請求項2】 第一鉄塩を主成分とする溶液に、鉄に対
して当量以上のアルカリ水溶液と混合した後、遊離水酸
基濃度を1〜3g/1に維持して酸化反応を行ない酸化
反応終了後、マグネタイト粒子全体におけるZn/Fe
のモル比(%)が0.2〜1.8%となるように亜鉛を
含む第一鉄塩を添加し、pH6.0〜9.0に調整し、
再度酸化反応を行なうことを特徴とするマグネタイト粒
子の製造方法。
2. An oxidation reaction in which a solution containing a ferrous salt as a main component is mixed with an aqueous alkaline solution at an amount equivalent to or more than iron, and then the free hydroxyl group concentration is maintained at 1 to 3 g / 1 to carry out the oxidation reaction. After completion, Zn / Fe in the entire magnetite particles
The ferrous salt containing zinc is added so that the molar ratio (%) of the above is 0.2 to 1.8%, and the pH is adjusted to 6.0 to 9.0.
A method for producing magnetite particles, which comprises carrying out an oxidation reaction again.
JP20294894A 1994-08-05 1994-08-05 Magnetite particles and method for producing the same Expired - Lifetime JP3463957B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20294894A JP3463957B2 (en) 1994-08-05 1994-08-05 Magnetite particles and method for producing the same
KR1019950023916A KR0163819B1 (en) 1994-08-05 1995-08-03 Magnetite particles and process for preparing the same
DE19528718A DE19528718B4 (en) 1994-08-05 1995-08-04 Magnetite particles and method of making the same
US08/511,262 US5556571A (en) 1994-08-05 1995-08-04 Magnetite particles and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20294894A JP3463957B2 (en) 1994-08-05 1994-08-05 Magnetite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0848525A JPH0848525A (en) 1996-02-20
JP3463957B2 true JP3463957B2 (en) 2003-11-05

Family

ID=16465821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20294894A Expired - Lifetime JP3463957B2 (en) 1994-08-05 1994-08-05 Magnetite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3463957B2 (en)

Also Published As

Publication number Publication date
JPH0848525A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
US5843610A (en) Magnetic particles for magentic toner and process for producing the same
US5336421A (en) Spinel-type spherical, black iron oxide particles and process for the producing the same
US5652060A (en) Spherical magnetic particles for magnetic toner and process for producing the same
EP0187434B2 (en) Spherical magnetite particles
EP0826635B1 (en) Magnetite particles and production process of the same
JP4409335B2 (en) Magnetite particles and method for producing the same
US5556571A (en) Magnetite particles and process for preparing the same
JP3463957B2 (en) Magnetite particles and method for producing the same
JP3470929B2 (en) Magnetite particles and method for producing the same
JP3857040B2 (en) Iron oxide particles and method for producing the same
US5578375A (en) Granular magnetite particles and process for producing the same
JP2756845B2 (en) Hexahedral magnetite particle powder and its manufacturing method
JP2906084B2 (en) Spherical black spinel-type iron oxide particles and method for producing the same
JP3828727B2 (en) Iron oxide particles
JP2997167B2 (en) Magnetite particles and method for producing the same
JP4088279B2 (en) Iron oxide particles and method for producing the same
JPH07277738A (en) Granular magnetite powder and production thereof
JP3419941B2 (en) Magnetite particles and method for producing the same
JP2743028B2 (en) Iron oxide superparamagnetic fine particle powder and method for producing the same
JP3509039B2 (en) Method for producing magnetite particles
JP3006633B2 (en) Iron oxide superparamagnetic fine particle powder and method for producing the same
JP5029981B2 (en) Black composite iron oxide particles, electrophotographic toner using the same, and image forming method
JP3645124B2 (en) Iron oxide particles and method for producing the same
JP2814019B2 (en) Needle-like magnetite particle powder for magnetic toner and method for producing the same
JP3741701B2 (en) Magnetite particles for electrostatic copying magnetic toner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 11

EXPY Cancellation because of completion of term